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Abstract We introduce an analogue of Ramanujan’s Master Theorem that
greatly generalizes some recent results on the construction of 1

π series. Imple-
menting this technique through the use of computer algebra systems produces
“proof signatures” for closed-form evaluations for new classes of infinite series
and definite integrals. Using this integration method, we offer symbolic com-
putations for a variety of new series, including new binomial-harmonic series
for 1

π , such as the elegant series

∞∑
n=1

(
2n
n

)2
HnH2n

16n(n+ 1)
= 4− 7π

3
+ 8 ln(2) +

48 ln2(2)− 16G− 16 ln(2)

π

introduced in our article, letting G denote Catalan’s constant, as well as new
closed-form evaluations for 3F2(1) series, as in the equality

3F2

[
1
4 ,

5
4 ,

3
2

1, 94

∣∣∣∣∣ 1

]
=
Γ 2
(
1
4

) (
15
√

2− 5 ln
(
1 +
√

2
))

16π3/2

introduced in our article.
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1 Introduction

Many of Ramanujan’s well-known formulas are based upon the evaluation of
moments for Maclaurin-type power series. In particular, Ramanujan’s Master
Theorem ∫ ∞

0

xs−1

( ∞∑
i=0

(−x)i

i!
f(i)

)
dx = Γ (s)f(−s) (1)

was frequently used by Ramanujan to construct closed-form evaluations of
definite integrals and infinite series [1,3]. In the case whereby the series in (1)
is hypergeometric, we obtain an evaluation of the following form [17].

∫ ∞
0

xs−1pFq

[
c1, c2, . . . , cp

d1, d2, . . . , dq

∣∣∣∣∣ − x
]
dx

= Γ (s)
Γ (c1 − s) · · ·Γ (cp − s)Γ (d1) · · ·Γ (dq)

Γ (c1) · · ·Γ (cp)Γ (d1 − s) · · ·Γ (dq − s)

There are many analogues and variants of classical versions of Ramanujan’s
Master Theorem [2,14,18,19], and there are a number of different formulations
of this theorem which all provide evaluations for the moments of sufficiently
well-behaved functions defined in terms of power series, as in the identity
whereby ∫ ∞

0

x−n−1

( ∞∑
k=0

(−1)ka(k)xk

)
dx = − π

sinπn
a(n).

Given the wide-ranging applications of Ramanujan’s Master Theorem, we are
inspired to construct new variants and analogues of this result. Instead of
dealing specifically with moments of power series, we consider the problem of
constructing Ramanujan-like identities for integrals over products consisting
of a parametric power of an input function with another input mapping given
as a factor in the integrand.

Our present article is inspired in large part by recent research that has dealt
with the use of symbolic evaluations for moment-like integrals to construct new
closed-form evaluations for infinite series and definite integrals. New results on
the construction of Ramanujan-like series for 1

π are given in [8] that are based

on the evaluation of the moments of the elementary function ln(1−x2)√
1−x2

on the

domain [0, 1), and the integration technique from [8] is heavily utilized in [7,
9]. A somewhat similar approach is given in [12], in which the moments of the
elementary expression arcsin(x) ln(x) on (0, 1] are used to prove new rational
approximations for constants involving 1

π , as in the intriguing equality

4G− 12 ln 2 + 6

π
=

∞∑
n=0

(
2n
n

)2
H2n

16n(2n− 1)2
,
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letting G denote Catalan’s constant. In [23], the evaluation of moments of the
form ∫ 1

0

x2k−1 · lnx · 3F2

[
1
2 , 2, 2

p+3
2 , p+4

2

∣∣∣∣∣ x2k
]
dx

is explored. Integrals of the form∫ b

a

xn lnm (sin(x)) dx

are applied in [20] to establish some new results on the log-sine integral func-
tion, and a variety of moment formulas are used in [21] to construct new eval-
uations for series involving the Riemann zeta function. For example, symbolic
formulas for moments of the following forms are applied in [21], motivating a
full exploration on the application of the class of moments in Lemma 1 below
in the construction of new infinite series evaluations.∫ πz

0

xp cot(x) dx

∫ 2πz

0

xp · Clm(x) dx

∫ z

0

xpψ(x) dx

A formula for integrals involving x ln2m−1 x
1−x is used in [24] in the symbolic

computation of some harmonic summations, and a variety of new integral
evaluations and series evaluations are proved in [6] by substituting logarithmic
functions into Maclaurin series expansions and integrating term-by-term; this
illustrates the utility of exploring variants of (1) that make use of non-standard
moments such as logarithmic moments, as elaborated below.

The crux of the technique from [6] is based on the observation that logarith-
mic moments for rational expressions of the form 1

1±xn often may be expressed
in a simple way with a zeta-type function and a gamma-type expression as a
factor, so that if logarithmic expressions are substituted into the Maclaurin
series for trigonometric or hyperbolic functions, if we integrate term-by-term,
we often obtain a series involving the Riemann zeta function that Mathemat-
ica can evaluate directly. Through the use of non-standard moments such as
logarithmic moments, the “signature method” given by Lemma 1 below, which
is something of an analogue of Ramanujan’s Master Theorem, often leads us
to one-line proofs of new integral evaluations, such as∫ 1

0

(x− 1)2

x(x+ 1) ln2(x)
dx = 12 ln(A)− 1− 4 ln(2)

3
, (2)

letting A denote the Glaisher–Kinkelin constant. We present interesting appli-
cations of non-standard moments in the upcoming section through the eval-
uation of difficult series containing harmonic-type numbers, using Lemma 1,
and by using non-standard moments to evaluate new classes of 3F2(1) series.

Letting e1(x) and e2(x) be functions on a given domain (a, b) whereby the
parameters for this interval are not necessarily finite, the crux of our strategy
for generating and classifying Ramanujan-like series and integral formulas in-

volves the evaluation of definite integrals of the form
∫ b
a

(e1(x))ne2(x) dx for
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n ∈ N0. For the purposes of this article, our strategy may be summarized with
the following observation.

Lemma 1 Letting (e1(x))ne2(x) be integrable on (a, b) for n ∈ N0, letting

Iba(e1, e2)(n) = I(n) =
∫ b
a

(e1(x))ne2(x) dx for n ∈ N0, and writing

e3(x) =

∞∑
n=−∞

xnf(n), (3)

then the equality ∫ b

a

e3(e1(x))e2(x) dx =

∞∑
n=−∞

I(n)f(n) (4)

holds, provided that the series in (3) and both sides of (4) are well-defined.

Proof This follows immediately by inputting e1(x) into both sides of (3), mul-
tiplying both sides of resultant equation by e2(x), integrating both sides of the
resulting equality over (a, b), and then reversing the order of summation and
integration.

Often, if a state-of-the-art computer algebra system (CAS) can evaluate
one side of (4), without being able to provide a symbolic evaluation for the
other side of the equation, then we obtain a new integral or series formula. The
expression (e1, e2, e3)a,b,f (or more compactly, (e1, e2, e3), if the choice of a, b,
and f is somehow tacit or obvious) is thus something of a “proof signature” for
the evaluation in (4). This approach is reminiscent of, and is partly inspired
by, the one-line proofs afforded by the famous Wilf–Zeilberger method from
[22]. To illustrate the utility of Lemma 1, we offer an informal one-line proof
of the below formulation of the famous Basel problem.

Basel problem: Prove that ζ(2) = π2

6 .

Proof:
(

sin(x), 1,
(
sin−1(x)

)2)
. �

Explicitly, we have that I(2n) =
∫ π
0

(sin(x))
2n
dx =

√
πΓ(n+ 1

2 )
Γ (n+1) and

(
sin−1(x)

)2
=

1

2

∞∑
n=1

(2x)2n

n2
(
2n
n

) ,
so that π3

12 = 1
2

∑∞
n=1

4n
√
πΓ(n+1

2 )
Γ (n+1)

n2(2n
n )

. Equivalently, ζ(2) = π2

6 . This illustrates

that the integration method given by Lemma 1 provides us with an efficient and
novel way of significantly simplifying proofs of known closed-form formulas.
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As noted above, our present article is inspired in part by the integration
methods given in [6,8,12]. For a sequence (sn)n∈N, the fundamental lemma
from [8] deals with the integration of infinite series of the form

∞∑
n=0

(−1)n
( 1

2

n

)
sn ·

x2n ln
(
1− x2

)
√

1− x2
(5)

to produce new Ramanujan-like series for 1
π involving harmonic numbers. For

example, we find that the new evaluation

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)
=

8 ln(2)− 4

π
(6)

provided in [8] follows immediately from the main lemma from [8] simply by
letting sn = 1 in (5), and applying a suitable integration operator to (5). So, in
other words, the elegant evaluation provided in (6) is equivalent to the proof
signature (

x,
ln
(
1− x2

)
√

1− x2
,
√

1− x2
)
. (7)

This illustrates how Lemma 1 may be regarded as a vast generalization of the
integration method from [8], and this leads us to the following question.

Question 1 How can we obtain new classes of Ramanujan-like formulas, with
the use of variants of the proof signature in (7)?

The above proof of Lemma 1 is reminiscent of some of Ramanujan’s work
concerning the application of his Master Theorem. For example, as noted in
[3], letting φ denote a reasonably well-behaved function, the following corol-
lary of Ramanujan’s Master Theorem may be proved by writing cos(nx) as a
Maclaurin series, switching the order of summation and integration, and then
applying the Master Theorem, term-by-term.

Corollary 1 The identity∫ ∞
0

∞∑
k=0

φ(k)(−x)k

k!
cos(nx) dx =

∞∑
k=0

φ(−2k − 1)(−n2)k

holds [3].

Given the interesting Ramanujan-like series results from [8], and given
how minor alterations in the corresponding proof signatures for these results
provide us with new classes of series that cannot be computed symbolically
with current CAS software, this strongly motivates us to continue to explore
the application of our Ramanujan-like integration method from Lemma 1.
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2 Applications of the signature method

Lemma 1 may be regarded as something of a heuristic tool that motivates
the development of new results on closed-form evaluations based on the use
of creative combinations of functions in the integrand in (4). We illustrate
this idea with a variety of different examples, starting with a variant of the
integration methods from [8,9,12] for constructing binomial-harmonic series
for 1

π .

2.1 New harmonic summations

The fundamental lemma from Section 1 is very useful in the exploration of
variants of the integration technique from [8]. Through a clever application
of the symbolic form for the moments of the mapping α : [0, 1) → R whereby

x 7→ ln(1−x2)√
1−x2

, a very general technique for constructing binomial-harmonic

summations for 1
π is put forth in [8]. It seems natural to consider the symbolic

evaluation of moments on variations of the aforementioned transformation α.
Since Mathematica is able to directly evaluate the series

∞∑
n=1

(
2n
n

)(
4n
2n

)
Hn

26n(n+ 1)
=

8

3

(
2−
√

2 ln(64)

π

)
, (8)

in consideration of the recent research from [10,11] concerning the evaluation
of series involving binomial products of the form

(
2n
n

)(
4n
2n

)
, we are inspired

to try to generalize (8). From the results in [7,9,8], it would seem that as a
natural place to start, consideration of the problem of evaluating series of the
form

∞∑
n=1

(
2n
n

)(
4n
2n

)
Hn

26n(n+ z)

for z ∈ Z>0 would be suitable. However, as elaborated below, the problem of
evaluating

∞∑
n=1

(
2n
n

)(
4n
2n

)
Hn

26n(n+ 2)
(9)

turns out to be surprisingly difficult, compared with how Mathematica easily
provides a closed-form formula for the series in (8). If we apply a re-indexing
argument to express the summation in (8) in terms of (9), we obtain the
recalcitrant pFq series

4F3

[
1
4 ,

3
4 , 1, 1

2, 2, 3

∣∣∣∣∣ 1

]
as well as the difficult harmonic series

∞∑
n=0

(
1

64

)n (2n
n

)(
4n
2n

)
Hn

(n+ 1)2
.
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Through a direct application of the signature method given by the above
lemma, we obtain the following closed-form evaluation for the seemingly re-
calcitrant series in (9).

Theorem 1 The equality
∞∑
n=1

(
1

64

)n (2n
n

)(
4n
2n

)
Hn

n+ 2
=

256

105
+

128
√

2

105π
− 304

√
2 ln(2)

35π

holds.

Proof

(
x2,

ln(1−x2)
√
x 4√1−x2

,
4
√
1−x(x+4)−4

x2

)
.

Direct applications of Lemma 1 also provide us with the following new

results, through the use of moments of the form
∫ 1

0

xm ln(1−x2)
4√1−x2

dx.

∞∑
n=1

(
1

64

)n (2n
n

)(
4n
2n

)
Hn

n+ 3
=

16384

10395
+

4352
√

2

3465π
− 21136

√
2 ln(2)

3465π

∞∑
n=1

(
1

64

)n (2n
n

)(
4n
2n

)
Hn

n+ 4
=

262144

225225
+

795776
√

2

675675π
− 356656

√
2 ln(2)

75075π

∞∑
n=1

(
1

64

)n (2n
n

)(
4n
2n

)
Hn

n+ 5
=

67108864

72747675
+

21632512
√

2

19840275π
− 94907536

√
2 ln(2)

24249225π

There are many natural ways of going about generalizing the series eval-
uations listed above, as suggested in the symbolic form for the below series,
which Mathematica 11 cannot evaluate.

Theorem 2 The evaluation
∞∑
n=0

(
1

27

)n (2n
n

)(
3n
n

)
Hn

3n− 4
=

252
√

3 ln(3)− 279
√

3

128π

holds.

Proof

(
x2,

ln(1−x2)
3
√
x 3√1−x2

, 14
3
√

1− x(3x+ 1)

)
.

Using similar signature tuples, we obtain the following new results.
∞∑
n=0

(
1

27

)n (2n
n

)(
3n
n

)
Hn

3n− 5
=

360
√

3 ln(3)− 207
√

3

500π

∞∑
n=0

(
1

27

)n (2n
n

)(
3n
n

)
Hn

3n− 7
=

28476
√

3 ln(3)− 33363
√

3

21952π

∞∑
n=0

(
1

27

)n (2n
n

)(
3n
n

)
Hn

3n− 8
=

69480
√

3 ln(3)− 43461
√

3

128000π
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Remark 1 The above results can be generalized using the main lemma from

our article together with the identity whereby
∫ 1

0

ln(1−xk)xα

(1−xk)1/m
dx evaluates as

Γ
(
m−1
m

)
Γ
(
α+1
k

) (
H− 1

m
−H−k+m+mα

km

)
kΓ
(
m−1
m + α+1

k

)
for parameters k, m, and α satisfying the following conditions: <

(
1
m

)
< 1,

<(α+ k) > −1, and <(k) > 0. For example, if we note that the expression

ln
(
1− xk

)
·
∞∑
i=0

( 1
m
i

)
(−xk)i

(1− xk)
1/m

reduces to ln
(
1− xk

)
, through the signature method we find that

∞∑
i=0

(−1)iΓ
(
i+ 1

k

)
Hi+ 1

k−
1
m

Γ (1 + i)Γ
(
1 + i+ 1

k −
1
m

)
Γ
(
1− i+ 1

m

)
may be evaluated as

km sin
(
π
m

) (
H 1

k
+H− 1

m

)
π

.

Series involving products of harmonic-type numbers are among the central
objects of study in our article, since Lemma 1 seems to naturally given rise
to simple ways of evaluating seemingly recalcitrant series of this form, espe-
cially when used in conjunction with known generating functions for sequences
involving harmonic-like numbers. The study of series involving products of har-
monic numbers is a very interesting area [15]. The unexpected [15] nonlinear
harmonic series evaluation ∑

n∈N

(
Hn

n

)2

=
17π4

360
(10)

had been discovered experimentally by Enrico Au-Yeung, and was later proved
in [5]. The identity in (10) is generalized in [15], in which an evaluation for
summations of the form

∞∑
n=1

Hn

n
· Hn+k

n+ k

is proved. It appears that there have not previously been any known summa-
tions for 1

π containing products of harmonic-type numbers. This motivates us
to apply Lemma 1, together with integration techniques as in [8,9,12], to con-
struct new series of this form. First, our strategy is to exploit the closed-form
evaluation for the ordinary generating function for (

(
2n
n

)
Hn : n ∈ N) given in

[13], as suggested in the proof signature for the new evaluation given below.
Our use of the moments of ln(x)

√
1− x2 with regard to the following proof

signature is directly inspired by the integral operator Tln,arcsin from [12].
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Theorem 3 The evaluation

∞∑
i=0

(
2i
i

)2
HiH

′
2i

16i(i+ 1)
=

16G− 16 ln2(2)− 16 ln(2)

π
+ 4 + π − 8 ln(2)

holds.

Proof

(
x2, ln(x)

√
1− x2,

ln
(√

1−x+1

2
√

1−x

)
√
1−x

)
.

Remark 2 Through the use of the above proof signature, one would need to
also evaluate the series

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ 1)2
,

which was recently evaluated in closed form in [7]. Also, we need the evaluation
of the series

∞∑
n=0

(
2n
n

)2
H2n

16n(n+ 1)2
,

given in [9] in the application of the following proof signature to prove the
below theorem.

Theorem 4 The evaluation

∞∑
n=1

(
2n
n

)2
H2nH

′
2n

16n(n+ 1)
= π − 4 ln(2) +

4 + 8G− 8 ln(2)− 12 ln2(2)

π

holds.

Proof

(
x2,
√

1− x2 ln(x),
ln
(√

1−x+1
2(1−x)

)
√
1−x

)
.

The following result is especially useful.

Theorem 5 The equality

∞∑
n=1

(
2n
n

)2
H2
n

16n(n+ 1)
=

64 ln2(2)− 32G

π
− 10π

3
+ 16 ln(2) (11)

holds.

Proof

(
x2,
√

1− x2 ln
(
1− x2

)
,
ln
(

1
2

(
1√
1−x+1

))
√
1−x

)
.

Corollary 2 The equality

∞∑
n=1

(
2n
n

)2
HnH2n

16n(n+ 1)
= 4− 7π

3
+ 8 ln(2) +

48 ln2(2)− 16G− 16 ln(2)

π

holds.



10 John M. Campbell, Sanjar Abrarov

Proof This follows immediately from Theorem 5 and Theorem 3.

Corollary 3 The equality

∞∑
n=1

(
2n
n

)2
H2

2n

16n(n+ 1)
=

4− 8G+ 36 ln2(2)− 24 ln(2)

π
+ 4− 4π

3
+ 4 ln(2)

holds.

Proof This follows immediately from the preceding corollary together with
Theorem 4.

Applying the following proof signature using the main lemma from our
present article is quite involed, and requires a number of 1

π series from [7] and
[8], but we omit details for the sake of brevity.

Theorem 6 The series
∞∑
n=1

(
2n
n

)2
H2
n

16n(n+ 2)

is equal to

28

9
+

64 ln(2)

9
− 50π

27
+

16− 128G− 128 ln(2) + 320 ln2(2)

9π
.

Proof

(
x2, x2

√
1− x2 ln

(
1− x2

)
,
ln
(√

1−x+1

2
√

1−x

)
√
1−x

)
.

We may evaluate series of the form

∞∑
n=1

(
2n
n

)2
H2
n

16n(n+ z)

for z ∈ Z>0 in a recursive fashion, and we may similarly generalize the pre-
ceding theorems.

As discussed above, it is interesting how minor modifications to the tuple
in (7) can lead to very different evaluations, compared to the rational approx-

imation for 8 ln(2)−4
π afforded to us by (6). For example, using the signature(

x,
ln (1− x)√

1− x
,
√

1− x2
)
, (12)

we find that the sum
∞∑
i=0

4i
(
2i
i

)
H2i+ 1

2

(2i− 1)(4i+ 1)
(
4i
2i

)
is equal to

2

9

(
7− 8

√
2 + 3

(
5
√

2− 1
)

ln(2) + 6
√

2 ln
(√

2− 1
))

.

This formula is noticeably different compared to the formulas provided by the
signature in (7). As suggested in the below theorem, further manipulations of
the final entry in the tuple in (12) lead us to interesting new results.
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Theorem 7 The series
∞∑
i=0

(
2i
i

)(
4i
2i

) 4iH2i+ 1
2

(2i− 1)2

is equal to

−2

9

(
83− 88

√
2 + 9

(
10
√

2− 3
)

ln(2) + 36
√

2 ln
(√

2− 1
))

.

Proof
(
x, ln(1−x)√

1−x ,−
√
1−x2+3x sin−1(x)√

1−x

)
.

The above theorem is interesting because modern CAS software cannot
compute this sum, and it seems that integral formulas for generalized har-
monic numbers also cannot be applied to evaluate the series in Theorem 7.
Moreover, it appears that there is not very much mathematical literature on
series involving binomial quotients of the following form.(

2i

i

)/(4i

2i

)
, i ∈ N0 (13)

Theorem 7 is vastly generalized through the following new integration result.

Lemma 2 For a sequence (fn : n ∈ N), the series

∞∑
n=1

(
2n
n

)(
4n
2n

) · (−4)nH2n+ 1
2

4n+ 1
· fn

is equal to

− 2

∫ 1

0

∞∑
n=0

(
− 1

2

n

)
fn
(
x2 − 1

)2n
ln(x) dx−

√
π ln(2)

∞∑
n=1

22nfnΓ
(
n+ 1

2

)
Γ
(
1
2 − n

)
Γ
(
2n+ 3

2

) − 2f0,

provided that the above expressions are all well-defined.

Proof This follows immediately from the symbolic evaluation of the antideriva-
tive of (x2 − 1)2n ln(x), for a parameter n.

For example, if we simply let

fn = (−1)n
4n+ 1

(2n− 3)2

for elements n in N0, then we find that the infinite series

∞∑
n=1

(
2n
n

)(
4n
2n

) 4nH2n+ 1
2

(2n− 3)2
(14)
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is equal to

4131664
√

2− 3783176

165375
+

1544 ln(2)− 4112
√

2 ln(2)− 2056
√

2 ln
(
2−
√

2
)

225
.

This evaluation is interesting because if a re-indexing argument is applied to
obtain the series in Theorem 7, this would require the evaluation of the fol-
lowing very difficult pFq series derived from hypergeometric sums involving
binomial quotients as in (13). Mathematica 11 is not able to evaluate these
difficult expressions, emphasizing our previous point on the lack of mathe-
matical resources on hypergeometric series involving quotients of the form in
(13).

4F3

[
1
2 , 1,

7
4 ,

5
2

9
4 ,

11
4 ,

11
4

∣∣∣∣∣ 1

]

4F3

[
3
2 , 2,

11
4 ,

7
2

13
4 ,

15
4 ,

15
4

∣∣∣∣∣ 1

]
The above evaluation for the series in (14) is also equivalent to the following
proof signature:(

x2 − 1, ln(x), 42x3 sin−1(x) + 23
√

1− x2x2 +
√

1− x2
)
,

illustrating the versatility of the signature method. Through direct applica-
tions of Lemma 2, we obtain the following new results, as well as many exten-
sions of the evaluation from Lemma 1 given by the tuple provided in (12).

∞∑
n=1

(
2n
n

)(
4n
2n

) 4nH2n+ 1
2

(2n− 5)2
=

312851954224
√

2− 279413817016

11345882625
+

2042776 ln(2)− 5609648
√

2 ln(2)− 2804824
√

2 ln
(
2−
√

2
)

297675
∞∑
n=1

(
2n
n

)(
4n
2n

) 4nH2n+ 1
2

(2n− 7)2
=

892093651361104
√

2− 786424570733896

30466216155375
+

4655127896 ln(2)− 12916662064
√

2 ln(2)− 6458331032
√

2 ln
(
2−
√

2
)

676350675

A similar approach leads us to the following evaluation.

Theorem 8 The evaluation
∞∑
i=0

(
4i
2i

)(
2i
i

) · Hi+ 1
2

4i(2i+ 1)2
= 16− 8

√
2 + 4

(
3
√

2− 2
)

ln(2)− 8
√

2 ln
(

1 +
√

2
)

holds.
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Proof

(
x,

ln(1−x2)√
1−x2

,
√
x+ 1

)
.

It should be noted that deriving the evaluation presented in Theorem 8
using the above proof signature, together with the master lemma from Section
1, is nontrivial, although the proof signature(

x,
ln
(
1− x2

)
√

1− x2
,
√
x+ 1

)
(15)

provides us with a very succinct summary of how to go about this derivation.
The complexity of the following rigorous proof of Theorem 8 compared with
the informal proof signature displayed in (15) is illustrative of the power and
versatility of the integration method put forth in our article.

Detailed proof of Theorem 8: Through a direct application of Lemma 1 with
regard to the proof signature from (15), we find that

π ln(2)− 16

15
3F2

[
1, 1, 32
7
4 ,

9
4

∣∣∣∣∣ 1

]
(16)

must be equal to

∞∑
n=1

( 1
2
n

) (
−
(
2−1−nnπΓ (n)

(
Hn

2
+ ln(4)

)))
Γ
(
1 + n

2

)2 . (17)

Mathematica is not able to evaluate the 3F2 series displayed in (16), even
through the use of the FunctionExpand command. The evaluation of hyper-
geometric series with quarter-integer parameters was recently explored in [10,
11], and it turns out that a clever variant of some of the proof techniques from
[10,11] can be applied to obtain a simple closed-form evaluation for (16).

One of the key observations from [10] that is used in the closed-form eval-
uation of a 3F2 series with quarter-integer parameters is that Pochhammer
products of the form (

2n+ 1

4

)
i

(
2n+ 3

4

)
i

can be expressed in a very natural way in terms of central binomial coefficients
of the form

(
4i
2i

)
, so that integral formulas for binomial expressions of this form

can be substituted into the appropriate hypergeometric summand in order to
express the corresponding series as a definite integral. With regard to the lower
parameters of the 3F2(1) series from (16), we have that(

7

4

)
i

(
9

4

)
i

=
1

15
64−i(4i+ 1)(4i+ 3)(4i+ 5)(2i)!

(
4i

2i

)
,

which shows us that

3F2

[
1, 1, 32
7
4 ,

9
4

∣∣∣∣∣ 1

]
=

∞∑
i=0

15 16i(2i+ 1)

(4i+ 1)(4i+ 3)(4i+ 5)
(
4i
2i

) . (18)



14 John M. Campbell, Sanjar Abrarov

Through the use of the beta function, we find that the equality

1(
4i
2i

) =

∫ 1

0

(4i+ 1)(1− t)2it2i dt (19)

holds for i ∈ N0. Replacing the factor 1

(4i
2i)

in the summand in (18) with the

definite integral in (19), and reversing the order of summation and integration,
we find that the summations in (18) are equal to the following seemingly
recalcitrant integral.∫ 1

0

1

256 ((−1 + t)2t2)
5/4

(
15
(
− 12 4

√
(−1 + t)2t2+(

3 + 4
√

(−1 + t)2t2
)

tan−1
(
2 4
√

(−1 + t)2t2
)
+(

3− 4
√

(−1 + t)2t2
)

tanh−1
(
2 4
√

(−1 + t)2t2
))
dt

)
Amazingly, Mathematica is able to provide a simple closed-form evaluation for
the above integral, yielding the following elegant evaluation.

3F2

[
1, 1, 32
7
4 ,

9
4

∣∣∣∣∣ 1

]
= −15

8

(
√

2 tanh−1

(
2
√

2

3

)
− 4

)
.

Using the above evaluation, and by bisecting the series in (17), we obtain the
desired result. ut

Using the signature method, we can easily derive many natural variants of
the above theorem that cannot be evaluated otherwise, as suggested below.

Theorem 9 The evaluation

∞∑
n=0

(
4n
2n

)(
2n
n

) · H ′2n
4n(2n+ 1)(4n− 1)

=

√
2 ln(2) + 4 ln(2) + 4 ln

(√
2− 1

)
3

holds.

Proof
(
x2 − 1, ln

(
1− x2

)
, 4
√
x+ 1 cos

(
1
2 tan−1 (

√
x)
))

.

Through a simple application of Lemma 1, we obtain a very general method
of evaluating difficult series involving alternating harmonic numbers and in-
verses of central binomial coefficients, as suggested by the following theorems.

Theorem 10 Letting φ denote the Golden Ratio, we have that the equation

∞∑
n=0

(−1)n+1H ′2n
(2n+ 1)

(
2n
n

) =

(
1

6
− 1

5
√

5

)
π2 − ln(φ) ln

(
2 +
√

5
)

holds.
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Proof
(

(1− x)x, ln(1− x), 1
x+1

)
.

Theorem 11 The series
∞∑
n=0

(−1)nH ′2n
(n+ 1)

(
2n
n

)
is equal to

4ζ(3)

5
+

(
ln
(√

5 + 2
)
− 8
)

ln2(φ)− 3 ln3(φ)

2
+

2

75
π2
(

3
√

5 + 5 ln
(√

5− 2
))

.

Proof
(

(1− x)x, ln(1− x), ln(x+1)
x − 2

x+1

)
.

It is remarkable how such intricate symbolic forms come out of such simple
proof signatures, and are numerically equivalent to such simple and elegant
harmonic series. The study of the evaluation of series containing harmonic-type
numbers and inverses of binomial coefficients of the form

(
2n
n

)
is an interesting

subject in its own right.
The new evaluation provided below is inspired by the nonlinear harmonic

sums presented in [5,15].

Theorem 12 The equality

∞∑
i=1

HiHi+ 1
2

(2i+ 1)(2i+ 3)
=

7ζ(3)

4
+
π2

12
+ 2 ln2(2)− 2 ln(2)− 1

4
π2 ln(2) (20)

holds.

Proof

(
x,
√

1− x ln(1− x),
ln
(√

1−x+1

2
√

1−x

)
√
1−x

)
.

Without having already known that the above proof signature may be used
to prove the above theorem, it would not be obvious at all as to how to evaluate
the series in this theorem. We find that partial fraction decomposition cannot
be applied in any kind of trivial way to evaluate this series, since if we rewrite
the summation in (20) as

∞∑
i=1

HiHi+ 1
2

(
1

2(2i+ 1)
− 1

2(2i+ 3)

)
,

we cannot rewrite the above expression as two separate series based on the
above decomposition, since neither of these series is convergent. Similarly,
we find that current CAS software cannot evaluate the generating function
obtained by replacing one of the four main factors in the summand in (20)
with xi. For example, it is not at all clear as to how to evaluate

∞∑
i=1

Hix
i

(2i+ 1)(2i+ 3)
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so as to be able to make use of a suitable integral formula for the sequence
(Hi+ 1

2
: i ∈ N0).

Using variants of the above proof signature, we obtain many similar results.
For example, using Chen’s generating function G(HnCn;x) for (HnCn : n ∈
N0) presented in [13], we find that the following theorem holds.

Theorem 13 The series
∞∑
n=1

HnHn+ 1
2

(2n+ 1)(2n+ 3)(2n+ 5)

is equal to
7ζ(3)

16
− 1

3
+
π2

72
+

ln2(2)

3
− ln(2)

36
− 1

16
π2 ln(2).

Proof
(
x,
√

1− x ln(1− x), G(HnCn;x)
)
.

To prove an analogue of the above theorem for products of the form
H2iHi+ 1

2
, we at first need a few preliminary results.

Lemma 3 The evaluation
∞∑
n=0

H2n

(2n− 3)(2n− 1)2
=

1

96

(
−63ζ(3)− 20− 6π2 + 56 ln(2)

)
(21)

holds.

Proof
(
x2 − 1, ln(x), 13

√
x+ 1(2x− 1) +

√
x sinh−1 (

√
x)
)
.

Remark 3 The above evaluation is interesting in its own right, and in a forth-
coming article, we explore in full generality the evaluation of series with sum-
mands given by products of even-indexed harmonic numbers and rational ex-
pressions. A closed-form evaluation for the equivalent series∑

n∈N0

H2n

(2n− 1)(2n+ 1)2

is given in [12], through a simple application of the integral operator Tln,arcsin
from [12]. Simple variants of the above proof signature may be used to obtain
the following results.

∞∑
n=0

H2n

(2n− 5)(2n− 1)2
=

1

960

(
−315ζ(3)− 86− 30π2 + 272 ln(2)

)
∞∑
n=0

H2n

(2n− 7)(2n− 1)2
= −7ζ(3)

32
− π2

48
+

2103 ln(2)− 601

11340

∞∑
n=0

H2n

(2n− 9)(2n− 1)2
= −21ζ(3)

128
− 311

8640
− π2

64
+

173 ln(2)

1260

∞∑
n=0

H2n

(2n− 11)(2n− 1)2
= −21ζ(3)

160
− 39277

1485000
− π2

80
+

37693 ln(2)

346500
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As an alternative way of proving the above lemma, we may apply partial
fraction decomposition to the rational component of the summand in (21),
obtaining the expresion

1

2

∞∑
n=0

H2n

(2n− 3)(2n− 1)
− 1

2

∞∑
n=0

H2n

(2n− 1)2
. (22)

A proof signature providing a closed-form evaluation for the former sum is(
x2,

ln(1− x)

x
,

1

4

(
3x3/2 tanh−1

(√
x
)
− 3x−

√
x tanh−1

(√
x
)))

,

whereas an equivalent version of the latter sum from (22) was introduced in
[16], and a highly simplified proof of this evaluation was later given in [12].

Lemma 4 The equality

∞∑
n=0

H2n

(2n+ 1)(2n+ 3)2
=

1

32

(
−7ζ(3) + 56− 3π2 − 24 ln(2)

)
holds.

Proof This follows from Lemma 3, through the use of a re-indexing argument.

The series Lemma 4 arises through an application of the proof signature
given below. With regard to this signature, we are implicitly making use of
the generating function for (H2n

(
2n
n

)
: n ∈ N0) from [13].

Theorem 14 The evaluation

∞∑
n=1

H2nHn+ 1
2

(2n+ 1)(2n+ 3)
=

7ζ(3)

16
+

5π2

48
+ ln2(2)− 3 ln(2)

2

holds.

Proof

(
x2, ln(x),

ln( 1
2 (
√
1−x+1))−ln(1−x)√

1−x

)
.

2.2 New results on hypergeometric series

Many new results concerning the evaluation of hypergeometric series involving
quarter-integer parameters were recently introduced in [10,11]. The techniques
in [10,11] for evaluating series of this form mainly rely upon the use of Wallis-
type integrals for central binomial coefficients, as well as the use of Fourier–
Legendre series. Our Ramanujan-like integration technique from Lemma 1 is
very powerful, so it seems natural to try to make use of this lemma to derive
new results inspired by [10,11]. Many of the main results from [11] are given
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by closed-form evaluations for ratios of 3F2 series, as in the interesting identity
whereby

π

4
=

3F2

[
−η, 12 , 1
3
2 , 2 + η

∣∣∣∣∣ − 1

]

3F2

[
1
2 ,

1
2 , 1 + η

1, 2 + η

∣∣∣∣∣ 1

]
for η > −1 proved in [11]. The following new identity, which is of interest in its
own right, does not follow from the 3F2 quotients from [11], and may be used
to derive very interesting corollaries through the use of a lemma from [10]. As
discussed in [10], the symbolic computation of 3F2(1) series is an interesting
subject with many applications, and there are no known general formulas for
summations of this form. Since 3F2(1) series have important applications in
combinatorics, mathematical physics, and countless other areas [10,26], this
strongly motivates the exploration of the master lemma introduced in this
article in the evaluation of 3F2(1) series that would otherwise seem to have no
possible closed-form expression.

Theorem 15 The identity

4Γ
(
5
2 − a

)
Γ (a)

π3/2
=

3F2

[
3
2 ,

1
2 − a,

3
2 − a

1, 52 − a

∣∣∣∣∣ 1

]

3F2

[
− 1

2 , 1− a, a
1
2 ,

3
2

∣∣∣∣∣ 1

] (23)

holds for a > 0.

Proof

(
sin2(x), cos(x), 3F2

[
− 1

2 , 1− a, a
1
2 ,

1
2

∣∣∣∣∣ x
])

.

In [10], it is noted that Pochhamer products given by consecutive quater-
integer parameters, i.e., products of the form(

2n+ 1

4

)
i

(
2n+ 3

4

)
i

(24)

are equal to (
4i
2i

)
(2i)!

64i(2n− 1)!!

|n|∏
j=1

(4i+ sgn(n)(2j − 1))sgn(n)

for n ∈ Z and any i ∈ N0. As discussed in [10], this often allows us to make use
of Wallis’ integral formula for central binomial coefficients to explicitly evaluate

pFq series with consecutive quarter-integer parameters as in (24). However,
it appears that the problem of evaluating hypergeometric series containing
parameters in (Z/4)\ (Z/2) that do not form Pochhammer products as in (24)
can be much more difficult, thus motivating the interesting corollary provided
below.
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Corollary 4 The closed-form evaluation

3F2

[
1
4 ,

5
4 ,

3
2

1, 94

∣∣∣∣∣ 1

]
=
Γ 2
(
1
4

) (
15
√

2− 5 ln
(
1 +
√

2
))

16π3/2
(25)

holds.

Proof Letting a = 1
4 with regard to (23), we find that

3F2

[
− 1

2 ,
1
4 ,

3
4

1
2 ,

3
2

∣∣∣∣∣ 1

]
=

π3/2

4Γ
(
1
4

)
Γ
(
9
4

) 3F2

[
1
4 ,

5
4 ,

3
2

1, 94

∣∣∣∣∣ 1

]
.

We see that the hypergeometric expression in the left-hand side of the above
equality contains a Pochhammer product of the form indicated in 24. Applying
the lemma from [10], we see that

3F2

[
− 1

2 ,
1
4 ,

3
4

1
2 ,

3
2

∣∣∣∣∣ 1

]
=

∞∑
i=0

(
1

16

)i (
4i
2i

)
(1− 2i)(2i+ 1)

, (26)

with Mathematica 11 unable to symbolically evaluate the right-hand side of
(26). Through the use of a standard formulation of Wallis’ integral identity,
we see that

3F2

[
− 1

2 ,
1
4 ,

3
4

1
2 ,

3
2

∣∣∣∣∣ 1

]
=

∫ 2π

0

1 + tanh−1
(
cos2 t

) (
sec2 t− cos2 t

)
4π

dt,

and this provides us with the desired result.

The evaluation provided in the above corollary is especially interesting,
since it is not otherwise obvious as to how to evaluate the 3F2 series from
Corollary 4. We see that the lemma from [10] cannot be applied, since there are
three quarter-integer parameters in the left-hand side of (25), and a Pochham-
mer product of the form in (24) does not appear. The hypergeometric function

2F1

[
1
4 ,

5
4

9
4

∣∣∣∣∣ x
]

produces a very complicated expression that cannot be simplified, so Wallis-
type functions cannot be applied. As in the case with the main 3F2(1) series
under consideration from [11], it is easily seen that Watson’s theorem on the
evaluation of series of the form

3F2

[
a, b, c

1
2 (a+ b+ 1), 2c

∣∣∣∣∣ 1

]
.

cannot be applied directly to prove the above Corollary, and this is also the
case for Clausen’s product(

2F1

[
a, b

a+ b+ 1
2

∣∣∣∣∣ z
])2

= 3F2

[
2a, a+ b, 2b

a+ b+ 1
2 , 2a+ 2b

∣∣∣∣∣ z
]
.

A similar approach leads us to the following new result.
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Corollary 5 The evaluation

3F2

[
− 1

4 ,
3
4 ,

3
2

1, 74

∣∣∣∣∣ 1

]
=
Γ 2
(
− 1

4

) (
9
√

2− 3 ln
(
1 +
√

2
))

64π3/2

holds.

Proof This may be proved by letting a = 3
4 in the above theorem, and by

mimicking the preceding proof.

Experimentation with the proof signature from Theorem 15 leads us to
many new results of a similar flavor, as suggested below. From the variety of
results on 3F2 quotients from [11], as in the intriguing evaluation

π =
4m+1(

2m
m

)
(2m+ 1)

·
3F2

[
1
2 −m, 1,−η
3
2 +m, 2 + η

∣∣∣∣∣ − 1

]

3F2

[
1
2 −m,

1
2 , 1 + η

1, 2 + η

∣∣∣∣∣ 1

]
for m ≥ 0 and η > −1 introduced and proved in [11], we are inspired to
develop new results in the same vein.

Theorem 16 The identity

3F2

[
5
2 ,

1
2 − a,

5
2 − a

2, 72 − a

∣∣∣∣∣ 1

]

3F2

[
− 3

2 , 1− a, a
− 1

2 ,
3
2

∣∣∣∣∣ 1

] = −
16Γ

(
7
2 − a

)
Γ (a)

3π3/2(2a− 3)(2a+ 1)

holds for a > 0.

Proof

(
sin2(x), cos(x), 3F2

[
− 3

2 , 1− a, a
− 1

2 ,
1
2

∣∣∣∣∣ x
])

.

Corollary 6 The evaluation

3F2

[
1
4 ,

9
4 ,

5
2

2, 134

∣∣∣∣∣ 1

]
=
Γ 2
(
1
4

) (
61
√

2− 15 ln
(
1 +
√

2
))

64π3/2

holds.

Proof This follows from Theorem 16 by letting a = 1
4 and by mimicking the

proof of Corollary 4.

The above corollaries show us how the master lemma from Section 1 can be
used to provide us with a very powerful technique for evaluating new 3F2(1)
series. Theorem 15 may be greatly generalized as follows.
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Theorem 17 The identity

3F2

[
1− a, a, b
3
2 , b+ 1

∣∣∣∣∣ 1

]

3F2

[
1, 32 ,

3
2 − b

5
2 − a, a+ 3

2

∣∣∣∣∣ 1

] =
2b cos(πa)

(2a− 3)(2a− 1)(2a+ 1)

holds for a > 0 and b > 0.

Proof

(
sin2(x), cos(x), 3F2

[
1− a, a, b
1
2 , b+ 1

∣∣∣∣∣ x
])

.

Corollary 7 The equation

3F2

[
1, 54 ,

3
2

7
4 ,

9
4

∣∣∣∣∣ 1

]
=

15π

4
√

2
+

15 ln
(
1 +
√

2
)

2
√

2
− 15

2

holds.

Proof Let a = b = 1
4 with regard to Theorem 17.

3 Conclusion

Our paper introduces an integration method that is very general but also
very powerful, and that seems to “unite” many different kinds of proofs for
series/integral evaluations. In a sense, Ramanujan’s Master Theorem can be
thought of as a special case of Lemma 1. Through the use of the master lemma
introduced in this article, simple combinations of input functions lead us to
unexpected results as in the evaluations presented in Section 2. It seems likely
that this lemma will continue to lead to surprising new results in classical
analysis-related fields. The main goal of our article is to show how new infinite
series that are seemingly recalcitrant can be easily proved using Lemma 1, and
to illustrate how this lemma provides us with a convenient and systematic way
of generating and classifying evaluations for series that can be proved using
moment identities as applied term-by-term with respect to a given generating
function. The results given in Section 2 are new and highly nontrivial, in that
the new series in this section cannot be proved using any “obvious” or standard
summation techniques. The one-line proofs in this article are instructive in that
these proofs show us how 3-tuples of elementary functions can “generate” new
Ramanujan-like formulas, and how experimentation with the entries in these
tuples can lead to great generalizations and variations of these formulas.
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