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An original geometrical contribution to special relativity.

C.-A. Simonetti
Ecole des Applications Militaires de l’Energie Atomique, BP 19 50115, Cherbourg Armées, France

Background: Minkowski metric, geometrodynamics, special relativity, physics education.

Purpose: Overview of a deeper understanding of special relativity.

Method: From Minkowski metric, one can usually draw hyperbolic figures. By changing the point of view, it is
possible to turn these hyperbolic figures into trigonometric figures, where velocity is represented by a sine, and
gamma factor by the inverse of a cosine.

Results: One can study kinematics and dynamics in a new different way, which seems simpler for those who are
at ease with geometry. This first article will essentially focus on kinematics.

Conclusions: This contribution could be helpful for physics education.

I. INTRODUCTION

Nowadays, science seems to be more and more com-
plicated. Indeed, this is a quite natural thing : high
level researchers don’t have always time to simplify their
works. They essentially focus on their main “philoso-
pher’s stone” : new discoveries, which can change our
minds and our lives forever. Consequently, it is impor-
tant to go back in time, to read old researches of the two
or three last centuries, in order to simplify science, for a
better understanding of the laws of the Universe. To go
further, one has to take stock of the situation. So has
this article a role to play in this story.
The geometry presented here is based on Minkowski met-
ric, and is developed in two books that I have written on
the subject. This new way of thinking could not be only
helpful for young students, but also for researchers, to
make new discoveries, hopefully.

II. MINKOWSKI METRIC

II.1. Background

First of all, a brief recall of Minkowski metric is neces-
sary. Let us consider two dimensions instead of four, one
of time and one of space. The convention adopted in this
article is the (+ - - -) signature, which becomes (+ -) in
two dimensions:

(∆s)2 = (c∆τ1)2 = (c∆t0→1)2 − (∆x0→1)2

(c∆τ1)2 = (c∆τ0)2 − (∆x0→1)2 (1)

Where:
- (c∆τ1) is the proper time (or proper “temporal
distance”) of a particle 1, i.e. measured in its proper
Galilean system of reference 1 ;
- (c∆t0→1) = (c∆τ0) is the improper time (or im-
proper “temporal distance”) of this particle 1, i.e.
being observed by any other Galilean system of refer-
ence 0. But this time is proper for 0 itself ;
- (∆x0→1) is the “spatial distance” between the par-
ticle 1 and any other Galilean system of reference 0,
which is observing the particle 1.

It is important to be accurate : as time is not absolute
in relativity, it is important to define the observer. This
is why “being observed by” and “which is observing” are
underlined. The arrows between 0 and 1 try to make it
clearer.

II.2. An original geometrical view

From equation (1), one can obtain the following equa-
tion, which reminds us the Pythagorean theorem:

(c∆τ0)2 = (c∆τ1)2 + (c∆x0→1)2 (2)

FIG. 1. An original space-time representation, [1], [2], where
the pedestrian 0 is observing from his present P0 the cyclist 1
situated at his own present P1, the car driver 2 situated at
P2 and light L situated at X. The circle is the circumscribed
circle to the infinite right triangles. The pedestrian is the
observer.

From equation (2), by setting (c∆τ0) constant for
any system of reference i ∈ {0; 1; 2; 3;L} : (c∆τ0) =
(c∆t0→i) = D0→L — L associated to the extreme system
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of reference : light —, it is possible to draw an infinity
of right triangles — corresponding to the infinity of dif-
ferent velocities — which are included in a circle. This
circle, centered in the middle of their common constant
hypotenuse D0→L, is circumscribed to this infinity of tri-
angles, as shown in figure 1.
On this figure, where the past is on the bottom and the
future on the top, one can see four objects belonging
to four Galilean systems (i ∈ {0; 1; 2; 3;L}) of reference,
which cross each other at point X:
- the pedestrian 0, with a straight line (A0B0) which rep-
resents the passage of his proper time. He is the observer.
At point X, he starts his chronometer. His present is at
point P0. The “temporal distance” (c∆t0→1) = XP0 =
D0→L = (c∆τ0) is his proper “temporal distance” — if
he is observing himself —, but improper to measure time
for the bicycle 1 or the car 2 ;
- the cyclist 1, with a temporal straight line (A1B1). He
has a non-zero constant velocity relative to the pedes-
trian 0. The cyclist 1 starts his chronometer at point
X as well. His present P1 is the present observed from
the pedestrian 0 at P0. XP1 = (c∆τ1) is his proper
“temporal distance”. The distance P0P1 = D0→1 =
(∆x0→1) is the “spatial distance” between 0 and 1,
from 0 point of view ;
- the car driver 2, with a temporal straight line (A2B2).
He is driving faster than the cyclist 1, with a constant
velocity as well. The car driver 2 starts his chronome-
ter at point X as well. His present P2 is the present
observed from the pedestrian 0 at P0. XP2 = (c∆τ2)
is his proper “temporal distance”. The distance P0P2 =
D0→2 = (∆x0→2) is the “spatial distance” between 0
and 2, from 0 point of view ;
- light L, which makes a right angle — which corre-
sponds to maximum velocity, see further — with ob-
server 0 time flow : (ALBL) ⊥ (A0B0). The pedes-
trian 0 can only observe light L at point X, which
seems frozen in time : (c∆τL) = 0. And the distance
D0→L = XP0 is a “spatial” and a “temporal distance”
at the same time : (c∆τ0)2 = (c∆τL)2 + (∆x0→L)2 =
0 + (∆x0→L)2. A “spatial distance” (∆x0→L) between
light L and the pedestrian 0. And the proper “temporal
distance” (c∆t0→L) = (c∆τ0) of the observer 0.

As a partial conclusion, one can find in this first
figure a high density of information. In particular, the
faster the Galilean system of reference i relative to the
observer 0, the bigger the angle between their temporal
trajectories. Angles have the advantage to be more
intrinsic than velocities, and an angle of π

2 corresponds
to the maximum velocity c, the light vacuum velocity.
Consequently, in the next section will be discussed the
conversion from intrinsic angles to extrinsic velocities.
Before going on, one can say in fact that this is time
which is going at the maximum velocity c. As time is
passing, and as time of light is frozen from the observer’s
point of view, whose present P0 is attached to the time
flow, this is light which is moving at the speed of time.
It is quite important to mention it, because light does
not decide its velocity. Light is subject to the laws of

Universe. And this is time flow which gives speed to
light.

III. VELOCITY CALCULATION

From theses basics, one can now simply calculate ve-
locity, which could be defined without any unit : spatial
distance divided by temporal distance. As temporal dis-
tance is the maximum distance possible, velocity V0→1 is
a ratio between:
- the distance between the two systems of reference 0
and 1, from 0 ’s point of view : D0→1 ;
- the distance traveled by light L itself : D0→L.
Here is the simple equation:

|V0→1| = |β0→1| =
|v0→1|
c

=
D0→1

D0→L
(3)

FIG. 2. Angles are equivalent to velocities, [1], [2].

From equation (3) and figure 2, one can define the sine
of the angle θ0→1 between 0 and 1, from 0 ’s point of
view:

| sin(θ0→1)| = D0→1

D0→L
= |V0→1| = |β0→1| (4)

From this equation (4), one can represent velocity as
a percentage of speedlight in function of the spatio-
temporal angle, see figure 3. To be more accurate with
the defi-nition of velocity, a clockwise convention of an-
gles will be defined in this article:

V0→1 = β0→1 = sin(θ0→1) ≤ 0

Indeed, according to figure 2, V0→1 is the velocity of the
car (1) going to the left, hence negative, and been ob-
served by the pedestrian (0). Finally, with two Galilean
systems of reference i and j, with clockwise convention,
instead of the usual anti-clockwise convention:

Vi→j = βi→j = sin(θi→j) (5)
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FIG. 3. Speed function of spatio-temporal angle, [1], [2].

IV. TIME DILATION – LENGTH
CONTRACTION

IV.1. Time dilation

If one consider figure 2 again, when the pedestrian (0)
observes the driver (1), this is improper time (D0→L =
XP0), which is measured from pedestrian point of view,
is always longer than the proper time (XP1) of the
driver : XP0 ≥ XP1. Hence, the observer (0) thinks
there is a dilation of time : from pedestrian (0) point of
view, if the driver (1) is speaking for instance, it seems
to be in slow motion. The dilation ratio ρ0→1 is easy to
calculate:

ρ0→1 =
XP0

XP1
=

1

cos(θ0→1)
≥ 1

This dilation ratio is equal to the Lorentz factor γ0→1:

γ0→1 =
1√

1− (β0→1)2
=

1√
1− sin2(θ0→1)

γ0→1 =
1√

cos2(θ0→1)
=

1

|cos(θ0→1)|

Finally, as θ0→1ε[−π2 ; +π
2 ]:

γ0→1 =
1

cos(θ0→1)
= ρ0→1 (6)

Note that if the driver (1) becomes the observer :
- the Lorentz factor remains the same : γ1→0 = γ0→1 ;
- the beta factor becomes the opposite : β1→0 = −β0→1.

IV.2. Length contraction

Until now, every studied object was a point, i.e. in
zero dimension. To show length contraction, it is neces-
sary to consider at least an object in one dimension, like
a stick in our next example. This stick (1) is a special
one, to actually show simultaneity issues in relativity :
every second, its color alternatively changes, from light

FIG. 4. Length contraction phenomenon, [1], [2].

grey to dark grey. To compare this stick with a refer-
ence, let us consider another one with exactly the same
length (l0) but only colored in black (0). The special stick
called “1” is in movement relative to the stick called “0”,
which is the “observer”. The figure 4 represents the re-
sults of the observation, which shows, from 0’s point of
view, the grey stick with a “contracted” length equal to
lc. This “contraction” is obviously an optical illusion in
space-time. And the contraction ratio κ0→1 is simply the
inverse of the dilation ratio:

κ0→1 =
lc
l0

= cos θ0→1 =
1

ρ0→1
=

1

γ0→1
≤ 1 (7)

Moreover, it is interesting to consider the problem of si-
multaneity. Indeed, from the black stick (0) point of
view, the special stick (1) will appear with different col-
ors, light and dark grey, at the same time. Which means
that the left extremity of the special stick appears de-
layed in comparison to its right extremity.
To give more credit to the whole section, let us use in
the next subsection the Lorentz transformation, which is
equivalent but complementary to the Minkowski metric.

IV.3. Use of Lorentz transformation

Let us consider figure 5 : in comparison to figure 4, only
the right extremity of the black stick (0) is kept, to focus
on the special stick (1).
The objective of this subsection is to prove that the ana-
lytic calculations of length contraction and time delay
between the right and the left extremities of the special
stick (1) exactly match with the graphic constructions of
figures 4 and 5.
Before going on, here is a brief recap of a 2 dimensional
Lorentz transformation, one in space and one in time. If
the origin Oj of a Galilean system of reference j is ob-
serving, from its present Oj ≡ Pj a random point M be-
longing to any system of reference, Galilean or not (with
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FIG. 5. Analytic calculations on the special stick.

X, the origin of time):

OjM =

(
XPj
PjM

)
=

(
ctj→M
xj→M

)
The origin Oi of another Galilean system of reference i
will be observing M with the relation below:(

cti→M
xi→M

)
= γi→j

(
1 βi→j

βi→j 1

)(
ctj→M
xj→M

)
As γi→j = 1

cosθi→j
and βi→j = sinθi→j , because of clock-

wise convention:

cos θi→j

(
cti→M

xi→M

)
=

(
1 sin θi→j

sin θi→j 1

)(
ctj→M

xj→M

)

Let us first study O1. For practical reasons, the arrows
between the subscripts will be retrieved. From its own
viewpoint, its spatio-temporal coordinate are:

O1O1 =

(
X1P1

P1P1

)
=

(
ct11

0

)
With the convention ct11 = 0 if P1 ≡ X1, see figure 5.
From O0’s point of view, the coordinate of O1 is the
following:

O0O1 =

(
X1P0

P0P1

)
=

(
ct01

x01

)
And according to Lorentz transformation from O1O1 to
O0O1:

cos θ01

(
ct01

x01

)
=

(
1 sin θ01

sin θ01 1

)(
ct11

0

)
(8)

Equation (8) will be used later. Let us now study
the “length contraction” on figure 6, which can be ex-
plained by non simultaneity between the right (O1′) and
the left (O1) extremities of the special stick (1). Indeed, if
O1′ and O1 were simultaneous from O0 viewpoint, there
would be no illusion of contraction phenomenon.

So let us now study O1′ . From O0’s viewpoint, its spatio-
temporal coordinates are:

O0O1′ =

(
X1P0

P0P1′

)
=

(
ct01

x01 + (−lc)

)
With x01 ≤ 0 on this figure, because the special stick
is going to the left. From O1’s viewpoint, its spatio-
temporal coordinates are:

O1O1′ =

(
X1Pd
PdP1′

)
=

(
ct11 + c∆td
−l0

)
With the subscript d for delay. Indeed, as the special
stick system of reference (1) is considered, the simultanei-
ty line, which has to be perpendicular to the system of
reference 0, is horizontal on this figure. It gives a delay
between P1 and Pd which is constant and equal to c∆td.
An analytic calculation will be done on this constant
later, but figure 6 gives us the result : c∆td = l0 sin θ01.
In any case, Pd and P1′ are simultaneous, considering a
clock synchronization. It means an event in P1′ is hap-
pening before an event in P1′ .
Let us use the Lorentz transformation from O1O1′ to
O0O1′ :

cos θ01

(
ct01

x01 − lc

)
=

(
1 sin θ01

sin θ01 1

)(
ct11 + c∆td
−l0

)
(9)

FIG. 6. A zoom of figure 5.

Let us now subtract equation (9) to equation (8):

cos θ01

(
0
lc

)
=

(
1 sin θ01

sin θ01 1

)(
−c∆td
l0

)
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Hence: (
c∆td

lc cos θ01

)
=

(
l0 sin θ01

c∆td sin θ01 + l0

)
=

(
l0 sin θ01

l0(1− sin2θ01)

)

Finally, one can get simultaneously time delay and length
contraction in equation (10):(

c∆td
lc

)
= l0

(
sin θ01

cos θ01

)
(10)

V. THE EYE OF RELATIVITY

Let us take a step back in this section. From figure 1,
a new figure called the eye of relativity will be built,
which takes into account human perception of space-
time, which is obviously different from what is really hap-
pening in the corridors of the Universe (figure 1). The
gap between human perception and hidden real world
explains why relativity is not an intuitive science.

V.1. Plato’s cave : the Platosphere

Let us first remember Plato’s cave. In Plato’s work
entitled the Republic, book VII, Socrates mentions the
Allegory of the Cave. He describes a group of prisoners
stuck in a cave, facing a blank wall and unable to turn
their heads. They are interpreting shadows on this wall
like real objects, whereas these shadows are coming from
walking puppets lit by a burning fire behind them. And
these puppets are actually real objects. In a certain
way, concerning space-time, one could say that Albert
Einstein is one of the prisoners who managed to turn his
head back and understand the system in its globality.
So let us draw a figure which represents both the puppets
and the shadows:
- the puppets will be called corrisphere, with “corri-” for
“corridors”, i.e. “behind the scenes” of Universe, real
space-time, an undistorted reality ;
- the shadows will be called platosphere, with “plato-”
for “Plato’s cave”, i.e. space-time being observed by our
senses, a distorted reality.

This representation can be found on figure 7:
- the thick grey horizontal segment [PL−PL+] on the
top is the platosphere, which represents all the objects
which have crossed the pedestrian at X. PL− (respec-
tively PL+) is the left (respectively right) border of the
platosphere : it represents a photon coming from the right
(respectively left), which has crossed the pedestrian at X ;
- the circle centered on C0 is the circle presented in fig-
ure 1. It belongs to the corrisphere, and the platosphere
is the projection of this circle.

FIG. 7. The eye of relativity, [1], [2].

And the figure 8 is the superposition of figures 1
and 7. The half concentric circles represent the dis-
tances travelled by the cyclist (P0P1 = P0P1′), the car
driver (P0P2 = P0P2′) and light (P0X = P0PL+ =
P0PL−) from the pedestrian viewpoint P0. And the in-
tersections of these circles with the platosphere give us
every object aligned. That is what we could see in our
distorted reality, where the notion of proper time for each
object is hard to represent. With theses two figures, one
can see that it is impossible to be faster than time, to
travel a distance bigger than P0X. Indeed, the structure
of space-time itself makes impossible to reach speedlight,
or rather speed of time.

FIG. 8. The eye of relativity more detailed, [1], [2].

V.2. Application : longitudinal Doppler effect

Before starting, only longitudinal Doppler-Fizeau ef-
fect will be presented in this subsection. Indeed, in spe-
cial relativity, a quite negligible transversal Doppler ef-
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fect exists [5], but 2 dimensional figures do not allow to
show it. At least, 3 dimensional figures are needed — 2
of space and 1 of time — to show it. Such figures will be
presented in section VIII.
Let us consider the relativistic longitudinal Doppler-
Fizeau effect in figure 9, which will be more visual, thanks
to the the eye of relativity. In this figure, the bicycle is
removed, the car consequently becomes the system of ref-
erence number 1. The measures in figure 9 are correct,
which allows us to make right calculations from it:
- one electromagnetic wave, with a wavelength equal to
λ0, is emitted from the front of the car, in the direction
of motion. The first top is at X in the corrisphere or
at PL− in the platosphere ; the second top is at P1 in
the corrisphere or at P1′ in the in the platosphere ;
- the other one, with the same wavelength, is emitted
from the back of it, in the opposite direction of motion :
the first top is at X in the corrisphere or at PL+ in
the platosphere ; the second top is at P1 in the corri-
sphere or at P1′ in the in the platosphere.

The perfect match between the wavelength λ0 and

FIG. 9. Relativistic longitudinal Doppler-Fizeau effect geo-
metrically explained, [3].

proper time XP1 is made on purpose on this figure, to
make things easier. As a result, one can immediately
measure the red λR and the blue λB shifts with a simple
ruler.
Let us calculate λR and λB :{

λR = XP0 + P0P1 = λ0

cos θ01
(1 + |sin θ01|)

λB = XP0 − P0P1 = λ0

cos θ01
(1− |sin θ01|)

Finally:

λR = λ0

√
1 + |sin θ01|
1− |sin θ01|

(11)

λB = λ0

√
1− |sin θ01|
1 + |sin θ01|

(12)

By the way :

λBλR = (XP0 − P0P1)(XP0 + P0P1)

= XP 2
0 − P0P

2
1 = XP 2

1

= λ2
0

Finally:

λBλR = λ2
0

So, XP1 = λ0 is the geometric mean of λR and λB , and
this figure reminds us a little on Archimedes representa-
tions on harmonic, geometric, arithmetic and quadratic
means [6], or on Mohr’s circle — even though the circles
drawn are slightly different:

XP1 = λ0 =
√
λBλR (13)

This geometric mean remains constant, because of the
constant proper wavelength λ0. On the contrary, the
arithmetic mean, XP0, is indirectly dependent on relative
velocity:

XP0 =
λ0

cos θ01
=

1

2
(λB + λR) (14)

Moreover, one can build a quadratic polynomial from the
doublet (y1, y2) = (λB , λR) of solutions:

Q(y) = y2 − Sy + P

With: {
S = λB + λR
P = λR λB

Finally:

Q(y) = y2 − 2λ0

cos θ01
y + λ2

0 (15)

As geometric mean is always inferior or equal to arith-
metic mean, the following condition is obviously re-
spected:

√
P

1
2S

= cos θ01 ≤ 1 (16)

Which is equivalent to 4 = b2 − 4ac ≥ 0, with a = 1,
b > 0 and c ≥ 0.

At last, one should notice that this polynomial (15) is
the characteristic polynomial of two similar matrix. The
first one is the following diagonal matrix:

D(θ01, λ0) =

(
λR 0
0 λB

)
With: {

tr(D) = S = λB + λR
|D| = P = λR λB

And:

Q(y) = |y I2 −D| = y2 − tr(D) y + |D|
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With I2 the identity matrix.
The second one is more interesting, because it is propor-
tional to L(θ01), the Lorentz transformation matrix:

A(θ01, λ0) = λ0 L(θ01)

=
λ0

cos θ01

(
1 sin θ01

sin θ01 1

)
(17)

With:
tr(A) = 2 λ0

cos θ01
= tr(D)

|A| = ( λ0

cos θ01
)2 (1− sin2θ01) = λ2

0 = |D|

As a partial conclusion, one can consider the longitudinal
Doppler wavelengths as geometric lengths from figure 9,
or as eigenvalues of the Lorentz transformation matrix –
with a λ0 factor.
Let us go a bit further with the eigenvectors. As
A(θ01, λ0) is a symmetric matrix of real coefficients,
similar to D(θ01, λ0), one can find an orthogonal transfer
matrix P , such as:

A(θ01, λ0) = P ·D(θ01, λ0) · PT

P is a basis of orthogonal eigenvectors, which are ob-
viously light vectors. Indeed, light vectors orientations
remain unchanged by the Lorentz transformation —
even if their norms can be modified — which is the
property of eigenvectors. Here is the basis:

P =

√
2

2

(
1 −1
1 1

)

VI. VELOCITY COMPOSITION LAW

Velocity composition law can be easily understood, if
one gets inspired by figure 5, which represents length
contractions. Indeed, instead of having X1 and X1′

separate in figure 5, let us merge this two points in
figure 10 : it will be point X. As a result, one can observe
two different systems of reference, at two different
velocities:
- θ01 is the image of the velocity between system (0) and
system (1), from (0)’s point of view. The present P0 of
O0 can observe the present P1 of O1 ;
- θ12 is the image of the velocity between system (1) and
system (2), from (1)’s point of view. The present P1 of
O1 can observe the present P2 of O2.
The question is : how to obtain θ02, which is the
velocity between (0) and (2)? The aim is to observe
P2 from system (0). The method is similar to figure 5
: a P ′2 point has to be defined (which is exactly the
same point as P2), horizontal, with P1P2 = P1P

′
2. P ′2

will be observed by P ′0, with the following condition :
(P ′0P

′
2) ‖ (P0P1). Indeed, it was as if O2 was briefly

belonging to system (1) at point P ′2, which is simulta-
neous to P1. So P ′0 can observe P ′2 with a (π2 −θ01) angle.

FIG. 10. Velocity composition law geometrically explained.

In figure 10, for practical reasons, distances have been
normalized : XP0 = 1, consequently:

P0P1

XP0
= sin θ01 =

v01

c
= V01

P0P1 = V01

P1P2 = V12 cos θ01

Finally:

V02 =
P ′0P

′
2

XP ′0
=

V01 + V12

1 + V01 · V12
(18)

As a partial conclusion, one can explain relativistic ve-
locity composition with simple geometrics. The θ02 angle
can be drawn by using a simple pair of compasses. To
go further, let us draw another way of explain it. Let us
first define a new velocity function:

V ∗01 = γ01V01 =
sin θ01

cos θ01
= tan θ01 (19)

Let us prove that equation (18) is equivalent to :

(18)⇔ V ∗02 = γ01 · γ12 · (V01 + V12) (20)

⇔ V ∗02 = γ12 · V ∗01 + γ01 · V ∗12 (21)

Here is the demonstration:

V ∗02 = tan θ02 = ±
(

1

sin2 θ02
− 1

)−1/2

= ±
[(

1 + V01 · V12

V01 + V12

)2

− 1

]−1/2
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=
V01 + V12√

1− (V01 + V12)2 + (V01 · V12)2

=
1√

(1− V 2
01)

1√
(1− V 2

12)
(V01 + V12)

V ∗02 = γ01 · γ12 · (V01 + V12)

Hence, from equation (21):

tan θ02 =
tan θ01

cos θ12
+
tan θ12

cos θ01
(22)

From this trigonometrical result of velocity composition,
one can draw the figure below.
For practical reasons, distances have been normalized :

FIG. 11. The “domino effect” in velocity composition law,
[1], [2].

XP1 = 1, consequently:

P0P1 = tan θ01

P1P2 = tan θ12

XP ′0 = cos θ01

XP ′2 = cos θ12

Here is an analysis of figure 11, which is called “domino
effect”:
- from its present P0, O0 is observing O1 in P1, which is
observing O2 in P ′2 ;
- from its present P2, O2 is observing O1 in P1, which is
observing O0 in P ′0 ;
The final result is the addition of these last two effects:

V ∗02 =
P0P1

XP1
· XP1

XP ′2
+
P1P2

XP1
· XP1

XP ′0

V ∗02 =
P0P1

XP ′2
+
P1P2

XP ′0
(23)

As a conclusion, equations (22) and (23) are equivalent.
This result will be very useful to study stellar aberration.

VII. STELLAR ABERRATION

Moreover, one can consider stellar aberration as a kind
of “velocity composition” in 2 dimensions of space and 1

dimension of time. For the record, due to stellar aberra-
tion, the angle of the source of light is dependent from
the velocity of the observer. The faster the observer is,
the more horizontal the source seems to be.

FIG. 12. Stellar aberration angle ϑ considered in classical
books on relativity . In theory, if O0 (resp. O1) is the ob-
server, (O1x1) and (O1z1) [resp. (O0x0) and (O0z0)] are not
supposed to be perpendicular to each other. In order to sim-
plify the figure, as we are focusing on the same star (symbol
“ ∗ ”), two observers (O0 and O1) are simultaneously defined
here.

In figure 12, where time and space are in the same
plane for practical reasons, one can see the relativistic
equation of stellar aberration, which is obtained by
applying the Lorentz transformation to the momentum-
energy four-vector of a photon coming from the star
(symbol “ ∗ ” on this figure). The first interesting thing
is : if the star is just above O0, with an angle ϑ0 = π

2 ,
the angle ϑ1 will be equal to (π2 −θ01). Consequently, let
us simply define new angles in this article : α0 = π

2 − ϑ0

and α1 = π
2 − ϑ1, which are angles between the vertical

axis and the star, see figure 12. With this new definition,
if α0 = π

2 , α1 = θ01. So, in the case of a star initially
above us, without any sophisticated device, just by
observing this star, one can almost directly measure the
relative velocity of our system of reference, obtained by
the sine of α1 (a fraction of speedlight). More generally
and more interesting, the equation of figure 12 becomes
much simpler:

tan α1 =
1

tan ϑ1

=
cos ϑ0 + sin θ01

sin ϑ0 · cos θ01

=
sin α0 + sin θ01

cos α0 · cos θ01
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Finally, equations (22) and (24) are similar:

tan α1 =
tan α0

cos θ01
+
tan θ01

cos α0
(24)

As a conclusion, stellar aberration is a kind of velocity
composition, and one could define an artificial “veloc-
ity” (βαi = Vαi = sin αi) and an artificial Lorentz
factor (γαi = cos−1 αi), with the following equation
similar to (18):

Vα1 =
V01 + Vα0

1 + V01 · Vα0
(25)

And with the following equation similar to (20):

V ∗α1 = γ01 · γα0 · (V01 + Vα0) (26)

VIII. GENERAL DOPPLER-FIZEAU EFFECT

After considering the longitudinal Doppler-Fizeau
effect in subsection V.2, let us consider it in 2 di-
mensions of space. The use of previous sections,
especially VI and VII, will be essential. In figure 13,
space and time are in the same plane.
The electromagnetic wave, with a wavelength equal to
λ0, is emitted from the system of reference 1, in α0

direction from 0’s point of view, and in α1 direction
from it’s own point of view, which is not represented:
- the first top is at X in the corrisphere or at PLα0 in
the platosphere ;
- the second top is at P1 in the corrisphere or at P1′ in
the in the platosphere.
As a monochromatic plane wave is considered here, one

FIG. 13. Relativistic general Doppler-Fizeau effect geometri-
cally explained.

can draw a wavefront, which allows us to represent H1′ ,
the orthogonal projection of P1′ on (P0PLα0):

P0H1′ = P0P1sinα0 = P0P1Vα0 = γ01λ0V01Vα0 (27)

From equation (27), one can deduce the Doppler wave-
length λ0′ , function of α0 and θ01, from 0’s point of
view:

λ0′ = H1′PLα0 = P0PLα0 − P0H1′

λ0′ = λ0γ01(1− V01Vα0)

λ0′ =
λ0

cos θ01
(1− sin θ01sin α0) (28)

Thanks to equation (25), one can also calculate this
Doppler wavelength in function of α1 and θ01. But, as
light is not coming from the star, but from the system of
reference 1, spatial angles (α0 and α1) will be shifted by
π in this equation, to correctly apply “velocity” compo-
sition:

sin α0 = −sin (α0 + π) = − sin (α1 + π)− sin θ01

1− sin (α1 + π) · sin θ01

sin α0 =
sin α1 + sin θ01

1 + sin α1 · sin θ01
(29)

From equation (29), here is the result:

λ0′ =
λ0

cos θ01

(
1− sin θ01

sin α1 + sin θ01

1 + sin α1 · sin θ01

)
=

λ0

cos θ01

1− sin2 θ01

1 + sin α1 · sin θ01

λ0′ =
λ0 · cos θ01

1 + sin α1 · sin θ01
(30)

λ0′ =
λ0

γ01 · (1 + Vα1 · V01)
(31)

Let us now test equation (31), with α1 = 0◦, which is the
transversal Doppler effect:

λ0′ =
λ0

γ01

sin α0 = sin θ01 ⇒ α0 = θ01

Longitudinal Doppler effect of subsection V.2 can be cal-
culated with α1 = α0 = ±π2 . In fact, α1 = α0 because
it was as if there was an artificial Speedlight in equa-
tion (25) : Vα = sin π

2 = 1.

IX. DISCUSSION AND CONCLUSIONS

This original geometrical approach could not only be
helpful for students, but also for researchers. This new
way of thinking might indirectly play a role in future
discoveries.
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