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We perform a joint analysis of the auto and cross-correlations between three cosmic fields: the galaxy
density field, the galaxy weak lensing shear field, and the cosmic microwave background (CMB) weak
lensing convergence field. These three fields are measured using roughly 1300 sq. deg. of overlapping
optical imaging data from first year observations of the Dark Energy Survey (DES) and millimeter-wave
observations of the CMB from both the South Pole Telescope Sunyaev-Zel’dovich survey and Planck. We
present cosmological constraints from the joint analysis of the two-point correlation functions between
galaxy density and galaxy shear with CMB lensing. We test for consistency between these measurements
and the DES-only two-point function measurements, finding no evidence for inconsistency in the context
of flat ΛCDM cosmological models. Performing a joint analysis of five of the possible correlation functions

between these fields (excluding only the CMB lensing autospectrum) yields S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p ¼
0.782þ0.019

−0.025 and Ωm ¼ 0.260þ0.029
−0.019 . We test for consistency between these five correlation function

measurements and the Planck-only measurement of the CMB lensing autospectrum, again finding no
evidence for inconsistency in the context of flat ΛCDM models. Combining constraints from all six two-
point functions yields S8 ¼ 0.776þ0.014

−0.021 and Ωm ¼ 0.271þ0.022
−0.016 . These results provide a powerful test and

confirmation of the results from the first year DES joint-probes analysis.

DOI: 10.1103/PhysRevD.100.023541

I. INTRODUCTION

The recent advent of wide-field imaging surveys of large-
scale structure (LSS) enables observations of a rich variety of
signals that probe dark matter, dark energy, the nature of
gravity and inflation, and other aspects of the cosmology and

physics of the Universe. Originally, most of the constraining
power from LSS observations came from measurements of
the luminous tracers of the underlyingmass (e.g., [1,2]). First
detected in the year 2000 [3–6], galaxy weak lensing now
provides valuable complementary information. Weak lens-
ing enables an almost direct measurement of the mass
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distribution, greatly enhancing the constraining power of
LSS imaging surveys (e.g., [7–9]).
Although several galaxy imaging surveys have dem-

onstrated successful measurements of galaxy clustering
and lensing, significant challenges with these measure-
ments remain. Particularly challenging are the inference of
gravitationally induced galaxy shears (see [10] for a
review) and the inference of galaxy redshifts from photo-
metric data (see [11] for a review). Systematic errors in
these measurements can lead to biased cosmological
constraints. As an illustration of these challenges, the
recent cross-survey analysis of [12] showed that the
cosmological constraints from several recent weak lensing
surveys are in tension, and that result from these surveys
can be significantly impacted by differences in analysis
choices. Distinguishing possible hints of new physics
from systematic errors is perhaps the main challenge of
present day observational cosmology.
The Dark Energy Survey (DES) has adopted several

strategies for combating sources of systematic errors and
ensuring robustness of cosmological constraints to analysis
choices. Two aspects of this approach are worth emphasiz-
ing here. First, DES has adopted a multi-probe approach,
whereby multiple survey observables are analyzed jointly.
By combining multiple probes in a single analysis, the
results can be made more robust to systematic errors and
analysis choices impacting any single observable. The
cosmological analysis presented in [9] (hereafter DES-
Y1-3x2) considered a combination of three two-point
functions formed between galaxy overdensity, δg, and
weak lensing shear, γ. This combination—which includes
galaxy clustering, cosmic shear, and galaxy-galaxy lensing
—is particularly robust to possible systematics and nui-
sance parameters because each probe depends differently
on expected systematics. We refer to this combination of
three two-point correlation functions as 3 × 2 pt. A second
aspect of the DES approach to ensuring robust cosmologi-
cal constraints is adherence to a strict blinding policy, so
that both measurements and cosmological constraints are
blinded during analysis. Blinding becomes especially
important when the impact of systematic errors and
analysis choices becomes comparable to that of statistical
uncertainty, as appears to be the case with some current
galaxy surveys.
By extending the multi-probe approach to include

correlations with lensing of the cosmic microwave back-
ground (CMB), the robustness and constraining power of
cosmological constraints from LSS surveys can be further
improved. Photons from the CMB are gravitationally
deflected by the LSS, and the distinct pattern of the lensed
CMB can be used to probe lensing structures along the line
of sight (see [13] for a review). Experiments such as the
Atacama Cosmology Telescope (ACT; [14]), the Planck
satellite [15,16], and the South Pole Telescope (SPT; [17])
make high resolution and low noise maps of the CMB,

enabling measurement of the CMB lensing convergence,
κCMB (ACT: [18–20]; Planck: [21,22]; SPT: [23–25]). With
a combination of galaxy and CMB lensing, we effectively
get to measure the lensing effects of LSS twice. Any
difference between the lensing measurements performed
with these two sources of light would likely be indicative of
systematic errors. Of course, CMB lensing is also impacted
by sources of systematic error (see [26] for a discussion in
the context of the measurements presented here); however,
the systematic errors impacting CMB lensing are very
different from those faced by galaxy surveys. For instance,
measurement of CMB lensing is unaffected by source
redshift uncertainty, shear calibration biases, and intrinsic
alignments. Since systematic errors will necessarily
become more important as statistical uncertainties decrease,
joint analyses including CMB lensing are likely to be an
important part of the analysis of data from future surveys,
such as the Large Synoptic Survey Telescope [27] and
CMB Stage-4 [28].
With these considerations in mind, we present here an

extension of the 3 × 2 pt analysis to include all correlations
between δg, γ, and κCMB, with κCMB measured by both the
South Pole Telescope and the Planck satellite. We first
perform a joint analysis of angular cross-correlations
between δg and κCMB, and between γ and κCMB, which
we refer to as wδgκCMBðθÞ and wγtκCMBðθÞ, respectively. Using
two statistical approaches, we test for consistency between
this combination of probes and the 3 × 2 pt data vector
considered in the analysis of DES-Y1-3x2. Finding con-
sistency, we perform a joint cosmological analysis of all
five correlation functions, which we refer to as 5 × 2 pt. We
next test for consistency between the 5 × 2 pt combination
of probes and measurements of the autocorrelation of CMB
lensing from [21]. Again finding consistency, we perform a
joint cosmological analysis of all six two-point functions,
which we refer to as 6 × 2 pt. Following DES-Y1-3x2,
we adhere to a blinding policy whereby all significant
measurement and analysis choices were frozen prior to
unblinding.
This work represents the first complete cosmological

analysis of two-point functions between DES observables
and measurements of CMB lensing.1 It uses first year
observations from DES and CMB observations from both
the 2008–2011 SPT Sunyaev-Zel’dovich survey (SPT-SZ)
and Planck. We view this analysis as laying the foundations
for future joint analyses of two-point functions between
DES observables and CMB lensing. Consequently, we
have made several analysis choices (for both DES and
SPTþ Planck data) that ensure a high degree of robust-
ness of the analysis, while sacrificing some statistical

1References [29–31] also performed joint analyses of two-
point functions between DES and CMB lensing, but these
analyses only allowed at most one cosmological parameter
to vary.
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power. These choices are also well motivated given our
focus on performing a consistency test of the DES-Y1-3x2
results. We comment in the Sec. VIII on a number of
improvements we expect to implement with future datasets
and analyses.
This work extends earlier analyses of cross-correlations

between DES catalogs and SPT CMB lensing maps
[29–31]. Similar joint analyses of two-point functions
between galaxies, galaxy shears, and CMB lensing have
also been presented by [32,33]. The analysis presented here
also relies heavily on several recent papers analyzing
DES-Y1 data and cross-correlations with κCMB maps.
The analysis of the 3 × 2 pt combination of two-point
functions presented in DES-Y1-3x2 uses the two-point
measurements from [34–36], which in turn build on many
ancillary measurement and methodological papers [37–42].
Reference [43] applied the 3 × 2 pt methodology to simu-
lated datasets for the purposes of validation. Ref. [26]
(hereafter B18) extended the methodology of [41] (here-
after K17) to include modeling of the cross-correlation
between galaxies and shear with the κCMB map. The details
of the modeling of these two additional correlation func-
tions, the characterization of potential systematics, and the
motivation for angular scale cuts, are described in B18.
Reference [44] (hereafter O18a) present measurements of
the correlation between galaxies and κCMB, while [45]
(hereafter O18b) present measurements of the correlation
between shear and κCMB. The relations between the differ-
ent two-point functions considered here and the relevant
references are summarized in Fig. 1.
The structure of the paper is as follows: in Sec. II we

briefly summarize the model for the two-point function
measurements; in Sec. III we describe the data used in this
analysis; in Sec. V we give an overview of the metrics that

we use to evaluate consistency between the different
datasets considered in this work; in Sec. VI we describe
our blinding scheme and validation tests; in Sec. VII we
present the results of our cosmological analysis of the
measured two-point functions; we conclude in Sec. VIII.

II. MODEL

A. Correlation function model

We model the set of 5 × 2 pt correlation functions as
described in K17 and B18. We present a brief overview of
the modeling choices here and refer readers to those works
for more details.
We are interested in the two-point correlation functions

between three fields: the projected galaxy overdensity, δg,
the lensing shear measured from images of galaxies, γ, and
the lensing convergence measured from the CMB, κCMB. To
differentiate between the galaxies used as tracers of the
matter density field (i.e., the samples used to measure δg)
and the galaxies used as sources of light for measuring
gravitational lensing (i.e., the samples used to measure γ),
we will frequently refer to these samples as tracers and
sources, respectively. We use superscripts to indicate
different redshift bin measurements of these fields.
Using the Limber approximation [46], the harmonic-

space cross-spectra between these three fields can be
related to an integral along the line of sight over the
matter power spectrum, with an appropriate weighting
function. The use of the Limber approximation is justified
given our choice of angular scales and redshift binning
[41]. We use κs to represent the lensing convergence
defined from the source galaxy images to distinguish it
from κCMB. It is convenient to first compute cross-spectra
with the spin-0 κs field and to subsequently convert into
cross-correlations with components of the spin-2 shear
field, γ. We use the notation fα to generically represent
one of the fields δg, κCMB, and κs. The cross-spectra can
then be written as [47]

CfαfβðlÞ ¼
Z

dχ
qfαðχÞqfβðχÞ

χ2
PNL

�
lþ 1=2

χ
; zðχÞ

�
; ð1Þ

where χ is the comoving distance and PNLðk; zÞ is the
nonlinear matter power spectrum, which we compute
using CAMB [48]. In a spatially flat universe, the weight
functions for the different fields are

qκis ¼
3ΩmH2

0

2c2
χ

aðχÞ
Z

χh

χ
dχ0

nisðzðχ0ÞÞ dz
dχ0

n̄is

χ0 − χ

χ0
; ð2Þ

qκCMB
¼ 3ΩmH2

0

2c2
χ

aðχÞ
χ� − χ

χ�
; ð3Þ

FIG. 1. Summary of papers presenting analyses of two-point
functions of DES-Y1 measurements of projected galaxy density,
δg, and shear, γ, as well as cross-correlations with the CMB
lensing maps, κCMB, from [25]. The grey box represents the joint
3 × 2 pt analysis, while the orange and purple boxes represent the
5 × 2 pt and 6 × 2 pt analyses considered in this work.
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qδig ¼ big
nigðzðχÞÞ

n̄ig

dz
dχ

; ð4Þ

where nisðzÞ and nigðzÞ are the redshift distributions of
source and tracer galaxies in the ith bin, and n̄is and n̄ig are
the corresponding integrated number densities in this
redshift bin. In Eq. (4), we have assumed linear galaxy
bias with a single bias parameter, big, for each galaxy
redshift bin i.
The position-space correlation functions can be related

to the harmonic-space cross-spectra as follows. The corre-
lations of the galaxy density field with itself and with the
CMB convergence field are computed via

wδigδ
j
gðθÞ ¼

X 2lþ 1

4π
PlðcosðθÞÞCδigδ

j
gðlÞ; ð5Þ

wδigκCMBðθÞ ¼
X 2lþ 1

4π
FðlÞPlðcosðθÞÞCδigκCMBðlÞ; ð6Þ

where Pl is the lth order Legendre polynomial, and FðlÞ
describes filtering applied to the κCMB map. For correlations
with the κCMB map of [25] (hereafter O17), we set
FðlÞ ¼ BðlÞΘðl − 30ÞΘð3000 − lÞ, where ΘðlÞ is a step
function and BðlÞ ¼ expð−lðlþ 1Þ=l2

beamÞ with lbeam≡ffiffiffiffiffiffiffiffiffiffiffiffiffi
16 ln 2

p
=θFWHM ≈ 2120. The motivation for this filtering

is discussed in more detail in B18.
We compute the cosmic shear two-point functions, ξþ

and ξ−, using the flat-sky approximation

ξijþ=−ðθÞ ¼
Z

dll
2π

J0=4ðlθÞCκisκ
j
sðlÞ; ð7Þ

where Ji is the second order Bessel function of the ith kind.
For ease of notation, we will occasionally use wγγ to
generically refer to both ξþ and ξ−.
When measuring the cross-correlations between galaxies

and shear, or between κCMB and shear, we consider only the
tangential component of the shear field, γt. These corre-
lation functions are then given by

wδigγ
j
t ðθÞ ¼

Z
dll
2π

J2ðlθÞCδigκ
j
sðlÞ; ð8Þ

wγitκCMBðθÞ ¼
Z

dll
2π

FðlÞJ2ðlθÞCκisκCMBðlÞ: ð9Þ

In addition to the coherent distortion of galaxy shapes
caused by gravitational lensing, galaxies can also be
intrinsically aligned as a result of gravitational interactions.
We model intrinsic galaxy alignments using the nonlinear
linear alignment model [49], which modifies qκis as

qκisðχÞ → qκisðχÞ − AðzðχÞÞ n
i
sððzðχÞÞ
n̄is

dz
dχ

; ð10Þ

where

AðzÞ ¼ AIA;0

�
1þ z
1þ z0

�
ηIA 0.0139Ωm

DðzÞ ; ð11Þ

and where DðzÞ is the linear growth factor and z0 is the
redshift pivot point which we set to 0.62 as done in K17.
We also model two sources of potential systematic

measurement uncertainties in our analysis: biases in the
photometric redshift estimation and biases in the calibration
of the shear measurements. Photometric redshift bias is
modeled with an additive shift parameter, Δz, such that the
true redshift distribution is related to the observed distri-
bution via ntrueðzÞ ¼ nobsðz − ΔzÞ. We adopt separate red-
shift bias parametersΔzig andΔzis for each tracer and source
galaxy redshift bin, respectively.
We model shear calibration bias via a multiplicative bias

parameter, mi, for the ith redshift bin. We then make the
replacements

ξijþ=−ðθÞ → ð1þmiÞð1þmjÞξijþ=−ðθÞ; ð12Þ

wγitκCMBðθÞ → ð1þmiÞwγitκCMBðθÞ; ð13Þ

as described in B18.

III. DATA

A. DES-Y1 data

The Dark Energy Survey (DES; [50]) is an optical
imaging survey that covers 5000 deg2 with five filter bands
(grizY). The data is taken using the Dark Energy Camera
[51] at the 4m Blanco telescope at the Cerro Tololo Inter-
American Observatory. The first year data from DES was
taken during the period August 2013 to December 2014
and covers roughly 1500 deg2 to a median 10σ depth of
i ∼ 22.9. Approximately 1300 deg2 of the Y1 data overlaps
with the footprint of the SPT-SZ survey and is the basis of
the DES data in this analysis. An overview of available
DES-Y1 data products can be found in [52], while specific
samples extracted for cosmological analyses are described
in the individual two-point measurement papers [34–36].
The same galaxy and shape catalogs used in those papers
are used for measuring cross-correlations with CMB
lensing here.

1. Tracer galaxies

We use REDMAGIC-selected galaxies for the measure-
ment of galaxy overdensity, δg. REDMAGIC is a sample of
Luminous Red Galaxies generated using an algorithm that
selects galaxies with reliable photometric redshifts [53] and
has photo-z uncertainty at the level of σz ¼ 0.017ð1þ zÞ
[34]. The redshift distributions were validated in [37] by
cross-correlating with spectroscopic samples.
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The REDMAGIC samples are constructed so as to be
volume-limited. Three catalogs with different luminosity
cuts Lmin (which results in different co-moving number
densities) are used in thiswork:Lmin ¼ 0.5L�wasused in the
three lower redshift bins, whereas Lmin ¼ L� and Lmin ¼
1.5L� were used in the two higher redshift bins. The five
redshift bins are defined by 0.15 < z < 0.3, 0.3 < z < 0.45,
0.45 < z < 0.6, 0.6 < z < 0.75, and 0.75 < z < 0.9.
Reference [34] subjected the REDMAGIC catalog to tests
for systematic contamination from e.g., depth and seeing
variation across the survey region. After weights are applied
to the REDMAGIC galaxies to account for correlations
between galaxy density and observational systematics (see
[34] for details), no evidence for significant residual con-
tamination of the correlation functionmeasurements is found
across the range of angular scales considered. In addition to
the tests on the galaxy catalogs that have gone into the 3 ×
2 pt analysis, we have performed in O18a additional sys-
tematics tests specific to the cross-correlations with CMB
lensing.

2. Source galaxies

We use the METACALIBRATION [54,55] shear catalog for
the background source galaxy shapes from which we extract
γ. METACALIBRATION uses the data itself to calibrate shear
estimates by artificially shearing the galaxy images and re-
measuring the shear to determine the response of the shear
estimator. As in DES-Y1-3x2, the shear catalogs were
divided into four tomographic bins: 0.2 < z < 0.43,
0.43 < z < 0.63, 0.63 < z < 0.9, 0.9 < z < 1.3, where z
is the mean of the redshift PDF for each galaxy as estimated
from a modified version of the Bayesian Photometric
Redshifts algorithm [40,56]. Descriptions of the shear
catalog and the associated photo-z catalog can be found in
[42,40], respectively. In addition to the tests on the shear
catalogs that were part of the 3 × 2 pt analysis, we have
performed additional systematics tests specific to the two-
point correlation function wγtκCMBðθÞ in O18b.

B. SPT-SZ and Planck data

We use the CMB lensing convergence map presented in
O17 in this analysis. The O17 map is produced from an
inverse-variance weighted linear combination of the SPT-
SZ survey 150 GHz map and the Planck 143 GHz map.
Prior to combining these two maps, galaxy clusters
detected with a signal-to-noise ratio S=N ≥ 6 in [57] are
masked with an aperture of radius r ¼ 50. Point sources
detected above 50 mJy (500 mJy) are masked with an
aperture of radius r ¼ 60ðr ¼ 90Þ, while sources in the flux
density range 6.4 < F150 < 50 mJy are inpainted using the
Gaussian constrained inpainting method. As shown in B18,
our masking choices do not result in significant bias to the
measured correlations with κCMB.

The lensing map is reconstructed from the combined
temperature map using the quadratic estimator of [58]. The
map is filtered to avoid noise and systematic biases from
astrophysical foregrounds as described in O17. This proc-
ess generates a filtered lensing potential map ϕ̄, which is
then converted to convergence via

κ̂CMB ¼ 1

2Rϕϕ lðlþ 1Þðϕ̄ − ϕ̄MFÞ; ð14Þ

where Rϕϕ is the response function, which is a multipli-
cative factor that renormalizes the filtered amplitude, and
ϕ̄MF is the mean-field bias, which we calculate by taking
the average of simulated ϕ̄ maps. The response function is
obtained by taking the ratio between the cross-correlation
of input true ϕ and output reconstructed ϕ maps and the
autocorrelation of input ϕ. We remove modes with l < 30
and l > 3000 in the resulting convergence map. A
Gaussian beam of 5.40 is then applied to the map to taper
off the noise spectrum at high l. We model the impact of
this filtering using the BðlÞ factor described in Sec. II A.
When computing the correlation functions, we addition-

ally apply a mask of radius 50 to clusters detected at signal-
to-noise S=N > 5 in the SPT CMB maps [57] as well as
DES REDMAPPER clusters with richness λ > 80 to further
suppress contamination due to the tSZ effect. In principle,
such masking could bias the inferred correlation signals
since clusters are associated with regions of large κCMB;
however, in B18 we have quantified this effect and found it
to be negligible.

IV. MEASUREMENTS AND ANALYSIS

A. Choice of angular scales

In our modeling of the correlation functions we neglect
several physical effects, including nonlinear galaxy bias,
the impact of baryons on the matter power spectrum, and
contamination of the CMB maps by the thermal Sunyaev-
Zel’dovich (tSZ) effect. As shown in [36], K17 and B18,
some of these effects can have a significant impact on the
measured correlation functions at small scales.
In order to reduce the impact of unmodeled effects on our

analysis, we restrict analysis of the correlation function
measurements to angular scales where their impact is small.
The choice of angular scale cuts for the 3 × 2 pt data vector
was motivated in [36] and K17, while the choice of angular
scale cuts for wδgκCMBðθÞ and wγtκCMBðθÞ was motivated in
B18. In the case of the latter, we find that contamination of
the κCMB maps by the tSZ effect necessitates removal of a
significant fraction of the measured angular scales. We
note, though, that even in the absence of tSZ contamina-
tion, other unmodeled effects—such as the impact of
baryons on the matter power spectrum and nonlinear galaxy
bias—would still require removal of some fraction of the
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angular scales. The specific choices of angular scale cuts
are listed in Appendix A.
We emphasize that the scale cuts imposed on wδgκCMBðθÞ

and wγtκCMBðθÞ are not strictly necessary for the analysis of
these two correlation functions. Rather, these cuts were
motivated by a desire to ensure that cosmological con-
straints from the analysis of the full 5 × 2 pt data vector
were not impacted by unmodeled effects. The choice of
angular scales to remove to eliminate biases in cosmologi-
cal constraints is not unique: one can include more scales
from a particular correlation function if scales are removed
from another. In this analysis, we have chosen to ensure
consistency with the choices of the 3 × 2 pt analysis of
DES-Y1-3x2 and the scale cut choices made therein.
Consequently, there is less tolerance for possible biases
in the wδgκCMBðθÞ and wγtκCMBðθÞ correlation functions (see
discussion in B18). This choice is reasonable if one views
the primary purpose of this analysis as a consistency test of
the 3 × 2 pt results presented in DES-Y1-3x2. Further-
more, as shown in B18 (Fig. 7), even without angular scale
cuts, the total signal-to-noise of wγtκCMBðθÞ and wδgκCMBðθÞ is
less than that of the 3 × 2 pt analysis. The scale cut choices
made here are therefore well motivated and do not result in
a dramatic change to the 5 × 2 pt cosmological constraints.
Finally, we note again that the dominant source of bias in

the measurements of the CMB lensing cross-correlations
presented here is contamination of the κCMB map from O17
by the tSZ effect. Several recent works have considered
related biases in measurements of the CMB lensing
autospectrum and have developed potential mitigation
schemes [59–61]. Other recent work has considered biases
in CMB lensing cross-correlations with large scale struc-
ture observables and possible mitigation strategies such as
multi-frequency foreground cleaning [62] and shear-based
estimation [63]. Future analyses with DES and SPT will
make use of these cleaning techniques in order to reduce
small scale biases in the CMB lensing cross-correlations.
By implementing these foreground mitigation strategies, a
larger fraction of the signal-to-noise of the CMB lensing
cross-correlations can be exploited.

B. Correlation function measurements

The methodology for measuring wδgγðθÞ, wδgδgðθÞ,
wγγðθÞ, wγtκCMBðθÞ, and wδgκCMBðθÞ were presented in
[35,34,36], O18b, and O18a, respectively. All position-
space correlation function measurements are carried out
using the fast tree-code TREECORR.2

C. Parameter constraints

We assume a Gaussian likelihood for modeling the
observed data vectors. Given a data vector d⃗ representing
some combination of two-point function measurements,

and given the set of model parameters, p⃗, the data log-
likelihood is

lnLðd⃗jm⃗ðp⃗ÞÞ ¼ −
1

2
ðd⃗ − m⃗ðp⃗ÞÞTC−1ðd⃗ − m⃗ðp⃗ÞÞ; ð15Þ

where m⃗ðp⃗Þ is the model for the data vector described in
Sec. II and C is the covariance matrix.
For the 3 × 2 pt subset of observables, we compute the

covariance between probes using an analytical, halo-model
based covariance as described [41]. We extend the covari-
ance estimate to include cross-correlations with κCMB as
described in B18.
While most of the contributions to the covariance matrix

are calculated analytically, it was found in [64] that the
geometry of the survey mask could impact the noise-noise
term of the covariance significantly. For the DES 3 × 2 pt
block, this is corrected for by including the number of pairs

TABLE I. Parameters of the baseline model: fiducial values, flat
priors (min, max), and Gaussian priors (μ, σ). Definitions of the
parameters can be found in the text. The cosmological model
considered is spatially flat ΛCDM þ ν, so the curvature density
parameter and equation of state of dark energy are fixed to
ΩK ¼ 0 and w ¼ −1, respectively.

Parameter Prior

Cosmology
Ωm Flat (0.1, 0.9)
As=10−9 Flat (0.5, 5.0)
ns Flat (0.87, 1.07)
w0 Fixed
Ωb Flat (0.03, 0.07)
h0 Flat (0.55, 0.91)
Ωνh2 Flat ð5 × 10−4; 10−2Þ
ΩK 0
τ 0.08
Galaxy bias
big Flat (0.8, 3.0)
Lens photo-z bias
Δ1

z;g Gauss (0.0, 0.007)
Δ2

z;g Gauss (0.0, 0.007)
Δ3

z;g Gauss (0.0, 0.006)
Δ4

z;g Gauss (0.0, 0.01)
Δ5

z;g Gauss (0.0, 0.01)
Source photo-z bias
Δ1

z;s Gauss ð−0.001; 0.016Þ
Δ2

z;s Gauss ð−0.019; 0.013Þ
Δ3

z;s Gauss (0.009, 0.011)
Δ4

z;s Gauss ð−0.018; 0.022Þ
Shear calibration bias
mi Gauss (0.012, 0.023)
Intrinsic alignments
AIA;0 Flat ð−5.0; 5.0Þ
ηIA Flat ð−5.0; 5.0Þ
z0 0.622https://github.com/rmjarvis/TreeCorr.
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in each angular bin when computing the correlation
functions. For the two cross-correlation blocks that involve
CMB lensing, the correction cannot be applied trivially due
to the scale-dependence in the noise spectrum.We therefore
isolate this term in the analytically computed covariance
matrix and replace it with a measurement using simula-
tions. We generate 1000 Gaussian realizations3 of CMB
convergence noise, shape noise, and random galaxy dis-
tributions with the same number density as data, and apply
the mask that is used in the analysis. We measure the
wγtκCMBðθÞ and wδgκCMBðθÞ from these for each realization,
and compute the covariance using the ensemble, and add
this covariance to the analytically computed component.
Given the data likelihood, the posterior on the model

parameters, Pðp⃗jd⃗Þ, is calculated via

Pðp⃗jd⃗Þ ∝ Lðd⃗jp⃗ÞPpriorðp⃗Þ; ð16Þ

where Ppriorðp⃗Þ is the prior on the model parameters. We
adopt the same choice of parameter priors as in DES-Y1-
3x2 and use the MULTINEST [66] algorithm to sample the
posterior distribution of the high-dimensional parameter
space and to compute evidence integrals (see Sec. V). The
parameters explored in the analysis, as well as the priors
used for each parameter, are listed in Table I. Since this
work is primarily focused on examining consistency
between 3 × 2 pt and 5 × 2 pt, we restrict our analysis
to flat ΛCDMþ ν cosmological models and will leave
extensions to other models for future work.

V. CONSISTENCY METRICS

DES-Y1-3x2 found cosmological constraints that were
consistent with the ΛCDM cosmological model. One of the
primary purposes of the present work is to perform a
consistency test between the 3 × 2 pt measurements and
wδgκCMBðθÞ þ wγtκCMBðθÞ in the context of ΛCDM. Any
evidence for inconsistency could indicate the presence of
unknown systematics, or a breakdown in the ΛCDM
model. For the purposes of assessing consistency, we
use two different statistical metrics: the evidence ratio
and the posterior predictive distribution (PPD). We describe
these two approaches below.

A. Evidence ratio

Several recent analyses, including DES-Y1-3x2, have
used evidence ratios for quantifying consistency between
different cosmological measurements. In this approach,
consistency between different datasets is posed as a model
selection problem. One effectively answers the question:
“Are the observations from two experiments more likely to
be explained by a single (consistent) set of parameters, or

by two different sets of parameters?” If the datasets are
more likely to be explained by a single set of model
parameters, that can be interpreted as evidence for con-
sistency between the measurements; alternatively, if the
data are better explained by two different sets of param-
eters, that can be interpreted as evidence for inconsistency.
To answer the question posed above, we use a ratio of

evidences between two models, as motivated by [67]. The
Bayesian evidence (or marginal likelihood) for data, D,
given a model M and prior information I is

PðDjM; IÞ ¼
Z

PðDjϑ;M; IÞPðϑjM; IÞdϑ; ð17Þ

where ϑ represents the parameters of M. The quantity
PðDjϑ;M; IÞ represents the data likelihood, while
PðϑjM; IÞ represents our prior knowledge of the
parameters ϑ.
We would like to evaluate the consistency of two

datasets, D1 and D2, under a cosmological model such
as ΛCDM. Following [67], we introduce two models: MA
(which we will call the consistency model) and MB (which
we call the inconsistency model). In MA, the two datasets
are described by a single set of model parameters. In MB,
on the other hand, there are two sets of model parameters,
one describing D1 and one describing D2. The evidence
ratio

R≡ PðD1; D2jMA; IÞ
PðD1; D2jMB; IÞ

ð18Þ

then provides a measure of the consistency between the two
datasets. If D1 and D2 are independent, then the denom-
inator can be written as a product of two evidences

R ¼ PðD1; D2jMA; IÞ
PðD1; jMB; IÞPðD2; jMB; IÞ

ð19Þ

¼
R
PðD1;D2jϑ;M;IÞPðϑjM;IÞdϑR

PðD1jϑ;M;IÞPðϑjM;IÞdϑR PðD2jϑ;M;IÞPðϑjM;IÞdϑ;

ð20Þ

where in the second line, we have used M to represent the
cosmological model under which the consistency test is
being performed, i.e., flat ΛCDM. In the DES-Y1-3x2
approach, MB assumes that D1 and D2 are independent,
allowing us to simplify the evidence ratio as in Eq. (19).
Additionally, the DES-Y1-3x2 approach is to duplicate all
of the model parameters when creating model MB, not just
the cosmological parameters. We compute the multidimen-
sional integrals in Eq. (19) using MULTINEST.
In the evidence ratio approach, we interpret large R as

evidence for consistency between the datasets D1 and D2.
3A large number of simulation realizations are needed to

minimize the Anderson-Hartlap factor [65].
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It is common to use the Jeffreys scale [68] to assess the
value of R. An evidence ratio log10 R > 1 would represent
strong support for the consistency model; log10 R < 0
would indicate preference for the inconsistency model.
In the analysis of DES-Y1-3x2, a criterion of log10R > −1
was used as a threshold for combining datasets; an evidence
ratio lower than this would indicate that the inconsistency
model was preferred strongly enough that generating
combined constraints from the two experiments would
not be defensible.
The main advantage of the evidence ratio approach is

that it is fully Bayesian, taking into account the full
posterior on the model parameters, not just the maximum
likelihood point (as is the case for e.g., a χ2 comparison).
However, the evidence ratio approach also has some
significant drawbacks. For one, the alternative model
considered in the evidence ratio (i.e., what we call MB
above) is not very well motivated. We have no a priori
reason to think that doubling all of the parameters of
ΛCDM and the systematics parameters provides a reason-
able alternative model. Furthermore, because the alternative
model has so many parameters, it suffers a large Occam’s
razor penalty (see e.g., [69]). Finally, the assumption of
independence between D1 and D2 built into model MB is
questionable when applied to the joint two-point function
analyses, since we know that the measurements are indeed
correlated from e.g., jackknife tests on the data. These
concerns motivate us to explore alternative consistency
metrics.

B. Posterior predictive distribution

The PPD provides an alternative (and still fully
Bayesian) approach for evaluating consistency between
two datasets, D1 and D2. Briefly, one generates plausible
simulated realizations of D2 given a posterior on the model
parameters fromD1; we then ask whether these realizations
look like the actual observed data, D2. The PPD approach
has a long history in Bayesian analysis (for an overview of
the method, see [70]); it has recently been applied to
cosmological analyses by e.g., [71,72].
The PPD approach has a few advantages over the

evidence ratio approach for assessing consistency between
datasets. For one, the PPD addresses the question of
consistency between datasets in the context of a single
model. In contrast, the evidence ratio approach poses the
question of data consistency as a model comparison, and
therefore requires proposal of an alternate model, which
may not be well motivated.
Additionally, the PPD is computationally easy to imple-

ment since its main requirement is a set of parameter draws
from a model posterior; this is easily generated with
Markov chain Monte Carlo methods. On the other hand,
the evidence ratio approach requires computing the

Bayesian evidence; this can in principle be computed from
parameter chains, but doing so is nontrivial and benefits
from specialized algorithms like MULTINEST. One potential
drawback of the PPD approach is that it requires making a
choice for how to compare the true data and the simulated
realizations of the data. Typically, to reduce the dimension-
ality of the problem, a test statistic is used for this
comparison, such as the mean or χ2 (we will use χ2 below).
However, a poor choice of test statistic will result in a less
powerful test. We now summarize the computation of the
PPD and its application to consistency tests of the measured
two-point correlation functions.
We wish to determine whether the measurements of

some new data vector, D2, are reasonable given the
posterior, PðϑjD1;M; IÞ, on model parameters, ϑ, from
the analysis of a different data vector, D1, in the context of
some modelM and given prior information I. For instance,
below we will assess whether the observed wδgκCMBðθÞ and
wγtκCMBðθÞ data vectors are reasonable given the 3 × 2 pt
constraints on flat ΛCDM. To do this, we will generate
simulated realizations of D2, which we call Dsim

2 , condi-
tioned on the posterior PðϑjD1;M; IÞ. The distribution of
the simulated realizations is

PðDsim
2 jD1;M;IÞ¼

Z
dϑPðDsim

2 jϑ;D1;M;IÞPðϑjD1;M;IÞ:

ð21Þ

Note that we have allowed for the possibility that Dsim
2

depends on both ϑ and D1. This is important because when
we use the PPD to determine consistency between
wγtκCMBðθÞ and wδgκCMBðθÞ with 3 × 2 pt, these data vectors
are indeed correlated. In practice, rather than computing the
integral above, we generate many random realizations of
Dsim

2 ; this is the PPD.
The distribution PðDsim

2 jϑ; D1;M; IÞ can be computed
given the likelihoods for D1 and D2. For the data vectors
considered here, ðD2; D1Þ is distributed as a multivariate
Gaussian

ðD2; D1Þ ∼N
�
ðμ2; μ1Þ;

�Σ22 Σ21

Σ12 Σ11;

��
; ð22Þ

where μi is the mean of Di ’s Gaussian distribution, and Σij

represents the covariance between Di and Dj. The dis-
tribution ofD2 conditioned onD1 is then also a multivariate
Gaussian

D2jD1∼N ðμ2þΣ−1
21Σ−1

11 ðD1−μ1Þ;Σ22−Σ21Σ−1
11Σ12Þ: ð23Þ

Using these expressions, we can generate Dsim
2 conditioned

on ϑ and D1, as in Eq. (21).
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To facilitate comparison between the true data, D2,
and the simulated draws, Dsim

2 , we define a test statistic,
TðD; ϑÞ. We will compute the distributions of both
TðD2; ϑÞ and TðDsim

2 ;ϑÞ (both of which depend on the
posterior on ϑ from the analysis ofD1), and the comparison
of these two distributions will be will used to assess
consistency between D2 and D1. Note that the test statistic
can depend on ϑ, but we are ultimately interested in the
distribution of the test statistic marginalized over ϑ, as in
Eq. (21). Following [70], we choose χ2 as the test statistic,
i.e., we set

TðD2; ϑÞ ¼ ðD2 −mðϑÞÞTC−1ðD2 −mðϑÞÞ; ð24Þ

where mðϑÞ is the model vector for D2 generated using the
parameters ϑ, and C is the covariance of D2.
We compute the test statistics TðD2; ϑÞ and TðDsim

2 ; ϑÞ
for many ϑ drawn from the posterior PðϑjD1;M; IÞ. At
each ϑ, TðDsim

2 ; ϑÞ is computed by drawing a new Dsim
2

from the distribution PðDsim
2 jϑ; D1;M; IÞ. A p-value cor-

responding to the comparison between TðD2; ϑÞ and
TðDsim

2 ; ϑÞ is then computed as the fraction of the random
draws for which TðDsim

2 ; ϑÞ ≥ TðD2; ϑÞ. In other words, p
represents the probability that the simulated data has a
higher test quantity than the observed real data. A small
p-value would indicate that the observed D2 is unlikely
given the posterior on model parameters from D1, i.e.,
small p would suggest inconsistency between D2 and
D1. A large p-value, on the other hand, could be an
indication that measurement uncertainty was overesti-
mated. Following standard practice, we will consider
p < 0.01 or p > 0.99 to be cause for concern.

VI. BLINDING AND VALIDATION

To avoid possible confirmation bias during the analysis,
the measurements and analyses ofwγtκCMBðθÞ andwδgκCMBðθÞ
were blinded until validation checks had passed. Based on
projections from B18, we viewed the main purpose of the
wγtκCMBðθÞ and wδgκCMBðθÞ measurements as a consistency
check of the DES 3 × 2 pt analysis. Consequently, we
endeavored to blind ourselves to the consistency between
the 3 × 2 pt measurements with the additional wγtκCMBðθÞ
and wδgκCMBðθÞ.
Blinding was implemented in several layers: first, the

wγtκCMBðθÞ measurement was blinded by multiplying the
shear values by some unknown amount, as described in
[42]. Similarly, the wδgκCMBðθÞ data vector was multiplied by
a random (unknown) number between 0.8 and 1.2. Second,
two-point functions were never compared directly to theory
predictions. Finally, cosmological contours were shifted to
the origin or some other arbitrary point when plotting.

The following checks were required to pass before
unblinding the measurements:
(1) The shear and galaxy catalogs should pass all of the

systematics tests described in [42,34].
(2) The two-point function measurements should pass

several systematic error tests:
(i) Correlations between the cross-component of

shear (γ×) and κCMB should be consistent with
zero

(ii) The correlation of γ, δg, and κCMB with potential
systematics maps should be consistent with
zero or result in an acceptable small bias. More
details regarding these tests are described in
O18a and O18b.

(iii) Including prescriptions for effects not included
in the baseline model (such as baryonic effects
and nonlinear galaxy bias) should lead to
acceptably small bias to cosmological con-
straints in simulated analyses (see B18 for more
details).

(3) The covariance matrix estimate should be compared
to data via jackknife estimates of the covariance
matrix. See O18a and O18b for more details.

Once the measurements were unblinded, we generated
posterior samples from the joint analysis of wδgκCMBðθÞ
and wγtκCMBðθÞ. The measured data vectors were frozen at
this point.
We required one final test before unblinding the cos-

mological constraints from the joint analysis of wδgκCMBðθÞ
and wγtκCMBðθÞ: the minimum χ2 from a flat ΛCDM fit to
wδgκCMBðθÞ and wγtκCMBðθÞ should be less than some thresh-
old value, χ2th. If the χ

2 did not meet this threshold, it would
indicate either a significant failure of flat ΛCDM model or
an unidentified systematic; in either case, presenting con-
straints on ΛCDM would then be unjustified. The value of
χ2th was chosen such that the probability of getting a χ2

value so high by chance for a ΛCDM model, pth≡
Pðχ2 > χ2th; νÞ, was less than 0.01 for ν degrees of freedom.
We determine in Appendix B that the effective number of
degrees of freedom in this analysis is roughly 37.5. For
ν ¼ 37.5, our choice of pth corresponds to χ2th ¼ 60.5.
When fitting the model to the unblinded data, we found
χ2 ¼ 32.2. Since this was well below the threshold for
unblinding, we proceeded to examining the ΛCDM pos-
teriors and evaluating consistency with 3 × 2 pt.

VII. RESULTS

A. Cosmological constraints from joint
analysis of wδgκCMBðθÞ and wγtκCMBðθÞ

We first consider cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wγtκCMBðθÞ. The cosmological
constraints obtained from wγtκCMBðθÞ alone were presented
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.

0.16 0.20 0.24 0.28 0.32 0.36
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FIG. 2. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩm=0.3Þ
p

for different combinations of correlation functions
in the context of ΛCDM þ ν cosmology: 3 × 2 pt (gold),
wγtκCMBðθÞ þ wδgκCMBðθÞ (open orange), and 5 × 2 pt (gray). We
note that the wγtκCMBðθÞ þ wδgκCMBðθÞ constraints have a different
degeneracy direction compared to those of 3 × 2 pt.

T. M. C. ABBOTT et al. PHYS. REV. D 100, 023541 (2019)

023541-12



Next, we compare the constraints on the linear galaxy
bias obtained from the analysis of 3 × 2 pt and 5 × 2 pt
data vectors. These are summarized in Table II. Adding the
cross-correlations with κCMB to the 3 × 2 pt analysis can
help to break degeneracies between galaxy bias and other
parameters (see [26] for an explicit example). However,
given the relatively low signal-to-noise of these cross-
correlations, we find that improvements in the galaxy bias
constraints are not significant.
To assess the improvement across the full cosmological

parameter space, we compute the ratio of the square roots
of the determinants of the parameter covariance matrices
for the 3 × 2 pt and 5 × 2 pt analyses. This quantity
effectively provides an estimate of the parameter space
volume allowed by the posterior. When performing this
test, we restrict our consideration to those parameters
actually constrained in the analysis: Ωm, As, the galaxy
bias parameters, and AIA (the amplitude in the intrinsic
alignment model). In this parameter subspace, the square
root of the determinant of the covariance matrix is reduced
by 10% when going from the 3 × 2 pt to the 5 × 2 pt
analysis.

D. 5 × 2 pt constraints with relaxed priors
on multiplicative shear bias

As shown in B18, one advantage of including cross-
correlations with CMB lensing in a 5 × 2 pt analysis is that
these cross-correlations can help break degeneracies
between the normalization of the matter power spectrum,
galaxy bias, and multiplicative shear bias. For the fiducial
DES-Y1 priors on multiplicative shear bias from DES-Y1-
3x2, the degeneracy breaking is weak since multiplicative
shear bias is already tightly constrained using data and
simulation-based methods, as described in [42]. However,
if these priors are relaxed, the 5 × 2 pt analysis can obtain
significantly tighter cosmological constraints than the 3 ×
2 pt analysis. In essence, the cosmological constraints
can be made more robust to the effects of multiplicative
shear bias.
The 3 × 2 pt and 5 × 2 pt constraints on Ωm and S8

when priors on multiplicative shear bias are relaxed tomi ∈
½−1; 1� are shown in Fig. 3. In contrast to Fig. 2, the

5 × 2 pt constraints are significantly improved over 3 ×
2 pt when the multiplicative shear bias constraints are
relaxed.
For these relaxed priors, the data alone calibrate the

multiplicative shear bias. The resultant constraints on the
shear calibration parameters are shown in Table III. These
constraints are consistent with the fiducial shear calibration
priors shown in Table I. In other words, we find no evidence
for unaccounted systematics in DES measurements of
galaxy shear.
We have also performed similar tests for other nuisance

parameters such as photo-z bias and IA. However, the effect
of self-calibration for these other parameters tends to be
smaller than for shear calibration. As shown in B18, this is
because shear calibration, galaxy bias, and As are part of a
three-parameter degeneracy. Consequently, the 3 × 2 pt
data vector cannot tightly constrain these parameters with-
out external priors on shear calibration. For the other
systematics parameters, however, such strong degeneracies
are not present, and significant self-calibration can occur.
Consequently, for these parameters, adding the additional

TABLE III. Constraints on the shear calibration parameters,mi,
from the 3 × 2 pt and 5 × 2 pt data vectors when priors on mi are
relaxed. In all cases, the posteriors obtained on the mi from the
5 × 2 pt analysis are consistent with the priors adopted in the
3 × 2 pt analysis of [9].

SAMPLE 3 × 2 pt mi 5 × 2 pt mi

0.20 < z < 0.43 −0.03þ0.34
−0.16 0.03þ0.25

−0.15
0.43 < z < 0.63 −0.02þ0.27

−0.14 0.07þ0.19
−0.11

0.63 < z < 0.90 −0.04þ0.20
−0.15 −0.01þ0.13

−0.09
0.90 < z < 1.30 −0.02þ0.18

−0.17 −0.08þ0.14
−0.08

TABLE II. Constraints on the linear galaxy bias parameters, bi,
from the 3 × 2 pt and 5 × 2 pt data vectors for the five redshift
samples.

SAMPLE 3 × 2 pt bi 5 × 2 pt bi

0.15 < z < 0.30 1.42þ0.13
−0.08 1.41þ0.11

−0.11
0.30 < z < 0.45 1.65þ0.08

−0.12 1.60þ0.11
−0.09

0.45 < z < 0.60 1.60þ0.11
−0.08 1.60þ0.09

−0.10
0.60 < z < 1.75 1.93þ0.14

−0.10 1.91þ0.11
−0.11

0.75 < z < 1.90 2.01þ0.13
−0.14 1.96þ0.15

−0.11
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FIG. 3. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩm=0.3Þ
p

for the 3 × 2 pt (gold) and 5 × 2 pt (gray)
combinations of correlation functions in the context of ΛCDMþ
ν cosmology when priors on multiplicative shear bias are relaxed
(filled contours). In this case, the cosmological constraints
obtained from the 5 × 2 pt data vector are significantly tighter
than those resulting from the 3 × 2 pt data vector. The open black
contours show the constraints when the fiducial priors on
multiplicative shear bias (see Table I) are applied.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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FIG. 4. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩm=0.3Þ
p

for different combinations of correlation functions
in the context of ΛCDM þ ν cosmology: 5 × 2 pt (gray),
κCMBκCMB (open red), and 6 × 2 pt (red). The wκCMBκCMB contours
are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.

T. M. C. ABBOTT et al. PHYS. REV. D 100, 023541 (2019)

023541-14



of the two contours in Ωm and S8. When combining the
constraints, we obtain for the 6 × 2 pt analysis

Ωm ¼ 0.271þ0.022
−0.016 ;

σ8 ¼ 0.800þ0.040
−0.025 ;

S8 ¼ 0.776þ0.014
−0.021 :

The constraints on Ωm and S8 are 25% and 24% tighter,
respectively, than those obtained from the 3 × 2 pt analysis
of DES-Y1-3x2. The addition of Planck lensing provides
additional constraining power coming from structure at
higher redshifts than is probed by DES.

VIII. DISCUSSION

We have presented a joint cosmological analysis of two-
point correlation functions between galaxy density, galaxy
shear, and CMB lensing using data from DES, the SPT-SZ
survey, and Planck. The 5 × 2 pt observables—wδgδgðθÞ,
ξ�ðθÞ, wδgγðθÞ, wδgκCMBðθÞ, and wγtκCMBðθÞ—are sensitive to
both the geometry of the Universe and to the growth of
structure out to redshift z≲ 1.3.4 The measurement process
and analysis has been carried out using a rigorous blinding
scheme, with cosmological constraints being unblinded
only after nearly all analysis choices were finalized and
systematics checks had passed.
We have used two approaches—one based on an

evidence ratio and one based on the PPD—to evaluate
the consistency between constraints from wδgκCMBðθÞ and
wγtκCMBðθÞ and those obtained from the 3 × 2 pt data vector
explored in DES-Y1-3x2. We find no evidence for tension
between these two datasets in the context of flat ΛCDMþ
ν cosmological models. This is a powerful consistency test
of the DES-Y1-3x2 results given that the CMB lensing
measurements rely on completely different datasets from
the DES observables and are subject to very different
sources of systematic error. Since we find these datasets to
be statistically consistent, we perform a joint analysis of the
5 × 2 pt data vector to obtain cosmological constraints,
with the results shown in Fig. 2. The reduction parameter
volume in going from the 3 × 2 pt to 5 × 2 pt data vector,
as measured by the square root of the determinant of the
parameter covariance matrix, is roughly 10% over the
subspace of parameters most constrained by these analyses
(Ωm, As, the galaxy bias parameters, and AIA).
Notably, when priors on the multiplicative shear bias

parameters are relaxed, we find that the 5 × 2 pt data vector
yields significantly tighter cosmological constraints than
the 3 × 2 pt data vector (Fig. 3). The inclusion of the CMB

lensing cross-correlations in the analysis allows the data to
self-calibrate the shear bias parameters (although not at the
level of the DES priors).
The autocorrelation of CMB lensing convergence is

sensitive to a wide range of redshifts, with the CMB
lensing weight peaking at z ∼ 2, and having significant
support from higher redshifts. Again using both evidence
ratio and PPD-based tests, we evaluate the consistency
between the Planck CMB lensing autospectrum measure-
ments and the 5 × 2 pt combination of observables. We
find the two datasets to be consistent in the context of flat
ΛCDM cosmological models, justifying a joint analysis.
The constraints using the full 6 × 2 pt combination of
correlation functions are shown in Fig. 4.
To some extent, the small improvement in cosmological

constraints between the 3 × 2 pt and 5 × 2 pt analysis is a
consequence of our conservative angular scale cuts. As
noted in Sec. IVA, the choice of angular scale cuts adopted
here favors the 3 × 2 pt analysis over the cross-correlations
with CMB lensing. This choice was motivated by the desire
to perform a consistency test of the 3 × 2 pt results, but a
different choice could significantly impact the relative
strengths of the 3 × 2 pt and 5 × 2 pt analyses. Further-
more, while the scale cuts for the cross-correlations with
CMB lensing were informed by consideration of several
unmodeled effects [B18], they were driven primarily by
issues of tSZ bias in the κCMB maps of [25]. Future
measurement with DES and SPT, however, has the poten-
tial to significantly improve the constraining power of
CMB lensing cross-correlations and to dramatically alle-
viate the problem of tSZ bias. We describe some of these
expected improvements in more detail below.
Data quality and volume are expected to improve

significantly in the near future for several reasons.
First, the current data use only first year DES observa-
tions. With full survey, DES will cover roughly 5000 sq.
deg. (relative to the ∼1300 sq: deg. considered here) and
will reach at least a magnitude deeper. On the SPT side,
significantly deeper observations of the CMB over a
500 deg2 patch have been made by SPTpol [74]. There
are also somewhat shallower observations over another
2500 deg2 field that partly overlaps with the DES foot-
print; this field was observed with SPTpol when the Sun
was too close to the 500 deg2 field. Additionally, several
ongoing and upcoming CMB experiments have significant
overlap with the DES survey region and should enable
significantly higher signal-to-noise measurements of κCMB
over this footprint. These include SPT-3G [75], Advanced
ACTPol [76], the Simons Observatory [77], and CMB
Stage-4 [28].
Measurement algorithms are also expected to improve

significantly in the near future. On the DES side, better data
processing and shear measurement algorithms will likely
enable the use of lower signal-to-noise source galaxies, and
lead to tighter priors on the shear calibration bias.

4The cross-correlations with κCMB depend on the distance to
the last scattering surface at z ∼ 1100 through the lensing weight
of Eq. (3). This sensitivity is purely geometric, though, and does
not reflect sensitivity to large scale structure at high redshifts.
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Photometric redshift determination is also expected to
improve with future DES analyses. On the SPT side,
contamination of the κCMB maps can be significantly
reduced using multifrequency component separation meth-
ods to remove tSZ. In combination with data from Planck,
this cleaning process can be accomplished with little
reduction in signal-to-noise using the method outlined
in [62].
Finally, several improvements are expected on the

modeling side. As discussed in K17 and B18, effects such
as the impact of baryons on the matter power spectrum and
nonlinear galaxy bias were ignored in this analysis. This
model simplicity necessitated restriction of the data to the
regime where these approximations were valid, removing a
significant fraction of the available signal-to-noise. With
efforts to improve modeling underway, we can expect to
exploit more of the available signal-to-noise of the two-
point measurements using future data from DES and SPT.
This work represents the joint analysis of six two-point

functions of large scale structure, measured using three
different cosmological surveys, and spanning redshifts
from z ¼ 0 to z ∼ 1100. Remarkably, although the three
observables considered in this work—δg, γ, and κCMB—are
measured in completely different ways, the two-point
correlation measurements are all consistent under the flat
ΛCDM cosmological model. The combined constraints
from these measurements of correlation functions of the
large scale structure are some of the tightest cosmological
constraints to date and are highly competitive with other
cosmological probes. With significant improvements to
data and methodology expected in the near future, two-
point functions of large scale structure will continue to be a
powerful tool for studying our Universe.
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APPENDIX A: SCALE CUTS

The minimum angular scales for each of the five
correlation functions are listed below:

θ
δgδg
min ¼½430;270;200;160;140�;
θ
δgγ
min ¼½640;400;300;240;210�;
ξþ ¼½7.20;7.20;5.70;5.70;7.20;4.50;4.50;4.50;5.70;4.50;

3.60;3.60�;
ξ− ¼½90.60;72.00;72.00;72.00;72.00;57.20;57.20;45.40;

72.00;57.20;45.40;45.40;72.00;45.40;45.40;36.10�;
θ
δgκCMB

min ¼½150;250;250;150;150�;
θγκCMB
min ¼½400;400;600;600�: ðA1Þ

The 5 (4) values correspond to the 5 (4) redshift bins for the
δg (γ) fields in the cross-correlations δgδg, δgγ, δgκCMB, and
γκCMB. For ξ�, the values correspond to all the auto and
cross-correlations between the four source redshift bins (the
numbers are ordered as bin1-bin1; bin1-bin2;… bin2-bin1;
bin2-bin2…).

APPENDIX B: FINDING THE DOF

Determining the appropriate counting of degrees of free-
dom, ν, to use when performing the χ2 test of the flatΛCDM
fit to thewδgκCMBðθÞ andwγtκCMBðθÞ data vector is complicated
by the fact that the effects of some of the parameters in the
model may be partially degenerate, and by the fact that we
impose informative priors on some parameters. We deter-
mined an effective ν by generating many simulated noisy data
vectors from the theory model and covariance matrix, and
fitting these to determine theminimumvalue of χ2.We then fit
these simulated data vectors to determine, χ2min;i, theminimum
values of χ2 for the ith data vector. Finally, we fit the
distribution of χ2min;i to a χ

2 distribution to extract a constraint
on ν. We find ν ¼ 37.5� 1.7.

APPENDIX C: POSTERIOR PREDICTIVE
DISTRIBUTIONS

As discussed in the main text, we assess consistency
between 3 × 2 pt and ðwδgκCMBðθÞ; wγtκCMBðθÞÞ, and between
5 × 2 pt and wκCMBκCMB using both evidence ratio and
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FIG. 5. Results of the PPD analysis to assess consistency between the 3 × 2 pt and theD×κCMB
≡ ðwγtκCMBðθÞ; wδgκCMBðθÞÞ data vector in

the context of flat ΛCDMþ ν. Left panel shows the distributions of test quantities, TðD; ϑÞ, for the simulatedD×κCMB
data vector (black)

and real data vector (orange), given the posterior on model parameters from the analysis of the 3 × 2 pt data vector. The test quantity
used in this analysis is defined in Eq. (24). Right panel shows the distribution of the difference between the test quantity evaluated on the
PPD realizations and on the real data, TðDsim

2 ;ϑÞ − TðD2;ϑÞ. Given the posterior on the model parameters from the 3 × 2 pt data vector,
approximately 44% of the simulated realizations of wγtκCMBðθÞ and wδgκCMBðθÞ lead to a test quantity that is greater than that of the actual
data. This indicates that D×κCMB

is statistically consistent with the 3 × 2 pt data vector under the flat ΛCDM model.
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PPD-based approaches. In this appendix, we show the
distributions of the PPD test statistic.
Figures 5 and 6 show histograms of the test statistic

TðD2; ϑÞ computed from the data and from the realizations,
TðDsim

2 ; ϑÞ. Figure 5 presents the distributions used to
assess consistency between 3 × 2 pt and wδgκCMBðθÞþ
wγtκCMBðθÞ. In this case, the data vector, D2, is
wδgκCMBðθÞ þ wγtκCMBðθÞ, and we marginalize over the pos-
terior from the 3 × 2 pt analysis. For Fig. 6, the data vector
is wκCMBκCMBðθÞ and we marginalize over the posterior from
the 5 × 2 pt analysis. Note that the histograms of the test
statistic have a finite extent because the PPD marginalizes
over the posterior PðϑjD1;M; IÞ.

APPENDIX D: CONSTRAINTS
ON OTHER PARAMETERS

In Fig. 7, we show the multidimensional parameter
constraints from the three combinations of two-point

correlation functions: 3 × 2 pt, 5 × 2 pt, and 6 × 2 pt.
Specifically, we show As (the amplitude of the matter
power spectrum), h (Hubble parameter), AIA and ηIA
(amplitude and redshift evolution of intrinsic alignment
model), b3 (one example of galaxy bias), and Ων. We also
examine the degeneracy of these parameters with our main
cosmological constraints on Ωm and σ8.
There is some improvement in constraints when going

from 3 × 2 pt to 5 × 2 pt and a significant improvement
going from 5 × 2 pt to 6 × 2 pt. For h and the IA
parameters, there is no sign of improvement going from
3 × 2 pt to 5 × 2 pt, and we do not expect any
change going to 6 × 2 pt since the CMB lensing auto-
spectrum does not constrain IA (although in principle,
degeneracy breaking could lead to some improvement).
Improvements on constraints on galaxy bias has been
discussed in Sec. VII C.
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FIG. 6. Same as Fig. 5, except now showing results of PPD analysis to assess consistency between 5 × 2 pt data vector and
wκCMBκCMBðθÞ data vector. In this case, approximately 9% of the simulated realizations of wκCMBκCMBðθÞ lead to a test quantity that is greater
than that of the actual data. This indicates that wκCMBκCMBðθÞ is statistically consistent with the 5 × 2 pt data vector under the flat
ΛCDM model.
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Astropart. Phys. 03 (2014) 024.
[61] S. Ferraro and J. C. Hill, Phys. Rev. D 97, 023512 (2018).
[62] M. S. Madhavacheril and J. C. Hill, Phys. Rev. D 98,

023534 (2018).
[63] E. Schaan and S. Ferraro, Phys. Rev. Lett. 122, 181301

(2019).
[64] M. A. Troxel, E. Krause, C. Chang et al., Mon. Not. R.

Astron. Soc. 479, 4998 (2018).
[65] J. Hartlap, P. Simon, and P. Schneider, Astron. Astrophys.

464, 399 (2007).
[66] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. R.

Astron. Soc. 398, 1601 (2009).
[67] P. Marshall, N. Rajguru, and A. Slosar, Phys. Rev. D 73,

067302 (2006).
[68] H. Jeffreys, Theory of Probability, 3rd ed. (Oxford, Oxford,

United Kingdom, 1961).
[69] M. Raveri and W. Hu, Phys. Rev. D 99, 043506 (2019).
[70] A. Gelman, J. Carlin, H. Stern et al., Bayesian Data

Analysis, 3rd ed., Chapman & Hall/CRC Texts in Statistical
Science (Taylor & Francis, London, 2013).

[71] S. M. Feeney, H. V. Peiris, A. R. Williamson, S. M.
Nissanke, D. J. Mortlock, J. Alsing, and D. Scolnic, Phys.
Rev. Lett. 122, 061105 (2019).

T. M. C. ABBOTT et al. PHYS. REV. D 100, 023541 (2019)

023541-20

https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1146/annurev-astro-081817-051928
https://doi.org/10.1146/annurev-astro-081817-051928
https://doi.org/10.1038/s41550-018-0478-0
https://doi.org/10.1038/s41550-018-0478-0
https://doi.org/10.1093/mnras/sty2902
https://doi.org/10.1093/mnras/sty2902
https://doi.org/10.1016/j.physrep.2006.03.002
https://doi.org/10.1088/0067-0049/194/2/41
https://doi.org/10.1088/0067-0049/194/2/41
https://doi.org/10.1051/0004-6361/200912983
https://doi.org/10.1051/0004-6361/200912983
https://doi.org/10.1051/0004-6361/201116464
https://doi.org/10.1051/0004-6361/201116464
https://doi.org/10.1086/659879
https://doi.org/10.1086/659879
https://doi.org/10.1103/PhysRevLett.107.021301
https://doi.org/10.1103/PhysRevLett.107.021301
https://doi.org/10.1088/0004-637X/808/1/7
https://doi.org/10.1088/0004-637X/808/1/7
https://doi.org/10.1103/PhysRevD.95.123529
https://doi.org/10.1103/PhysRevD.95.123529
https://doi.org/10.1051/0004-6361/201525941
https://doi.org/10.1051/0004-6361/201525941
http://arXiv.org/abs/1807.06210
http://arXiv.org/abs/1807.06210
https://doi.org/10.1088/0004-637X/756/2/142
https://doi.org/10.1088/0004-637X/756/2/142
https://doi.org/10.1088/0004-637X/810/1/50
https://doi.org/10.1088/0004-637X/810/1/50
https://doi.org/10.3847/1538-4357/aa8d1d
https://doi.org/10.3847/1538-4357/aa8d1d
https://doi.org/10.1103/PhysRevD.99.023508
https://doi.org/10.1103/PhysRevD.99.023508
http://arXiv.org/abs/0912.0201
http://arXiv.org/abs/0912.0201
http://arXiv.org/abs/1610.02743
http://arXiv.org/abs/1610.02743
https://doi.org/10.1093/mnras/stw570
https://doi.org/10.1093/mnras/stw570
https://doi.org/10.1093/mnras/stw1584
https://doi.org/10.1093/mnras/stw1584
https://doi.org/10.1093/mnras/stv2678
https://doi.org/10.1093/mnras/stv2678
https://doi.org/10.1103/PhysRevD.94.083517
https://doi.org/10.1103/PhysRevD.94.083517
https://doi.org/10.1093/mnras/sty2160
https://doi.org/10.1093/mnras/sty2160
https://doi.org/10.1103/PhysRevD.98.042006
https://doi.org/10.1103/PhysRevD.98.042006
https://doi.org/10.1103/PhysRevD.98.042005
https://doi.org/10.1103/PhysRevD.98.042005
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1093/mnras/sty2424
https://doi.org/10.1093/mnras/sty2424
http://arXiv.org/abs/1710.02517
https://doi.org/10.1093/mnras/sty466
https://doi.org/10.1093/mnras/sty466
https://doi.org/10.1093/mnras/sty957
https://doi.org/10.1093/mnras/sty957
http://arXiv.org/abs/1706.09359
https://doi.org/10.1093/mnras/sty2219
https://doi.org/10.1093/mnras/sty2219
https://doi.org/10.1093/mnras/sty1899
https://doi.org/10.1093/mnras/sty1899
https://doi.org/10.1086/145672
https://doi.org/10.1103/PhysRevD.78.123506
https://doi.org/10.1103/PhysRevD.78.123506
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1088/1367-2630/9/12/444
http://arXiv.org/abs/astro-ph/0510346
http://arXiv.org/abs/astro-ph/0510346
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.3847/1538-4365/aab4f5
https://doi.org/10.1093/mnras/stw1281
https://doi.org/10.1093/mnras/stw1281
http://arXiv.org/abs/1702.02600
https://doi.org/10.3847/1538-4357/aa704b
https://doi.org/10.1086/308947
https://doi.org/10.1088/0067-0049/216/2/27
https://doi.org/10.1088/0067-0049/216/2/27
https://doi.org/10.1103/PhysRevD.67.083002
https://doi.org/10.1088/0004-637X/786/1/13
https://doi.org/10.1088/1475-7516/2014/03/024
https://doi.org/10.1088/1475-7516/2014/03/024
https://doi.org/10.1103/PhysRevD.97.023512
https://doi.org/10.1103/PhysRevD.98.023534
https://doi.org/10.1103/PhysRevD.98.023534
https://doi.org/10.1103/PhysRevLett.122.181301
https://doi.org/10.1103/PhysRevLett.122.181301
https://doi.org/10.1093/mnras/sty1889
https://doi.org/10.1093/mnras/sty1889
https://doi.org/10.1051/0004-6361:20066170
https://doi.org/10.1051/0004-6361:20066170
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1103/PhysRevD.73.067302
https://doi.org/10.1103/PhysRevD.73.067302
https://doi.org/10.1103/PhysRevD.99.043506
https://doi.org/10.1103/PhysRevLett.122.061105
https://doi.org/10.1103/PhysRevLett.122.061105


[72] A. Nicola, A. Amara, and A. Refregier, J. Cosmol.
Astropart. Phys. 01 (2019) 011.

[73] G. Simard, Y. Omori, K. Aylor et al., Astrophys. J. 860, 137
(2018).

[74] J. E. Austermann, K. A. Aird, J. A. Beall et al., Proc. SPIE
Int. Soc. Opt. Eng. 8452, 84521E (2012).

[75] B. A. Benson, P. A. R. Ade, Z. Ahmed et al., Proc. SPIE Int.
Soc. Opt. Eng. 9153, 91531P (2014).

[76] S. W. Henderson, R. Allison, J. Austermann et al., J. Low
Temp. Phys. 184, 772 (2016).

[77] N. Galitzki, A. Ali, K. S. Arnold et al., Proc. SPIE Int. Soc.
Opt. Eng. 10708, 1070804 (2018).

DARK ENERGY SURVEY YEAR 1 RESULTS: JOINT ANALYSIS OF … PHYS. REV. D 100, 023541 (2019)

023541-21

https://doi.org/10.1088/1475-7516/2019/01/011
https://doi.org/10.1088/1475-7516/2019/01/011
https://doi.org/10.3847/1538-4357/aac264
https://doi.org/10.3847/1538-4357/aac264
https://doi.org/10.1117/12.927286
https://doi.org/10.1117/12.927286
https://doi.org/10.1117/12.2057305
https://doi.org/10.1117/12.2057305
https://doi.org/10.1007/s10909-016-1575-z
https://doi.org/10.1007/s10909-016-1575-z
https://doi.org/10.1117/12.2312985
https://doi.org/10.1117/12.2312985

