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The experimental sensitivity to μ → e conversion on nuclei is set to improve by four orders of 
magnitude in coming years. However, various operator coefficients add coherently in the amplitude 
for μ → e conversion, weighted by nucleus-dependent functions, and therefore in the event of a 
detection, identifying the relevant new physics scenarios could be difficult. Using a representation of 
the nuclear targets as vectors in coefficient space, whose components are the weighting functions, we 
quantify the expectation that different nuclear targets could give different constraints. We show that 
all but two combinations of the 10 Spin-Independent (SI) coefficients could be constrained by future 
measurements, but discriminating among the axial, tensor and pseudoscalar operators that contribute 
to the Spin-Dependent (SD) process would require dedicated nuclear calculations. We anticipate that 
μ →e conversion could constrain 10 to 14 combinations of coefficients; if μ → eγ and μ → eēe constrain 
eight more, that leaves 60 to 64 “flat directions” in the basis of QED × QCD-invariant operators which 
describe μ → e flavour change below mW .

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The observation of neutrino mixing and masses implies that 
flavour cannot be conserved among charged leptons. However, de-
spite a long programme of experimental searches for various pro-
cesses, charged lepton flavour violation (CLFV) at a point has yet 
to be observed.

For μ ↔ e flavour change, the current most stringent bound 
is B R(μ → eγ ) ≤ 4.2 × 10−13 from the MEG collaboration [1] at 
PSI. This sensitivity will improve by one order of magnitude in 
coming years [2], and the Mu3e experiment [3] at PSI aims to 
reach B R(μ → eēe) ∼ 10−16. Several experiments under construc-
tion will improve the sensitivity to μ → e conversion on nuclei: 
The COMET [4] at J-PARC and the Mu2e [5] at FNAL plan to reach 
branching ratios of B R(μAl → e Al) ∼ 10−16. The PRISM/PRIME 
proposal [6] aims to probe ∼ 10−18, and at the same time enables 
to use heavy μ → e conversion targets with shorter lifetimes of 
their muonic atoms, thanks to its designed pure muon beam with 
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no pion contamination.1 This enhanced sensitivity and broader se-
lection of μ →e conversion targets motivate our interest in low-
energy μ ↔ e flavour change.

In the coming years, irrespective of whether CLFV is observed 
or further constrained, it is important to maximise the amount of 
information that experiments can obtain about the New Physics 
responsible for CLFV. This is especially challenging for the opera-
tors involving nucleons or quarks, because in μ → e conversion, 
the contributing coefficients add in the amplitude. So in this pa-
per, we consider μ → e conversion on nuclei, and present a recipe 
for selecting targets such that they constrain or measure differ-
ent CLFV parameters. Reference [10] is an earlier discussion of the 
prospects of distinguishing models with μ →e conversion. A more 
recent publication [11] about Spin-Dependent μ → e conversion 
studied what could be learned about models or operator coeffi-
cients, from targets with and without spin. In this letter, we follow 
the perspective of [11], focusing on the Spin Independent process, 

1 Another interesting observable at these experiments is the μ−e− → e−e− in 
a muonic atom. This process could have not only photonic dipole but also contact 
interactions, and the atomic number dependence of its reaction rate makes possible 
to discriminate the type of relevant CLFV interactions [7–9].
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Table 1
Current experimental bounds on μ → e conversion (the last line gives the future sensitivity on Aluminium), and parameters 
relevant to the SD calculation. The isotope abundances are from [29]. The parameter B Z is defined in eqn. (8). The estimate 
for S Au

p is based on the Odd Group Model of [24], assuming J = 1/2. The estimated form factors S I (mμ)/S I (0) for Titanium and 
Lead are an extrapolation from [11], discussed in the Appendix.

Target Isotopes [abundance] J S A
p , S A

n S I (mμ)/S I (0) B Z BR (90% C.L.)

Sulfur Z = 16, A = 32 [95%] 0 < 7 × 10−11 [23]

Titanium Z = 22, A = 48 [74%] 0 234 < 4.3 × 10−12 [17]
Z = 22, A = 47 [7.5%] 5/2 0.0, 0.21 [24] ∼0.12
Z = 22, A = 49 [5.4%] 7/2 0.0, 0.29 [24] ∼0.12

Copper Z = 29, A = 63 [70%] 3/2 B R ≤ 1.6 × 10−8 [25]
Z = 29, A = 65 [31%] 3/2

Gold Z = 79, A = 197 [100%] 5/2 −(0.52 → 0.30),0.0 285 B R < 7 × 10−13 [17]

Lead Z = 82, A = 206 [24%] 0 B R < 4.6 × 10−11 [17]
Z = 82, A = 207 [22%] 1/2 0.0, −0.15 [24] 0.55 [28], ∼.026
Z = 82, A = 208 [52%] 0

Aluminium Z = 13, A = 27 [100%] 5/2 0.34, 0.030 [21,22] 0.29 [21,22] 132 → 10−16
and explore how many independent constraints can be obtained 
on operator coefficients.

We assume that the New Physics responsible for μ → e con-
version is heavy, and parametrise it in Effective Field Theory (EFT) 
[12–15]. Section 2 gives the μ →e conversion rate, and the effec-
tive Lagrangian at the experimental scale (∼ GeV), in terms of op-
erators that are QED invariant, labelled by their Lorentz structure, 
and constructed out of electrons, muons and nucleons (p and n). 
In Section 3 we divide the rate into pieces that do not interfere 
with each other. Section 4 is a toy model of two observables that 
depend on a sum of theoretical parameters, which illustrates the 
impact of theoretical uncertainties on the determination of opera-
tor coefficients. It is well-known, since the study of Kitano, Koike 
and Okada (KKO) [16], that different target nuclei have different 
relative sensitivity to the various operator coefficients. In Section 5, 
using the notion of targets as vectors in the space of operator co-
efficients introduced in Reference [11], we explore which current 
experimental bounds can give independent constraints on oper-
ator coefficients, given the current theoretical uncertainties. Sec-
tion 6 discusses the prospects of future experiments, Section 7
compares the number of operator coefficients to the number of 
constraints that could be obtained from μ →e conversion, μ → eēe
and μ → eγ , and Section 8 is the summary.

2. μ →e conversion

μ →e conversion is the process where an incident μ− is cap-
tured by a nucleus, and tumbles down to the 1s state. The muon 
can then interact with the nucleus, by exchanging a photon or via a 
contact interaction, and turn into an electron which escapes with 
an energy ∼ mμ . This process has been searched for in the past 
with various target materials, as summarised in Table 1; the best 
existing bound is B R(μAu → e Au) < 7 × 10−13 on Gold (Z = 79) 
from SINDRUM-II [17].

The interaction of the muon with the nucleus can be paramet-
rised at the experimental scale (�expt ) in Effective Field Theory, via 
dipole operators and a variety of 2-nucleon operators:

LμA→e A(�expt)

= −4G F√
2

∑
N=p,n

[
mμ

(
C DLeRσαβμL Fαβ + C D ReLσ

αβμR Fαβ

)
+

(
C̃ (N N)

S L eP Lμ + C̃ (N N)
S R e P Rμ

)
N N

+
(

C̃ (N N)
P ,L eP Lμ + C̃ (N N)

P ,R e P Rμ
)

Nγ5N
+
(

C̃ (N N)
V L eγ α P Lμ + C̃ (N N)

V R eγ α P Rμ
)

Nγα N

+
(

C̃ (N N)
A,L eγ α P Lμ + C̃ (N N)

A,R eγ α P Rμ
)

Nγαγ5N

+
(

C̃ (N N)
Der,Leγ α P Lμ + C̃ (N N)

Der,Reγ α P Rμ
)

i(N
↔
∂α γ5N)

+
(

C̃ (N N)
T ,L eσαβ P Lμ + C̃ (N N)

T ,R eσαβ P Rμ
)

Nσαβ N + h.c.
]
. (1)

Since the electron is relativistic, and the nucleons not, it is conve-
nient to use a chiral basis for the lepton current, but not for the 
nucleons.

This basis of nucleon operators is chosen because it repre-
sents the minimal set onto which two-lepton-two-quark, and two-
lepton-two-gluon operators can be matched at the leading order 
in χPT.2 This explains the presence of the derivative operators 
Õ(N N)

Der,X , which represent pion exchange between the leptons and 
nucleons at finite momentum transfer. They give a contribution to 
Spin-Dependent μ → e conversion that is comparable to the Õ(N N)

A,X
operators [11]. We do not count the coefficients of the derivative 
operators as independent parameters, because their effects could 
be included as a momentum-transfer-dependence of the G N,q

A fac-
tors that relate quark to nucleon axial operators [11].

Like in WIMP scattering on nuclei, the muon can interact co-
herently with the charge or mass distribution of the nucleus, 
called the “Spin Independent” (SI) process, or it can have “Spin-
Dependent” (SD) interactions [19] with the nucleus at a rate that 
does not benefit from the atomic-number-squared enhancement of 
the SI rate. The Dipole, Scalar and Vector operators will contribute 
to the SI rate (with a small admixture of the Tensor, see eqn. (3)), 
and the Axial, Tensor and Pseudoscalar operators contribute to the 
SD rate.

The SI contribution to the branching ratio for μ →e conversion
on the nucleus A (B R S I (Aμ → Ae)), was calculated by Kitano, 
Koike and Okada (KKO) [16] to be

BRS I (μA → e A) = 32G2
F m5

μ

	cap

[∣∣̃C pp
V ,R V (p) + C̃ pp′

S,L S(p) + C̃nn
V ,R V (n)

+ C̃nn′
S,L S(n) + C D,L

D

4

∣∣2 + {L ↔ R}
]

, (2)

where 	capt is the rate for the muon to transform to a neutrino by 
capture on the nucleus [16,20], (= 0.7054 ×106/sec in Aluminium). 

2 At higher order in χPT, additional operators can appear, sometimes involving 
more than two nucleons [18].
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The nucleus (A) and nucleon (N ∈ {n, p})-dependent “overlap inte-
grals” D A , S(p)

A , V (p)
A , S(n)

A , V (n)
A , correspond to the integral over 

the nucleus of the lepton wavefunctions and the appropriate nu-
cleon density. These overlap integrals will play a central role in 
our analysis, and are given in KKO [16]. The primed scalar coef-
ficient includes a small part of the tensor coefficient, because the 
tensor contributes at finite momentum transfer to the SI process 
[19,11]:

C̃ N N ′
S,X = C̃ N N

S,X + 2mμ

mN
C̃ N N

T ,X . (3)

The SD rate depends on the distribution of spin in the nucleus, 
and therefore requires detailed nuclear modelling. The tensor and 
axial vector contributions were estimated in References [19,11] for 
light (Z � 20) nuclei, where the muon wavefunction is wider than 
the radius of the nucleus, and the electron can be approximated 
as a plane wave. In this limit, where the muon wavefunction can 
be factored out of the nuclear spin-expectation-value, the nuclear 
calculation of SD WIMP scattering on the quark axial current can 
be used for μ →e conversion. The SD branching ratio on a target A
of charge Z , with a fraction εI of isotope I with spin J I , can be 
estimated as

BRS D(μA → e A)

= 8G2
F m5

μ(αZ)3

	capπ2

[∑
I

4εI
J I + 1

J I

∣∣∣S I
p (̃C pp

A,L + 2C̃ pp
T ,R)

+ S I
n (̃Cnn

A,L + 2C̃nn
T ,R)

∣∣∣2 S I (mμ)

S I (0)
+ {L ↔ R}

]
(4)

where S I
p is the proton spin expectation value in isotope I at 

zero momentum transfer, and S I (mμ)/S I (0) is a finite momen-
tum transfer correction, which has been calculated for the axial 
current in some nuclei (see e.g. References [21,22] for Aluminium; 
this factor includes the derivative operators Õ(N N)

Der,X ). The targets 
which have been used for μ →e conversion searches are listed in 
Table 1, with the abundances of some spin-carrying isotopes, and 
some results for the proton and neutron spin expectation values.

3. To determine or constrain how many coefficients?

The Lagrangian of eqn. (1) contains twenty-two unknown oper-
ator coefficients (not counting the derivative operators as discussed 
after eqn. (1)). These coefficients contribute to various observables, 
so can be constrained, or measured, in different ways:

1. We neglect the two dipole coefficients, because the upcoming 
MEG II and Mu3e experiments, respectively searching for μ →
eγ and μ → eēe, have a slightly better sensitivity: if MEG II 
and Mu3e set bounds B R(μ → eγ ) < 6 × 10−14 and B R(μ →
eēe) < 10−16, this would translate to |C D,X | ≤ 2.0 × 10−9 (see 
eqn. (20)). Whereas a SI μ →e conversion branching ratio of 
10−16 on Aluminium can be sensitive to |C D,X | � 3.1 × 10−9.

2. The remaining 20 coefficients involving nucleons can be di-
vided into two classes, labelled by the chirality/helicity of 
the outgoing (relativistic) electron. The interference between 
these classes is usually neglected (suppressed by m2

e /m2
μ), 

so an experimental upper bound on the rate simultane-
ously sets bounds on the coefficients of both chiralities. If a 
μ→e conversion signal is observed with polarised muonic 
atoms, it could be possible to identify the chirality of the op-
erator by measuring an angular distribution of the electron 
with respect to the muon spin direction.3 For simplicity, we 
will in the following only discuss the ten operators that create 
an eL .
Notice that the conventions of eqn. (1) label operator coeffi-
cients with the chirality of the muon, which is opposite to the 
electron for dipole, scalar, pseudoscalar and tensor operators.

3. Finally, the operators can also be divided into those that me-
diate SI or SD conversion. In the body of the paper, we will 
discuss the SI rate, to which contribute the dipole that we ne-
glect, and the vector and scalar on the neutron and proton. 
These appear in the amplitude weighted by overlap integrals 
(see after eqn. (2)), which are nucleus-dependent. This sug-
gests that to constrain the four operator coefficients, one just 
needs to search for μ →e conversion on four sufficiently dif-
ferent targets. (In order to measure the SI coefficients inde-
pendently from SD ones, the targets could/should be chosen 
without SD contributions.)
In the Appendix A, we make some remarks on the SD rate, 
which can be sensitive to six coefficients. However, quantita-
tive calculations would require nuclear matrix elements that 
we did not find in the literature.

4. Targets as vectors, and the problem of theoretical 
uncertainties

In a previous publication [11], a representation of targets as 
vectors in coefficient space was introduced. The targets are labelled 
by Z , and for SI transitions, the elements of the vector are the 
overlap integrals of KKO [16]:


v Z =
(

D Z

4
, V (p)

Z , S(p)
Z , V (n)

Z , S(n)
Z

)
(5)

The aim was to give a geometric, intuitive measure of different 
targets ability to distinguish coefficients. If the operator coefficients 
are lined up in a pair of vectors labelled by the chirality of the 
outgoing electron, such that for eL :


CL = (̃C D,R , C̃ pp
V ,L, C̃ pp

S,R , C̃nn
V ,L, C̃nn

S,R) (6)

(and similarly for 
C R ), then the SI Branching Ratio on target Z (see 
eqn. (2) can be written

B R S I = B Z

[
|v̂ Z · 
CL |2 + |v̂ Z · 
C R |2

]
, (7)

where the numerical value of the coefficient

B Z = 32G2
F m5

μ|
v Z |2
	cap(Z)

(8)

is listed in Table 1 for some targets. If two target vectors are paral-
lel, they probe the same combination of couplings, and if they are 
misaligned, they could allow to distinguish among the coefficients.

To quantify how “misaligned” targets need to be, in order to 
differentiate among coefficients, we should take into account the 
theoretical uncertainties. These are a significant complication, be-
cause they make uncertain which combination of coefficients is 
constrained by which target. To illustrate the problem, we suppose 
coefficient space is two-dimensional. This allows to draw pictures.

If a first observable T1, can be computed with negligible the-
oretical uncertainty to depend on |C1|2, and a second observable 
T2, similarly can be computed to depend on |C2|2, then the values 

3 For a muonic atom with a non-zero nuclear spin, it is known that the residual 
muon spin polarisation at the 1s state is significantly reduced, but even in this case, 
it could be recovered by using a spin-polarised nuclear target [26,27].



S. Davidson et al. / Physics Letters B 790 (2019) 380–388 383
Fig. 1. Illustration of the impact of theoretical uncertainties on the determination of operator coefficients, when combining results from two experiments. The allowed region 
neglecting theory uncertainties is stripped; the larger grey areas are allowed when theoretical uncertainties are included. The upper left plots is for two experiments that 
measure orthogonal parameters, the upper right plot is for two experiments who measure correlated parameters but with manageable uncertainty, and the lower two plots 
represent the case where the two experiments do not give independent information when the theory uncertainty is included.
of the coefficients respectively allowed by null results in the two 
experiments are inside the thick lines of the top left plot in Fig. 1. 
The central stripped (dark) region is allowed when the two exper-
imental results are combined. In reality, the allowed region should 
be more the shape of a circle, since the experimental uncertainties 
are (in part) statistical. However, we neglect this detail because it 
is not the subject of our discussion.

Suppose now that there is some theoretical uncertainty ε in 
the calculations, such that T1 depends on |C1(1 ± ε) ± εC2|2, 
and T2 depends on |C2(1 ± ε) ± εC1|2. Then provided ε � 1
(ε � π/32 � .1 in the Figure), the regions respectively allowed by 
the two experiments are the bowties within the thin lines of the 
upper left plot in Fig. 1. The region allowed by the combined ex-
periments is essentially unchanged (still the central square).

Consider next a situation more relevant to μ →e conversion, 
illustrated in the upper right plot of Fig. 1. The second observ-
able T2 again depends on |C2(1 ± ε) ± εC1|2, but T1 depends 
on | cos θC2 − sin θC1|, where θ � π/8 ± ε . Neglecting theoreti-
cal uncertainties, the allowed regions for the two experiments are 
respectively between the thick blue lines, and thick black lines. 
The stripped diamond is the parameter range consistent with both 
experiments. But if the theory uncertainty is taken into account, 
the allowed regions of the two experiments are respectively en-
closed by the thin blue and black lines. The region allowed by the 
combined observations is the grey diamond, which includes the 
stripped one. So we see that the theoretical uncertainty changes 
the allowed region by factors of O(1).

Finally, in the lower two plots of Fig. 1, T1 depends on 
| cos θC2 − sin θC1|, where θ � 2ε ± ε . If the theory uncertainty is 
neglected, as illustrated in the lower left plot, the region allowed 
by the two experiments corresponds to the stripped diamond. 
However, when the angle uncertainty is taken into account, both 
bars can be rotated towards each other, such that they point in the 
same direction, and any value of C1 is allowed. This is illustrated 
in the lower right plot, where the allowed region is grey, and gives 
no constraint on C1.

The allowed range for C1 would be finite for

θ > 2ε (9)

which we take as the condition that two observables constrain 
independent directions in coefficient space. (Recall that θ is the 
angle between the two observables, represented as vectors in coef-
ficient space, and ε is the theoretical uncertainty on the calculation 
of θ .)

For μ →e conversion, the theoretical uncertainties in the calcu-
lation of the rate and the overlap integrals were discussed in [11]. 
The current uncertainties were estimated as ε � 10%. This is based 
on KKO’s estimate of the uncertainties in their overlap integrals, 
which is � 5% for light nuclei, and � 10% for heavier nuclei, and 
on NLO effects in χPT. These are parametrically 10%, and could, 
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Fig. 2. Angle θ between a target vector (e.g. dashed red = Aluminium) and other 
targets labelled by Z . The angle is obtained as in eqn. (10), with all the dipole coef-
ficients set to zero. The solid lines represent the targets for which there is currently 
data (see Table 1). From smallest to largest value of θ at large Z , they are: thick 
green = Lead, thick blue = Gold, black = Copper, thin green = Titanium, dashed 
red = Aluminium, and thin blue is Sulfur. We assume that two targets can probe 
different coefficients if their misalignment angle is θ � 0.2 radians (or 0.1).

for instance change the form of eqn. (7), as occurs in WIMP scat-
tering [30], making it impossible to parametrise targets as vectors. 
In the following section, we take the current uncertainties to be 
ε ∼ 10%, or possibly 5% for light targets, implying that two targets 
can give independent constraints if they are misaligned by θ � .2
(or possibly θ � .1 for light targets).

5. Comparing current bounds

In section 3, it was suggested that the four scalar and vec-
tor coefficients could be constrained or measured by searching for 
μ →e conversion in four “sufficiently different” targets. And we see 
from Table 1 that there is data for Sulfur, Titanium, Copper, Gold 
and Lead. However, as estimated in the previous section, “suffi-
ciently different” means misaligned by 10–20%, so in this section, 
we calculate the misalignment between the targets for which there 
is data.

Recall that targets are described by vectors (see eqn. (5)), that 
live in the same space as the operator coefficients. However, the 
components of the target vectors are all positive, meaning the 
misalignment angle between any two target vectors is < π/2, or 
equivalently, that the target vectors point all in the first quadrant.

The angle between target T and target Z can be estimated from 
the normalised inner product


v Z · 
v T

|
v Z ||
v T | � cos θ � 1 − θ2

2
(10)

In Fig. 2 are plotted the misalignment angles4 between the targets 
of Table 1, and the other possibilities given by KKO, labelled by Z . 
The thin blue line in Fig. 2 (the line with largest θ at high Z ) is 
the misalignment angle with respect to Sulfur, and the thin green 
line (the solid line with the second largest θ at high Z ) is the 
misalignment angle with respect to Titanium. So the blue line at 
Z = 22 (Titanium) is equal to the green line at 16 (Sulfur), and 
both give θ ∼ 0.08 between Sulfur and Titanium, suggesting that 
these constrain the same combination of coefficients. On the other 
hand, Gold probes different coefficients from the light targets (as 

4 Since the current MEG bound on the dipole coefficients constrains them to be 
below the sensitivity of the current μ →e conversion bounds, the dipole overlap 
integral was set to zero in obtaining this Figure.
anticipated by KKO [16]), but Gold and Lead cannot distinguish co-
efficients. Also Copper and Titanium do not give independent con-
straints. So the current experimental bounds on μ →e conversion
constrain two combinations of the four coefficients present in 
CL
(similarly, two combinations in 
C R ). Thus, the current experimental 
bounds can be taken as the SINDRUM-II constraints from Titanium 
and Gold.

These two experimental bounds constrain coefficients in the 
two-dimensional space spanned by v̂ T i and v̂ Au . The bounds can 
be taken to apply to 
C · v̂ T i and to 
C · v̂⊥ , where 
v⊥ is component 
of the Gold target vector orthogonal to v̂ T i :

v̂⊥ ≡ v̂ Au − cosφ v̂ T i

sinφ
(11)

and φ is the angle between Gold and Titanium, so cos φ = v̂ T i · v̂ Au , 
and sin φ = 0.218. The allowed values of the coefficients satisfy

B RT i ≡ B R(μT i → eT i) = 234|
C · v̂ T i |2 < B Rexp
T i ≡ 4.2 × 10−12

B R Au ≡ B R(μAu → e Au)

= 285| cosφ(
C · v̂ T i) + sinφ(
C · v̂⊥)|2 < B Rexp
Au≡ 7.0 × 10−13. (12)

We can construct a covariance matrix V , whose diagonal elements 
will be the constraints on |
C · v̂ T i |2 and |
C · v̂⊥|2, as


C · V −1 · 
C T = B RT i

B Rexp
T i

+ B R Au

B Rexp
Au

(13)

which gives

|
C · v̂ T i |2 ≤ B Rexp
T i

BT i
= 1.8 × 10−14 (14)

|
C · v̂⊥|2 ≤ B Rexp
Au

B Au

1

sin2 φ
+ B Rexp

T i

BT i

cos2 φ

sin2 φ
= 0.44 × 10−12 (15)

These bounds can be expressed in terms of quark operator coef-
ficients at a higher scale by matching the nucleon operators onto 
quark operators, and running the coefficients up with Renormali-
sation Group Equations (RGEs). This matching and mixing process 
ensures that almost all μ → e flavour-changing operators at the 
scale mW will contribute to μ →e conversion at tree or one-loop 
order. We give an example in eqn. (19).

6. Selecting future targets

The upcoming COMET and Mu2e experiments plan to use an 
Aluminium target, illustrated as a red dashed line in Fig. 2. Unfor-
tunately, it is only misaligned with respect to Titanium and Sulfur 
by a few percent, so with current theoretical uncertainties, Alu-
minium probes the same combination of SI coefficients as Titanium 
(and Sulfur).

It is therefore interesting to explore which targets could mea-
sure different combinations of coefficients from Aluminium. As 
noted by KKO, the scalar and vector overlap integrals grow dif-
ferently with Z , and using targets with different neutron to pro-
ton ratios could allow to differentiate coefficients on protons from 
those on neutrons. To quantify these differences, we introduce four 
orthonormal vectors in the space of nucleon overlap integrals:

ê1 = 1

2
(1,1,1,1)

ê2 = 1

2
(−1,−1,1,1)

ê3 = 1
(1,−1,1,−1)
2



S. Davidson et al. / Physics Letters B 790 (2019) 380–388 385
Fig. 3. Projections of normalised target vectors v̂ Z = 
v Z /|
v Z | onto the unit vectors 
of eqn. (16). The jagged thick line is the projection onto ê2 and parametrises the 
targets sensitivity to the n to p difference, the dotted black line is the projection 
onto ê3 which parametrises the sensitivity to the scalar–vector difference, and the 
thin line is the projection onto the remaining direction.

ê4 = 1

2
(−1,1,1,−1) (16)

Dotted into the coefficients, ê1 measures the sum of coefficients, ê2
is the difference between coefficients on protons and neutrons, ê3
is the vector–scalar difference, and ê4 is the remaining direction. 
All the targets are mostly aligned on ê1; this is expected as the 
overlap integrals are of comparable size, and all positive.5 Indeed, 
for Aluminium, the target vector 
v Al and ê1 are almost parallel: 

v Al · ê1 ≥ 0.997|
v Al|. So we suppose that this sum of coefficients is 
measured on Aluminium, and plot in Fig. 3 the projection of the 
target vectors onto ê2 (thick, continuous line), ê3 (dashed) and ê4
(thin).

Fig. 3 shows that comparing heavy to light targets can distin-
guish scalar vs vector coefficients (or constrain both in the absence 
of a signal). The neutron to proton ratio also increases with atomic 
number, but perhaps a more promising target for making this dif-
ference would be Lithium, with four neutrons and three protons: 
the theoretical uncertainties could be more manageable, and the 
scalar–vector difference is suppressed. In addition, being light, it 
has a long lifetime, making it appropriate for the COMET and Mu2e 
experiments.

Unfortunately, it seems that μ →e conversion targets have little 
sensitivity to ê4, which measures some isospin-violating difference 
between scalars and vectors.

To illustrate the bounds that could be obtained in the future 
with COMET or Mu2e, we suppose that μ →e conversion is not 
observed on Lithium (Z = 3) or Aluminium (Z = 13) at Branching 
Ratios B Rexp

Li , B Rexp
Al � B Rexp

Au . We write the target vectors as

v̂ Al ≈ ê1

v̂ Li = (v̂ Li · ê1)ê1 + (v̂ Li · ê2)ê2

v̂ Au = (v̂ Au · ê1)ê1 + (v̂ Au · ê2)ê2 + (v̂ Au · ê3)ê3 .

Then a 3 × 3 covariance matrix can be obtained by combining the 
experimental upper bounds as in equation (13), which gives the 
constraints

|
C · ê1|2 ≤ B Rexp
Al

B Al
(17)

|
C · ê2|2 ≤ B Rexp
Li

B Li

1

|v̂ Li · ê2|2 + B Rexp
Al

B Al

|v̂ Li · ê1|2
|v̂ Li · ê2|2

5 One way to see this, is to project the target vectors onto the basis of eqn. (16). 
We find that 
v Z · ê1 ≥ 0.93|
v Z | for all Z , so we do not plot the projection onto ê1. 
It decreases with Z.
|
C · ê3|2 � B Rexp
Au

B Au

1

|v̂ Au · ê3|2 (18)

where |v̂ Li · ê2| = 0.142, |v̂ Au · ê3| = 0.217, and terms were ne-
glected in the bound on |
C · ê3|, assuming that B Rexp

Li , B Rexp
Al �

B Rexp
Au .
As mentioned at the end of the previous section, these bounds 

can be expressed in terms of coefficients of quark operators at 
some higher scale (for instance mW or the New Physics scale) 
by matching the nucleon coefficients to the quark coefficients at 
2 GeV as C̃ N N

O ,X = ∑
q G Nq

O Cqq
O ,X (where the {G Nq

O } are tabulated for 
instance in [11]), then expressing the coefficients at 2 GeV in terms 
of the high scale coefficients using the RGEs (see, e.g. [19,11,32]). 
The constraint of eqn. (17) can be approximated as√

B Rexp
Al

33
�

∣∣∣3C uu
V ,L + 3Cdd

V ,L + 11C uu
S,R + 11Cdd

S,R + 0.84C ss
S,R

+ 4mN

27mc
Ccc

S,R + 4mN

27mb
Cbb

S,R

∣∣∣
�

∣∣∣3C uu
V ,L + 3Cdd

V ,L + α

π

[
3Cdd

A,L − 6C uu
A,L

]
log

+ α

3π
[Cee

V ,L + Cμμ
V ,L] log − α

3π
[Cee

A,L + Cμμ
A,L ] log

− 2α

3π

[
2(C uu

V ,L + Ccc
V ,L) − (Cdd

V ,L + C ss
V ,L + Cbb

V ,L)

−(Cee
V ,L + Cμμ

V ,L + Cττ
V ,L)

]
log

+λaS
(

11C uu
S,R + 11Cdd

S,R + 0.84C ss
S,R + 4mN

27mc
Ccc

S,R

+ 4mN

27mb
Cbb

S,R

)
+λaS

α

π

[13

6
(11C uu

S,R + 4mN

27mc
Ccc

S,R)

+5

3
(11Cdd

S,R + 0.84C ss
S,R + 4mN

27mb
Cbb

S,R)
]

log

−λaT f T S
4α

π

[
22C uu

T ,R R + 8mN

27mc
Ccc

T ,R R − 11Cdd
T ,R R

−0.84C ss
T ,R R − 4mN

27mb
Cbb

T ,R R)
]

log
∣∣∣ (19)

where in the first inequality, the quark coefficients are at the 
scale of 2 GeV, and we used the {G Nq

S } from the lattice [33]. 
In the second inequality, the coefficients are at mW (we sup-
press the dependence on scale to avoid cluttering the equations), 
log ≡ log(mW /2 GeV) � 3.7, λ = αs(mW )/αs(2 GeV) � 0.44, f T S =
23(λ−16/23 −λ)/39/(1 −λ) � 1.45, and aS = −12/23, aT = 4/23. In 
both the first and second expressions, the tree-level tensor contri-
bution to SI μ →e conversion is neglected because it is smaller 
than the loop mixing into the scalar, and the scalar top coeffi-
cient Ctt

S,R is also neglected.

7. Flat directions and tuning in EFTs

We now want to compare the number of constraints on μ → e
flavour-changing coefficients, to the number of operators in a 
“complete” basis — the difference will be the number of “flat” or 
unconstrained directions in parameter space.

In this counting, it is important to distinguish constraints from 
sensitivities. The bounds given in eqn. (15) are constraints, mean-
ing that the sum on the left cannot exceed the number on the 
right. This is different from the commonly-quoted sensitivities (or 



386 S. Davidson et al. / Physics Letters B 790 (2019) 380–388
one-operator-at-a-time bounds), which give the value of a coeffi-
cient below which it is unobservable, and which do not allow for 
the possibility of cancellations among coefficients.

In the Effective Theory below mW , a useful basis is the set of 
operators that are QED and QCD invariant, and that describe all 
the three or four-point functions that change lepton flavour from 
μ → e. These operators are of dimensions five, six and seven, and 
are listed, for instance, in [15]. We restrict to four-fermion oper-
ators whose second fermion bilinear is quark or lepton flavour-
conserving (only these can contribute to μ → e conversion), in 
which case the basis contains 82 operators.

Eqn. (15) gives the current μ →e conversion bounds on four 
combinations of SI coefficients (two bounds for each electron 
chirality). There also should be two constraints on proton Spin-
Dependent coefficients from Gold (since it has 79 protons), how-
ever the rate has not been calculated and could be quite small. 
In addition, there could be two constraints on neutron Spin-
Dependent coefficients from Titanium, if the experimental target 
contained isotopes with an odd number of neutrons. So current 
data gives six or eight bounds.

With a wider variety of targets, and improved theoretical cal-
culations, we showed in eqn. (18) that it could be possible to 
constrain 6 of the 8 SI coefficients, and we argued that eight of 
the 12 SD coefficients could be constrained.

There are also stringent constraints on μ → e flavour-changing 
operator coefficients from μ → eγ and μ → eēe. Constructing a 
covariance matrix for these two processes using the theoretical 
Branching Ratio formulae from [14] gives the bounds:

|C D,R |2, |C D,L |2 ≤ B Rexp
μ→eγ B Rexp

μ→eēe

205e2 B Rexp
μ→eγ + 384π2 B Rexp

μ→eēe

|C S,R R |2, |C S,LL |2 < 8B Rexp
μ→eēe

|C V ,R R |2, |C V ,LL |2

≤ B Rexp
μ→eēe

2

(
1 + 32e2 B Rexp

μ→eγ

205e2 B Rexp
μ→eγ + 384π2 B Rexp

μ→eēe

)
|C V ,RL |2, |C V ,LR |2

≤ B Rexp
μ→eēe

(
1 + 16e2 B Rexp

μ→eγ

205e2 B Rexp
μ→eγ + 384π2 B Rexp

μ→eēe

)
(20)

where the four-lepton operators are OV ,XY = (eγ α P Xμ)(eγα P Y e), 
OS,XY = (eP Xμ)(e P Y e).

Combining the constraints from μ → eγ , μ → eēe and the cur-
rent μ → e conversion data, gives 14 to 16 constraints. In the 
future, μ →e conversion could give two more SI constraints and 
four more SD bounds, for a total of 22. Each constraint applies 
to an lengthly linear combination of coefficients at mW ; nonethe-
less, there are therefore 60 to 68 combinations of coefficients (in 
the basis of QED×QCD-invariant operators discussed above) which 
are unconstrained by μ →e conversion, μ → eγ and μ → eēe.

In order to constrain the multitude of flat directions, other pro-
cesses can be considered, such as contact interaction searches at 
the LHC [34] or vector meson decays [35]. However, it might be 
difficult to find a sufficient number of restrictive constraints. Let 
us here speculate about how credible it is for a model to sit 
out along such a “flat” direction, where the operator coefficients 
must be tuned against each other. We suppose that the coeffi-
cients parametrise the low energy behaviour of a renormalisable 
and natural high-scale model. However, since the coefficients are 
unknown functions of the model parameters, cancellations that re-
flect symmetries of the model could appear fortuitous in the EFT. 
We therefore allow arbitrary cancellations among coefficients at 
the high scale. Then we assume that the model cannot know the 
scale at which we do experiments (despite that this is determined 
by mass ratios which it does know), so we do not allow coefficients 
to cancel the logarithms from Renormalisation Group running.

We see from eqn. (19) that the scalar and tensor operators run 
significantly with QCD, which suggests that they cannot cancel to 
more than one significant figure against each other or vector/ax-
ial coefficients. So a single constraint such as eqn. (19), naturally 
implies three independent constraints on the vectors, scalars and 
tensors. Then within each subset of operators, the QED anomalous 
dimension matrix could be diagonalised, with, in general, non-
degenerate anomalous dimensions. So coefficients that cancel at 
the high scale, may differ by O( α

4π log) at low energy. We there-
fore conclude that cancellations are only “natural” to 3 significant 
figures, among operator coefficients with unequal anomalous di-
mensions: if the constraint applies to a sum of operator coefficients 
C j weighted by numbers n j

|� jn j C j| < ε (21)

then each C j in the sum satisfies a “naturalness bound” of order

C j �
4πε

αn j
. (22)

8. Summary

This letter studies the selection of targets for μ →e conversion, 
with the aim that they probe independent combinations of μ → e
flavour-changing parameters, while including the theoretical un-
certainties of the calculation. The rate is parametrised via the 
operators given in eqn. (1), and the theoretical uncertainties are re-
viewed in section 4. We take the current uncertainties to be ∼ 10%, 
and anticipate that this could be reduced to 5% in the future.

Using a parametrisation of targets as vectors in the space of op-
erator coefficients, we reproduce the observation of Kitano, Koike 
and Okada (KKO) [16], that comparing light to heavy targets allows 
to distinguish scalar from vector operator coefficients. We also ob-
serve that comparing light targets with very different neutron-to-
proton ratios could allow to distinguish operators involving neu-
trons from those involving protons. A reduction in the theory un-
certainty would help to make this distinction. Lithium is the most 
promising target in the list for which KKO computed overlap inte-
grals, however other light isotopes with higher n/p ratios, such as 
Beryllium10, could be interesting to consider.

The Spin-Dependent (SD) conversion rate is mentioned in the 
Appendix. We reiterate that the neutron vs proton operators can 
be distinguished by searching for SD conversion on nuclei with an 
odd neutron and with an odd proton. Comparing the SD rate on 
light vs heavy nuclei could allow to distinguish axial from tensor 
coefficients, but dedicated nuclear calculations would be required 
to confirm this.

We conclude that μ →e conversion currently can constrain six 
to eight independent combinations of operator coefficients, and in 
the future could constrain fourteen coefficients. Combined with the 
eight bounds that can be obtained from μ → eγ and μ → eēe, this 
gives 14 (now) to 22 (in the future) constraints on the 82 opera-
tors in a QED × QCD invariant operator basis below mW , so there 
remain 60–68 “flat directions”, or combinations of coefficients that 
are unconstrained by the data.

For a model to be situated along one of the many flat direc-
tions, requires cancellations among various operator coefficients. 
We argued that it would be “unnatural” to have cancellations be-
tween terms at different order in the α log expansion of EFT, so 
coefficients can only cancel against each other up to O( α log), 
4π
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and coefficients whose sum is constrained to be � ε , should indi-
vidually satisfy the “natural” bound C � 4πε/α.
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Appendix A. The SD contribution

In this Appendix, we discuss how different targets could distin-
guish among the many operators that contribute to SD conversion.

We first recall the operators that contribute to the SD rate. For 
a fixed electron chirality, the pseudoscalar, axial vector and tensor 
nucleon currents become, in the non-relativistic limit [31]

uN(p f )γ5uN(pi) → 
q · 
SN/mN

uN(p f )γ
αγ5uN(pi) → (
P · 
SN ,2
SN)/mN

uN(p f )σ
jkuN(pi) → 2ε jkl Sl

uN(p f )σ
0luN(pi) → (iql − 2P j Skε

jkl)/2mN (23)

where q = pi − p f , and P = p f + pi . So they all connect the lep-
ton current to the spin of the nucleon, and at zero-momentum 
transfer, the pseudoscalar nucleon current vanishes and the ten-
sor current is twice the axial current. At finite momentum trans-
fer (q2 �= 0), the P , A and T operators have different behaviours. 
Only the axial operator has been studied at q2 �= 0, in the case of 
(spin-dependent) WIMP scattering. Reference [11] made the curi-
ous observation for light targets, that the q2 �= 0 suppression of the 
vector and axial currents was very similar. We use this numerology 
to estimate the S I (mμ)/S I (0) correction for Titanium and Gold in 
Table 1. As discussed in [11], this approximation may be reason-
able for light nuclei, but is incredible for heavy nuclei such as Gold, 
where the muon wavefunction could give additional suppression.

The SD coefficients on neutrons, can be distinguished from 
those on protons, by comparing targets with an odd number of 
protons or neutrons [19]. This can be seen from Table 1, where 
the spin of a nucleus is largely due to the spin of the one un-
paired nucleon. For instance, searching for μ → e conversion on 
Aluminium, and on a Titanium target containing a sufficient abun-
dance of spin-carrying isotope, would give independent constraints 
on SD coefficients on the proton and neutron.

It is possible that comparing heavy and light targets could 
distinguish axial from tensor operators. The estimate for the SD 
Branching ratio given in eqn. (4) assumes light nuclear targets 
(where the muon wavefunction is broader than the atom), and 
exhibits a degeneracy between the tensor and axial coefficients. 
If the same light-nucleus approximation is used to compute the 
SI rate, then the scalar and vector overlap integrals would be the 
same. Indeed, as pointed out by KKO, the scalar overlap integral 
becomes different from the vector in heavy nuclei, because the 
negative energy component of the electron wavefunction becomes 
relevant, and has opposite sign for vector and scalar (see KKO, 
eqns. (20)–(23)). There is a similar sign difference between ten-
sor and axial operators, so one could hope to distinguish tensor 
from axial operators by comparing the SD rate in light and heavy 
nuclei. For instance, Table 1 suggests that μ → e conversion on 
gold and lead could distinguish the axial from tensor operators re-
spectively for protons and neutrons. However, one difficulty is that 
the SD rate is relatively suppressed with respect to the SI rate by 
a factor ∼ 1/A2, which becomes more significant for heavier nu-
clei. The second difficulty is that dedicated nuclear calculations of 
the expectation value in the nucleus of the various SD operators, 
weighted by the lepton wavefunctions, would be required. These 
calculations currently do not exist.

Finally, in order to be sensitive to the Pseudoscalar operator, 
and to obtain reliable predictions for the SD rates, the finite mo-
mentum transfer should be taken into account. However, then in 
squaring the matrix element, the spin sums do not factorise from 
the sum of operator coefficients (as occurs for the SI rate, see 
eqn. (2)). This suggests that the nuclear calculation would need 
to be performed in the presence of the A, P and T operators in 
order to explore the prospects of distinguishing the pseudoscalar.
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