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1 Introduction

In a very interesting recent paper [1], a proposal was put forward for some of the four-point

correlation functions of the percolation problem in two dimensions. This proposal was part

of a more general conjecture addressing various geometrical objects involving four points

in the diagrammatic formulation [2] of the Q-state Potts model [3] and arrived in the wake

of earlier progress on the three-point functions for that same model [4–6]. The case Q = 1

corresponds to percolation, and the proposal in [1] covers such objects as the probability

that two of these points belong to one cluster, and the two others to another cluster.

Obtaining closed-form expressions for such objects is one of the holy grails in the field.

It is a far from obvious endeavour because the conformal field theory (CFT) describing

percolation (and more generally geometrical features of the Q-state Potts model) is not

well understood: it is non-unitary, probably involves logarithms (even for Q generic), and

involves operators which are not degenerate, precluding the use of the differential equations

approach à la BPZ [7]. We stress that the present work and those cited above pertain to

bulk CFT — in the boundary case, by contrast, the geometrical correlation functions do

obey differential equations, and in particular the four-point functions can be obtained by

following this route [8].

The construction in [1] is elegant and powerful. It starts with a seemingly reasonable

hypothesis for the spectrum of operators appearing in the fusion channels for the fusion

of two order operators, and determines, using a clever code, the whole set of structure

constants based on our knowledge of conformal blocks [9, 10] together with the imposition

of crossing symmetry. The results are then checked against Monte Carlo simulations, with,

it is claimed, reasonably good agreement.

Although the results in [1] are appealing, they are not really consistent with what is

known about the Potts model CFT and, in particular, percolation. Early work [11] has

revealed indeed a much richer spectrum than the one postulated in [1], which covers only

a very tiny set of the known full operator content of the theory. Of course, it could be

that by some accident, the order operator in the Q-state Potts model does not couple to

as many fields as one would expect, at least in the scaling limit. But it could also be that

something is simply missing in the work of [1], despite the apparent numerical effectiveness

of their proposal.

To investigate this question requires a long and detailed analysis, of which we present

the results here. In a nutshell, we have gathered direct, in our opinion unquestionable

evidence that the spectrum of the Q-state Potts model is as complex as could have been

feared, that many more fields appear in the OPE of order operators in the Potts model than

was conjectured in [1], and that the proposal in that paper, appealing as it may be, simply

cannot be correct. It is, at best, a good numerical approximation to the true expressions

for the four-point functions.

Our paper is organised as follows. In section 2 we remind the reader of basic facts and

results about the Q-state Potts model and its geometrical formulation. Algebraic aspects

— which constitute a crucial part of our approach — are discussed in section 3. Section 4

summarises our method of analysis, and how we extract exponents as well as amplitudes,

– 2 –



J
H
E
P
0
1
(
2
0
1
9
)
0
8
4

from lattice data. Section 5 discusses our results for the spectra in the intermediate channels

of four-point functions. A comparison with results in [1] is provided in section 6. In

section 7, we return to the issue of divergences in the amplitudes, and re-analyse briefly

our results as well as those of [1] from the point of view of degeneracies, and, potentially,

logarithmic CFTs.

Since a good part of our analysis is based on extracting amplitudes from lattice data,

a lot of technical aspects have to be considered both to make the program possible, and to

check its validity and its limits. We have thus gathered quite a bit of material in a series of

appendices. Appendix A discusses in detail many aspects of the numerical algorithms and

other techniques used to obtain our results, while appendix B goes over a series of checks,

including detailed comparisons, in particular, with known results for Q = 0, 2, 4.

2 Potts model and its correlation functions

We consider the Q-state Potts model [3] defined on a graph G = (V,E) with vertices V and

edges E. There is a spin σi = 1, 2, . . . , Q attached to each vertex i ∈ V and an interaction

energy −Kδσi,σj attached to each edge (ij) ∈ E. The partition function (in units where

the inverse temperature is absorbed into the coupling constant K) reads

Z =
∑
{σ}

∏
(ij)∈E

eKδσi,σj . (2.1)

Note that this initial formulation supposes Q to be a positive integer, Q ∈ N. This

constraint can be lifted in a rewriting of Z due to Fortuin and Kasteleyn (FK) [2]. Indeed,

write eKδσi,σj = 1 + vδσi,σj with temperature parameter v = eK − 1, expand the product∏
(ij)∈E , and perform the sum over all spins {σ} to obtain

Z =
∑
A⊆E

v|A|Qk(A) , (2.2)

where the sum is over all 2|E| subsets of E, and |A| denotes the number of edges in the

subset. Moreover, k(A) denotes the number of connected components (also called FK

clusters) in the subgraph GA = (V,A).

In the remainder of the paper we take G to be the two-dimensional square lattice.

The temperature parameter will be taken at its critical value, vc =
√
Q [3, 12], so that

the model is conformally invariant in the continuum limit. In this latter limit, we are

interested in the geometry of the infinite plane, so that boundary effects are immaterial.

We shall often use the trick of transforming this into the geometry of a cylinder, via an

appropriate conformal mapping (details will be given below). This cylinder geometry is

convenient for imposing the lattice discretisation, which is our main tool of algebraic and

numerical investigations. In that case we always take the square lattice G to be axially

oriented with respect to the cylinder axis, so that the row-to-row transfer matrix describes

the (imaginary) time evolution of L Potts spins.

– 3 –
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2.1 Loop model

An equivalent formulation of Z is given [13] by the loop model on the medial lattice

M(G) = (VM, EM). The vertices VM of M(G) are situated at the mid-points of the

original edges E, and two vertices in VM are connected by an edge in EM whenever the

former stand on edges in E that are incident on a common vertex from V . In particular,

when G is a square lattice, M(G) is just another square lattice, tilted through an angle
π
4 and scaled down by a factor of

√
2. There is a bijection between edge subsets A ⊆ E

and completely-packed loops on M(G). The loops are defined so that they turn around

the FK clusters and their internal cycles (alternatively they separate the FK clusters from

their duals). One has then [13]

Z = Q|V |/2
∑
A⊆E

( v
n

)|A|
n`(A) , (2.3)

where `(A) denotes the number of loops. The loop fugacity is

n = Q1/2 = q + q−1 , (2.4)

where the (quantum group related) parameter q will be used intensively below. The loop

model will be convenient to make contact with the Temperley-Lieb (TL) algebra [14], which

will be discussed below. Note also that on a square lattice, we have simply vc
n = 1, so at

the critical point Z depends only on `(A).

2.2 Correlation functions

The Potts model allows for the definition of various correlation functions, depending on

whether one uses its formulation in terms of Potts spins, FK clusters or TL loops.1 The

spin correlators are naturally defined in terms of the order parameter (or spin) operator

Oa(σi) ≡ Qδσi,a − 1 . (2.5)

More interesting and general results can however be obtained by moving to the cluster

or loop formulations, in which the correlation functions acquire a geometrical content. In

the same vein, the spin correlators can be analytically continued from Q ∈ N to arbitrary

real values, in which case they also acquire a geometrical interpretation [16–18] to which

we shall return in a short while. Such generalisations to Q ∈ R are not only useful, but

actually indispensable in our case, since our main objective is to study correlation functions

in the generic case where q is not a root of unity.

Correlation functions in the loop formulation are of either electric or magnetic type,

where the terminology refers to the Coulomb gas approach to CFT [11, 19]. Let i1, i2, . . . , iN
be a number of distinct marked vertices. Electric correlators are defined for ik ∈ V by

appropriately modifying the weight of loops that contain a subset of marked vertices on

their inside, and the remainder on their outside. Magnetic correlators are defined for

1One can even use the spin and FK cluster formulations simultaneously to define new correlation func-

tions [15].
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ik ∈ VM by specifying whether given vertices belong to the same or different loops; one can

also increase the set of possibilities by allowing for topological defects that insert a number

of open loop strands at each marked vertex [20]. While these electromagnetic correlation

functions have been intensively studied for N = 1, 2 in a variety of contexts, we wish here

to recall only one recent result. Namely, the electric N = 3 correlation functions have been

shown to be related, for generic values of n ∈ [0, 2], to the so-called DOZZ formula for the

structure constants within Liouville field theory [4–6].

Our main interest here is however correlation functions defined in terms of the FK

clusters. Let again i1, i2, . . . , iN ∈ V be a number of distinct marked vertices, and let P be

a partition of a set of N elements. We then define

PP =
1

Z

∑
A⊆E

v|A|Qk(A)IP(i1, i2, . . . , iN |A) , (2.6)

where Z is given by (2.2), and IP(i1, i2, . . . , iN |A) is the indicator function that, ∀k, l ∈
{1, . . . , N}, vertices ik and il belong to the same connected component in A if and only

if k and l belong to the same block of the partition P. It is convenient to denote P
by an ordered list of N symbols (a, b, c, . . .) so that identical symbols refer to the same

block. For instance, with N = 2, Paa is the probability that vertices i1, i2 belong to

the same FK cluster, whereas Pab = 1 − Paa is the probability that i1, i2 belong to two

distinct FK clusters. In the context of four-point functions, we are therefore interested in

the 15 probabilities Paaaa, Paabb, . . . , Pabcd. The combinatorial properties of FK correlation

functions were further discussed in [18].

It is natural to relate PP to correlation functions of the spin operator. Define

Ga1,a2,...,aN = 〈Oa1(σi1)Oa2(σi2) · · · OaN (σiN )〉 , (2.7)

where a1, a2, . . . , aN is a list of (identical or different) symbols defining a set partition

P, and the expectation value 〈· · · 〉 is defined with respect to the normalisation Z. It

is straightforward to formally relate the GP to PP . Indeed, to evaluate the expectation

value of a product of Kronecker deltas, we initially suppose that Q is integer, and use that

spins on the same FK cluster are equal, while spins on different clusters are statistically

dependent. This leads to Q-dependent relations, which can finally be extended to real

values of Q by analytical continuation. For instance, with N = 2, one readily finds that

Ga1,a2 = (Qδa1,a2 − 1)Paa . (2.8)

In other words, the two-point function of the spin operator is proportional to the probability

that the two points belong to the same FK cluster. Therefore Oa(σi) effectively “inserts”

an FK cluster at position i ∈ V and ensures its propagation until it is “taken out” by

another spin operator.

Remark 1. In a recent series of works [21–23] we have introduced a more general class of

operators Oa1,a2,...,aN (σi1 , σi2 , . . . , σiN ) that act on N spins according to given irreducible

representations of the symmetric groups SQ and SN . These operators can enforce the
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propagation of more than one FK cluster, with the set of propagating clusters having specific

symmetry properties. Some of the four-point functions to be considered below (namely

Pabab±Pabba), with the points being considered as regrouped in two pairs, actually coincide

with two-point functions of such operators, each acting on a pair of spins (N = 2).

In the remainder of this paper we shall focus on the same subset of four-point corre-

lation functions as was studied in [1]. They are the functions PP where the partition P
contains only one or two blocks, namely: Paaaa, Paabb, Pabba and Pabab. The relation with

the corresponding GP read [18, eqs. (19)–(22)]

Gaaaa = (Q− 1)(Q2 − 3Q+ 3)Paaaa + (Q− 1)2(Paabb + Pabba + Pabab) , (2.9a)

Gaabb = (2Q− 3)Paaaa + (Q− 1)2Paabb + Pabba + Pabab , (2.9b)

Gabba = (2Q− 3)Paaaa + Paabb + (Q− 1)2Pabba + Pabab , (2.9c)

Gabab = (2Q− 3)Paaaa + Paabb + Pabba + (Q− 1)2Pabab . (2.9d)

As already stated above, for Q arbitrary, the left-hand sides of these equations are only

formally defined: it is in fact the right-hand sides that give them a meaning. Note that

this linear system has determinant Q4(Q−1)(Q−2)3(Q−3), so it cannot be fully inverted

for Q = 0, 1, 2, 3.

By analogy with (2.8) one would expect that, in the scaling limit, the four PP of

interest would be described by combinations of conformal blocks for the spin operator. In

particular, the function Paaaa corresponding to the four points being in the same cluster

should become, in the scaling limit, a crossing-invariant such combination. The other three

would maybe not be crossing-invariant individually, but might be related with each other

by crossing (or give rise, after proper combinations, to other crossing-invariant objects).

Clearly, to implement the bootstrap programme, one needs an idea of the set of confor-

mal blocks that may appear in these geometrical correlation functions. The key question in

this problem — the one that we shall pursue in the remainder of this paper — is therefore

what happens in the s-channel of each of these four correlation functions, when two order

operators are brought close to each other. Note that, since the conformal field theories we

are dealing with are not unitary, the behavior of the G or P functions might be more com-

plicated than in the unitary cases, and involve, in particular, logarithmic terms. Examples

of such behaviours are already known for two- and three-point functions [21–23].

Remark 2. An important note: unless otherwise specified we will use the same nota-

tion (such as PP and GP) for correlation functions defined on the lattice and for their

scaling limits.

3 Lattice algebras

As mentioned above, our main exploratory tool for unravelling the structure of four-point

functions is to impose a lattice discretisation and study the Potts model in the cylinder

geometry. The algebraic object that propagates a row of L Potts spins axially along

the cylinder axis is a linear operator called the row-to-row transfer matrix T . In this

– 6 –
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section we discuss how T can be used to build the partition function Z, and defer the

more technical question about how to build the correlation functions PP to appendix A.1.

Both the algebraic definition of T and the space of states on which it acts depend subtly

on the degrees of freedom defining the model. We are here interested in two different

representations, viz. in terms of FK clusters and TL spins, which we now describe in turn.

The key technical point is to impose a weight Q per cluster in the former case, or a weight

n per loop in the latter.

3.1 FK clusters and the join-detach algebra

To build a row of an axially oriented square lattice, the transfer matrix T must first add

L “horizontal” edges in some row of constant imaginary time t, and then propagate to

the next row at time t + 1 by adding L “vertical” edges. It is convenient to introduce

more elementary operators that add just a single edge to the lattice. Concretely, Hi adds

a horizontal edge between sites i and i + 1 (mod L), while Vi adds a vertical edge on top

of site i. We can thus write

T = VH , (3.1a)

H = HL · · ·H2H1 , (3.1b)

V = VL · · ·V2V2 . (3.1c)

The operators Hi and Vi must ensure the correct building of the sum
∑

A⊆E in (2.2).

They can be written

Hi = I + vJi , (3.2a)

Vi = vI + Di , (3.2b)

where I denotes the identity operator, while Ji and Di will be defined shortly. Each expres-

sion has two terms depending on whether the given edge e belongs to the subset A or not.

In the former case, a weight v is applied. The subtle point is to obtain also the non-local

weight of Q per completed cluster. To that end, T acts on states {s1, s2, . . . , sL} which are

set partitions of L points describing how the sites of a row are interconnected via the parts

of the FK clusters living at times prior to t. The join operator Ji amalgamates the blocks of

the partition corresponding to sites i and i+1 (mod L). The detach operator Di transforms

site i into a singleton, applying a weight Q if it was already a singleton beforehand. The

join-detach algebra is defined by the algebraic rules emanating from these requirements:

J2
i = Ji , (3.3a)

D2
i = QDi , (3.3b)

JiDjJi = Ji for j = i, i+ 1 , (3.3c)

DiJjDi = Di for j = i− 1, i , (3.3d)

where all indices are considered modulo L. Operators associated with sites that are farther

apart than in the relations given simply commute.
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In two dimensions, the join-detach algebra is closely related to the Temperley-Lieb

(TL) algebra [14] that we describe next. For a more general discussion, see [24]. The

question of how the join-detach algebra must be adapted to accommodate the computation

of correlation functions is deferred to appendices A.1–A.2. For some applications (see

appendix A.2 in particular) we shall also need to consider the transpose of the join-detach

algebra, which furnishes another geometrical representation of the TL algebra that we shall

call the split-attach algebra and describe in some detail in appendix A.8.

3.2 Loops and the Temperley-Lieb algebra

Another option is to define the transfer matrix in terms of the loops that separate the FK

clusters from their duals. We recall that these loops now live on a tilted square lattice

M(G). At each vertex of M(G) two pieces of loop, labelled i and i + 1 according to

their horizontal position, can either bounce off a “vertical” or a “horizontal” edge of G (or

its dual G∗), operations that are described in imaginary time by respectively the identity

operator I and the so-called braid monoid ei:

I = ei = (3.4)

The ei generate the Temperley-Lieb (TL) algebra which has a long history [14] and is

deeply associated with work on the Potts model [25, 26].

We note that a horizontal cut through M(G), in between two rows of vertices, will

intersect the loop pieces in N = 2L points. If we set Ji = Q−1/2e2i and Di = Q1/2e2i−1 for

any i = 1, 2, . . . , L, the algebraic relations (3.3) become simply

e2
i = nei , (3.5a)

eiei±1ei = ei , (3.5b)

[ei, ej ] = 0 for |i− j| ≥ 2 , (3.5c)

where n is given by (2.4). These are precisely the defining relation of the TL algebra.

Up to this point we have deliberately been rather loose about specifying the boundary

conditions. Indeed, the TL algebra per se is associated with the Potts model on a strip —

i.e., with open boundary conditions (that is, free boundary conditions for the Potts spins

and reflecting boundary conditions for the loops)—and the generators ei are defined for

i = 1, 2, . . . , N−1. In the cylinder geometry — i.e., with periodic boundary conditions — a

tempting possibility is to merely add a last generator “closing” the system, eN , and define

the labels modulo N in the defining relations (3.5), so that in particular eNe1eN = e1 and

e1eNe1 = e1. This natural generalisation however takes one into a sticky mathematical

problem: the corresponding algebra is then seen to be infinite-dimensional, even for finite

N . In a nutshell, this occurs because of through-lines or loops that can wind around

the system. While what must be done with these objects is clear in the Potts model

itself, this requires providing extra information that is not present in the definition of the

“periodicised” Temperley-Lieb algebra. This extra information takes the mathematical

form of quotients.
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To define these quotients more precisely, it is useful to also introduce a translation

generator u that shifts the label of the ei generators, giving rise to the following extra

relations — in addition to (3.5a)–(3.5c)—with integer indices considered modulo N (that

is, i ∈ ZN ):

ueiu
−1 = ei+1 (3.5d)

u2eN−1 = e1e2 . . . eN−1 . (3.5e)

The translation operator has the diagrammatic representation

u = . . . .

The last relation (3.5e) is easily understood in terms of diagrams, for example for N = 4,

e1e2e3 = = = = u2e3.

Note also that uN is central: it commutes with all the generators ei. The resulting algebra is

called the affine Temperley-Lieb algebra TaN (n). In the following we shall draw extensively

on known results about its representation theory [27, 28] and its relation with conformal

field theory [29].

3.3 The transfer matrix sectors

While TaN (n) is infinite-dimensional, it is easy to define the finite-dimensional modules

which are relevant to us. First, we fix the number of through-lines, which are the pieces of

loops connecting the bottom and the top of the diagrams. The number of through-lines is

denoted 2j, with j ∈ N/2 — the factor of 2 comes about because one can relate each loop

strand to a q-deformed representation of spin-1/2. Second, we stipulate that whenever 2j

through-lines wind counterclockwise around the axis of the cylinder l times, we can unwind

them at the price of a complex phase factor e2ijlK ; similarly, for clockwise winding, the

phase will be e−i2jlK [27]. This unwinding means more precisely that we equate the words

in the algebra corresponding to the winding configurations with a numerical factor (the

phase) times the related words without winding. This operation is known to give rise to

a generically irreducible module over TaN (n), which we denote by Wj,z2=e2iK and call the

standard module [28]. A key point is that inside the modules Wj,z2 one has the identity

uN = z2j , (3.6)

meaning that the central element uN of TaN (n) is replaced by the complex number z2j .

The dimensions of the standard modules Wj,e2iK are given by

d̂j =

(
N

N/2 + j

)
, j > 0 . (3.7)
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Note that the dimensions do not depend on K, although the representations with different

eiK are not isomorphic.

The case j = 0 is a bit special, due to the absence of through-lines. There is no

pseudomomentum, but representations are characterised by another parameter, related

with the weight given to non-contractible loops (i.e., loops that close around the periodic

direction). Parameterising this weight as z + z−1, the corresponding standard module of

TaN (n) is denotedW0,z2 and has dimension
(
N
N/2

)
. These modules are irreducible for generic

z. As in the case j > 0, we indicate only the z2 value, though it does not mean that the

two standard modules with ±z are isomorphic. We will indicate the sign of z when it

is necessary.

3.4 Potts model

The fact that we wish to apply TaN (n) to study the Potts models entails a few minor

modifications of the general setup. First, since the number of sites N = 2L is even, the

number of through-lines is also even, so that j ∈ N. Second, the translation operator in

the Potts model shifts the L spins cyclically, meaning that the TL sites must be shifted

by two units. Therefore, we are actually going to use the subalgebra in TaN generated by

the ei’s and by u2 (instead of u itself), which is why the above notation refers to z2 rather

than to z itself.

The basic ingredient is the finite-dimensional modules of TaN described above, with

the loop weight n =
√
Q parameterised as in (2.4) in order to match (2.3). However, to

account for the particularities of the Potts model, the algebra that we are mostly interested

in is a quotient of TaN , known as the Jones-Temperley-Lieb algebra JTLN (n) [31, 32]. It is

obtained by:

(i) replacing non-contractible loops by the same weight n =
√
Q as for the con-

tractible ones;

(ii) identifying diagrams connecting the same sites, even if they are non-isotopic on the

cylinder; and

(iii) setting uN = 1, which allows one to unwind through-lines.

Rules (i) and (ii) are only relevant in the case j = 0, where through-lines are not

present. The first rule leads to z2 = q±2. In this case, in fact, the affine TL module W0,q2

is reducible, and contains a unique simple submodule isomorphic to W1,1. The reason for

this is that the general TaN (n) allows (in diagrammatic terms) to distinguish loop arcs that

connect two given sites on the front or on the back of the cylinder, meaning that a closed

loop can be given different weights depending on whether it is contractible or not. When

this distinction is not needed we must identify arcs only according to which sites are being

connected, as in rule (ii). Identifying non-isotopic diagrams in this way corresponds to

replacing W0,q2 by the (unique) simple quotient W0,q2/W1,1 ≡ W0,q2 of dimension

d0 = dimW0,q2 =

(
N

N/2

)
−
(

N

N/2 + 1

)
, (3.8)
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In technical terms, this quotient is precisely the standard module of JTLN (n) for j = 0.

Remark 3. The quotient W0,q2 is but one example of representations that appear more

generally in TaN when q is still generic, but z takes particular values [28, 30]. Indeed, the

standard module Wj′,z′ has a non-zero homomorphism to Wj,z,

Wj′,z′ ↪→Wj,z , (3.9)

if and only if j′ − j ∈ N0 and the pairs (j′, z′) and (j, z) satisfy

(z′)2 = (−q)2εj and z2 = (−q)ε2j
′
, for ε = ±1. (3.10)

When q is not a root of unity, there is at most one solution to (3.9). When there is one, the

module Wj,z is not irreducible, but has a unique proper irreducible submodule isomorphic

to Wj′,z′. One can then obtain a simple module by taking the quotient

Wj,z ≡ Wj,z/Wj′,z′ (3.11)

of dimension

dj = dimWj,q2 =

(
N

N/2 + j

)
−
(

N

N/2 + j′

)
. (3.12)

The quotient W0,q2 appearing above is but the simplest example (with j = 0, z = q2

and j′ = 1, z′ = 1) of this situation, and it is the only such quotient that is relevant for

the Potts model at generic q.

Whenver j 6= 0, rule (iii) leads to a quantisation of the momentum: K = πp/M , with

M a divisor of j (i.e., M |j) and with a greatest common divisor p ∧M = 1. The modules

encountered so far are thus W0,q2 =W0,q−2 , and Wj,e2iπp/M for j 6= 0 and M |j.
On top of this, there is a small subtlety having to do with the relation between through-

lines and through-clusters, by which we mean clusters that propagate along the imaginary

time direction. For j ≥ 2, each of the 2j through-lines alternatingly separates a propa-

gating FK cluster and an propagating dual cluster, implying the existence of precisely j

through-clusters.

However, when we wish to impose just one through-cluster, the situation is different.

Since nothing prevents this cluster from wrapping the periodic direction of the cylinder, it

will in fact do so with probability one, implying that through-lines will be absent (j = 0).

On the other hand, there cannot be any non-contractible loops either, since this would

prevent the propagation of the through-cluster. The correct module is thus obtained by

giving a vanishing weight to non-contractible loops. This is easily accomplished by setting

z = ±i, leading to W0,−1.

The three types of modules that we have just introduced:

W0,q±2 ⊕ Wj,e2iπp/M (M |j,j≥2)⊕ W0,−1 (3.13)

are known to encode the full Potts model partition function on the torus [11, 32, 33].

Formal multiplicities for these modules are also known. For Q non-integer, they are real

numbers with group-theoretical significance [22, 23].
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The crucial observation that will be made below is that the modules (3.13) are also

the sufficient objects to describe the four-point correlation functions in the geometrical

Potts model. An important additional fact is that actually only the modules with even

values of j are necessary for the description of four-point functions. By contrast, any j ≥ 2

contributes2 to the partition function on the torus, as has been verified in details for finite

systems [34].

This last result was not totally obvious a priori. Indeed, one must in general be

careful with geometrical questions in models such as the Potts model, where the set of

observables is seemingly not limited, if one sways far enough from locality. It is well-known,

for instance, that correlations involving several independent paths along clusters — the

case of two such paths defines the celebrated backbone exponents — cannot be described

using TaN , and the corresponding exponents have never been identified using Coulomb gas

techniques. Indeed, the numerical measurements of [35–37] appear to convincingly rule

out any such identification for this whole class of so-called monochromatic path-crossing

exponents. Similar remarks can be made about other seemingly reasonable observables,

such as the shortest-path exponent [38], to mention but one example. Fortunately, then,

the matters seem to be (relatively) simpler for the four-point correlation functions.

3.5 Summary of notations

For the reader’s convenience we summarise here some of the notations used in this paper.

They are, as far as possible, the same as those used in [29, 30, 39–44].

• Wj,z2=e2iK — the standard modules over TaN ,

• Wj,z2 — the same, with P = e2iK ,

• W0,q2 — the standard module over JTLN for j = 0,

•
[
j, e2iK

]
or Xj,z2 — simple modules over TaN (n).

Moreover, when discussing the transfer matrices for the Potts model correlation func-

tions (see appendix A, and section A.4 in particular) we shall sometimes need a lighter

notation V`,k,m for the sector with ` propagating clusters, an integer momentum variable

k = 0, 1, . . . , `−1 for the through-lines (if any), and a lattice momentum m = 0, 1, . . . , L−1

which is the precursor of the conformal spin for a system of finite size `. The notations

V`,k or V` with some of the variables omitted mean that these take indiscriminate values.

The correspondence with the standard modules is then:

• V0 is the sector with no through-lines, and non-contractible loops have weight
√
Q:

V0 =W0,z2=q2 ,

• V1 is the sector with no through-lines, and non-contractible loops have weight zero:

V1 =W0,z2=−1,

• V`,k is the sector with j = ` ≥ 2 pairs of through-lines and phases z2 = e2iπk/j :

V`,k =Wj,z2=e2iπk/j .
2Note that the value j = 1 is perfectly allowed in algebraic terms, and is crucial for the description of the

statistics of cluster hulls. It does not, however, appear in the torus partition function of the Potts model,

nor in the connectivity correlations functions in the bulk.
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4 Four-point functions in the s-channel

4.1 Generalities

We consider a general four-point function of primary operators in a CFT, which we write

in the following convenient form in the plane:

〈Φ1(z1, z̄1)Φ2(z2, z̄2)Φ3(z3, z̄3)Φ4(z4, z̄4)〉 =
∏
i<j

z
δij
ij z̄

δ̄ij
ij G(z, z̄) , (4.1)

where we have denoted zij ≡ zi − zj , with the exponents

δ12 = 0 , (4.2a)

δ13 = −2h1 , (4.2b)

δ14 = 0 , (4.2c)

δ23 = h1 − h2 − h3 + h4 , (4.2d)

δ24 = −h1 − h2 + h3 − h4 , (4.2e)

δ34 = h1 + h2 − h3 − h4 . (4.2f)

The antiholomorphic exponents δ̄ij are obtained from the holomorphic ones δij by the

replacement h → h̄, and the same convention henceforth applies to any other quantity.

The parameter z denotes the anharmonic ratio

z ≡ z12z34

z13z24
. (4.3)

One finds easily that

LimΛ→∞Λ2h3Λ̄2h̄3〈Φ1(z, z̄)Φ2(0, 0)Φ3(Λ, Λ̄)Φ4(1, 1)〉 = G(z, z̄) . (4.4)

This function G(z, z̄) is what one usually refers to as 〈Φ1(z, z̄)Φ2(0, 0)Φ3(∞,∞)Φ4(1, 1)〉.
It is known [45] to expand as a sum over conformal blocks

G(z, z̄) =
∑

∆,∆̄∈S

CΦ1Φ2Φ∆∆̄
CΦ∆∆̄Φ3Φ4F

(s)
∆ (z)F (s)

∆̄ (z̄) , (4.5)

where (∆, ∆̄) are the conformal weights of the primary fields appearing in the operator

product expansion relevant at small z. They define the scaling dimension (eigenvalue

of the dilatation operator) ∆ + ∆̄ and the conformal spin (eigenvalue of the rotation

operator) ∆− ∆̄.

We shall be particularly interested in the limit z1 → z2 and z3 → z4: this is called

the s-channel (borrowing a standard terminology of particle physics due to Mandelstam).

This limit corresponds to taking z → 0 in (4.4), so we can write the expansion

G(z, z̄) =
∑

∆,∆̄∈S

CΦ1Φ2Φ∆∆̄
CΦ∆∆̄Φ3Φ4z

(∆−h1−h2)z̄∆̄−h̄1−h̄2 [1 +O(z, z̄)] . (4.6)

One could of course similarly consider the t-channel (z →∞) and in the u-channel (z → 1),

by expanding in powers of 1
z and (z− 1) respectively. The idea of the conformal bootstrap
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programme is that all these expansions determine the same function G(z, z̄) and hence will

impose constraints. The first step in any further discussion is therefore to establish the

fields intervening in one of these channels, which we take here to be the s-channel.

The key question we want to address in this paper is thus to determine the set S of

values of ∆, ∆̄, which we will tackle by a combination of algebraic and numerical methods.

In its crudest form, the latter involves the brute force numerical determination of a (very)

large number of terms appearing in the right-hand side of (4.6).

Note that the determination of the set S from the knowledge of these terms will only

be fully possible in “generic” cases, where none of the ∆, ∆̄ differ by integers. Otherwise,

there will be ambiguities, as a term such as ∆ + n, ∆̄ + n̄ (with n, n̄ integer) may arise

from a genuine primary field, or from a Virasoro descendent of some primary field with

weights ∆ + p, ∆̄ + p̄, with p ≤ n and p̄ ≤ n̄ (with at least one of the inequalities being

strict). The non-generic case requires Q to take particular values (with q being a root of

unity); it is clearly more complicated than the generic case and will typically lead to at least

some correlation functions having logarithmic behaviour. A few non-generic cases (not all

of them logarithmic) will be discussed in appendix B. But the main text is henceforth

dedicated to the generic case, for which we shall determine S fully.

Our strategy is to study the expansion (4.6) on the cylinder, where we will be able to

use, on the numerical side, transfer matrix techniques, and, on the analytic side, algebraic

results. The four-point function on the cylinder follows from (4.1) via the conformal map

w =
L

2π
ln z . (4.7)

Using the fact that the fields are primary, and restricting here to i = j = k = l for

notational simplicity, we find

〈Φ(w1, w̄1)Φ(w2, w̄2)Φ(w3, w̄3)Φ(w4, w̄4)〉cyl

=

(
2π

L

)4(h+h̄) 1∣∣4 sinh πw13
L sinh πw24

L

∣∣2(h+h̄)
G(w, w̄) , (4.8)

where the subscript “cyl” on the left-hand side refers to the cylinder geometry, and we

have set wij ≡ wi − wj as before. The expansion variable is now

w =
sinh πw12

L sinh πw34
L

sinh πw13
L sinh πw24

L

. (4.9)

Using (4.6) we can write this as

〈Φ(w1, w̄1)Φ(w2, w̄2)Φ(w3, w̄3)Φ(w4, w̄4)〉cyl

=

(
2π

L

)4(h+h̄) 1

|4 sinh πw12
L sinh πw34

L |2(h+h̄)
(4.10)

∑
∆,∆̄∈S

CΦΦΦ∆∆̄
CΦ∆∆̄ΦΦ

[(
sinh πw12

L sinh πw34
L

sinh πw13
L sinh πw24

L

)∆(sinh πw̄12
L sinh πw̄34

L

sinh πw̄13
L sinh πw̄24

L

)∆̄

+O(w, w̄)

]
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Figure 1. Four-point functions in the cylinder geometry.

In practice, to access the s-channel properties, we will take the points w1, w2 on a given

slice of imaginary time, and w3, w4 on another, distant, slice along the cylinder of finite

circumference L. This geometry is shown in figure 1. In other words, w12 and w34 will be

fixed, while w13 and w24 will be large and vary. In this limit, it will then be possible to

compare the expansion (4.10) with the results of transfer matrix calculations, and identify,

in particular, the set S.

Let us now be more precise. We set

w1 = ia , (4.11a)

w2 = −ia , (4.11b)

w3 = i(a+ x) + l , (4.11c)

w4 = i(−a+ x) + l , (4.11d)

which means that the points w1,2 and w3,4 are a certain distance3 2a apart on the vertical

axis, l is the horizontal distance (imaginary time) between the two groups, and on top of

this we have the centre of mass of w3,4 shifted by x. A short calculation then gives

〈Φ(w1, w̄1)Φ(w2, w̄2)Φ(w3, w̄3)Φ(w4, w̄4)〉cyl

=

(
2π

L

)4(h+h̄)

e−8πhl/L
(

1− e−2π(l+ix)/L
)−4h (

1− e−2π(l−ix)/L
)−4h

(4.12)

×G

(
4eiπ sin2 2πa

L e−2π(l+ix)/L

(1− e−2π(l+ix)/L)2
,

4e−iπ sin2 2πa
L e−2π(l−ix)/L

(1− e−2π(l−ix)/L)2

)
.

We can then expand this from (4.6):

〈Φ(w1, w̄1)Φ(w2, w̄2)Φ(w3, w̄3)Φ(w4, w̄4)〉cyl

=

(
2π

L

)4(h+h̄) 1

(4 sin2 2πa
L )4h

∑
∆,∆̄∈S

CΦΦΦ∆∆̄
CΦ∆∆̄ΦΦ

×
(

4 sin2 2πa

L

)∆+∆̄

(−1)∆−∆̄ξ∆ξ̄∆̄[1 +O(ξ, ξ̄)] , (4.13)

where we have set

ξ ≡ e−2π(l+ix)/L, ξ̄ ≡ e−2π(l−ix)/L . (4.14)

3Note that a is not the lattice spacing, but some arbitrary parameter. It will always occur in the

combination 2a
L

.
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The bracket [1 + O(ξ, ξ̄)] contains now contributions from the conformal blocks and con-

tributions from the hyperbolic functions in the conformal map.

The expansion (4.13) is the crucial tool that we will use systematically in our analysis

below. In the following, we will sometimes use the short-hand notation

AΦ∆∆̄
≡ CΦΦΦ∆∆̄

CΦ∆∆̄ΦΦ . (4.15)

We now discuss this in more detail.

Remark 4. We also see that if we exchange w1 and w2 in (4.10), the leading contributions

for a given ∆, ∆̄ is multiplied by (−1)∆−∆̄. Hence primary fields with odd integer spin

should contribute an opposite weight upon making this exchange.

For future reference, the definition of the channels is

s-channel : z1 → z2

t-channel : z1 → z4

u-channel : z1 → z3 (4.16)

Henceforth, when denoting the probabilities Pa1,a2,a3,a4 , the four labels specifying the par-

tition P = {a1, a2, a3, a4} refer to the points z1, z2, z3, z4 in that order. Clearly, then,

Paaaa should have the same spectrum (and structure constants) in all channels, while, for

instance, Paabb should have the same spectrum (and structure constants) in the t- and

u-channels, while the spectrum should be different in the s-channel.

4.2 Exponents

Contrarily to what is implied in [1], the exponents of percolation — and more generally

the Q-state Potts model in the FK cluster representation — are essentially known (with

the exception of certain “exotic” exponents, see [35–38]). This knowledge relies on two

stages. First, the transfer matrix sectors of the Potts model can be described in terms

of standard modules of the affine TL algebra, as described in section 3.4. Second, the

continuum limits of these objects are known in the form of spectrum generating functions

within the corresponding CFT, as we now review. This is of course not yet the solution

of the s-channel conundrum, but since we are able to formulate the four-point functions

in terms of the FK transfer matrix (see section 4.3 and appendix A.1), the results on

the generating functions will narrow down the set of states than can possibly be part of

the spectrum S. Extensive numerical analysis — corroborated by the solvability of a few

special cases (see appendix B)—will then lead to the results that we give in section 5.

The local FK connectivities in the geometrical Potts model and their evolution along

the cylinder are described by a transfer matrix or, in the familiar extreme anisotropic

limit, a Hamiltonian. Both transfer matrix and Hamiltonian exhibit the same conformal

content — that is, eigenstates associated with local CFT operators, and the corresponding

conformal weights h, h̄, together with their multiplicities. It is convenient to encode the
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latter into spectrum generating functions. Using for instance the Hamiltonian language

and setting

H = −λ
2L∑
i=1

ei , (4.17)

with λ adjusted so that the sound velocity is unity as usual, we define the generating

function of levels (eigenenergies of H) and lattice momentum P as as traces of lattice

operators, with the scaling limit [46]

Tr
[
e−βR(H−Nε0)e−iβIP

]
scaling−−−−→ Tr qL0−c/24q̄L̄0−c/24 . (4.18)

Here ε0 is the (non-universal) ground state energy per site in the limit N → ∞. The

scaling limit is defined by taking N, βR, βI → ∞ while keeping the modular parameters4

q(q̄) = exp
[
−2π
N (βR ± iβI)

]
(with βR,I real and βR > 0) finite. The parameters βR and βI

define the size of the system in the two principal directions of the torus, while the trace

ensures the periodic boundary conditions in the imaginary time direction. We recall that

N = 2L is the number of sites in the system, often referred to as the length of the spin chain

in the Hamiltonian limit. In other words, only even chains are relevant in our problem. On

the right-hand side of (4.18), L0 and L̄0 are of course Virasoro generators, while c denotes

the central charge.

The generating function (4.18) calculated in the modules Wj,e2iK is [46, 47]

TrW
j,e2iK

[
e−βR(H−Nε0)e−iβIP

]
scaling−−−−→ Fj,e2iK ≡

q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

q
h
e+K

π ,−j q̄
h
e+K

π ,j ,

(4.19)

where

P (q) =
∞∏
n=1

(1− qn) = q−1/24η(q) (4.20)

is the (inverse of) the generating function for integer partitions, and η(q) is Dedekind’s eta

function. Instead of (2.4) we shall find it convenient to parameterise the number of states

in the Potts model by √
Q = 2 cos

(
π

m+ 1

)
, with m ∈ [1,∞] , (4.21)

so that q = e
iπ
m+1 . Note that to access the generic case (q not a root of unity) we do not

restrict m to be integer, as would be the case for the minimal models. The corresponding

central charge is then

c = 1− 6

m(m+ 1)
, (4.22)

and we also use the Kac table parameterisation of conformal weights

hrs =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
. (4.23)

4Here and elsewhere a notation of the type q(q̄) means that q is given by the first expression on the

right-hand side (the one with a + sign), and q̄ by the second expression (with a − sign).
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In “usual” CFT the labels (r, s) are positive integers, but as for the parameter m we shall

here allow them to take more general values, as is already evident from (4.19). To make

contact with standard references, it is also convenient in the following to introduce the

Coulomb gas coupling constant g = m
m+1 and the background electric charge e0 = 1

m+1 .

The operator associated with the order parameter has conformal weight h1/2,0 [19, 48], the

primordial example of an “unusual” hrs, with r here being non-integer and s non-positive.

This operator belongs to the generating function F0,−1.

Remark 5. To compare with [1] one must set in their equation (1.1) β2 = m
m+1 (so that

1
2 ≤ β2 ≤ 1), and q = Q. Moreover, the conventions used in their paper for the exponents

are switched with respect to ours. In other words, they call ∆sr what we call hrs (or ∆rs).

Restricting now to the cases of interest with momentum K = πp/M and M |j gives

Fj,e2iπp/M =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

q
he+ p

M
,−j q̄

he+ p
M
,j , with M |j and j ∈ Z . (4.24)

On top of this we also have to consider the generating function of levels in W0,−1, which

reads

F0,−1 =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

qhe+1/2,0 q̄he+1/2,0 . (4.25)

Finally we need the generating function for the quotient module W0,q2 . The twist eiK = q

corresponds in our notation to K
π = e0, so we have first

F0,q2 =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

qhe+e0,0 q̄he+e0,0 . (4.26)

The subtraction necessary to obtain the moduleW0,q2 =W0,q2/W1,1 leads to the expression

for the generating function of the corresponding levels:

F̄0,q2 =
q−c/24q̄−c/24

P (q)P (q̄)

[∑
e∈Z

qhe+e0,0 q̄he+e0,0 −
∑
e∈Z

qhe,1 q̄he,−1

]
. (4.27)

The subtraction can actually be implemented term by term. Introducing the characters of

the so-called Kac modules — which are Verma modules where a single singular vector at

level rs has been removed—,

Krs = q−c/24 q
hrs − qhr,−s
P (q)

= q−c/24qhrs
1− qrs

P (q)
, (4.28)

we have

F̄0,q2 =
∞∑
r=1

Kr1(q)Kr1(q̄) . (4.29)

To summarise, corresponding to the modules (3.13) we expect (and confirm below) that

the set of exponents contributing to the four-point connectivities is encoded into

Fj,e2iπp/M (M |j, j≥2)⊕ F0,−1 ⊕ F̄0,q2 . (4.30)
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Moreover, we shall see below that only j even contributes, which cannot be foreseen at

this stage. We note that for generic values of Q or q (i.e, with m irrational), there are no

coincidences of exponents in the different sectors (generating functions)—this is also true

on the lattice, where there are no coincidences of eigenvalues. Moreover, in a given sector,

no two exponents differ by integers.

4.2.1 Numerical validation of the generating functions

It appears useful at this stage to test the internal coherence of the ingredients brought

together this far. On one hand, in section 3.4 we have related the sectors of the Potts

model transfer matrix T to certain standard modules, Wj,z2 and W0,q2 , of the affine TL

algebra. On the other hand, we have just given their corresponding spectrum generating

functions, Fj,z and F̄0,q2 . This means that a numerical diagonalisation of T in the various

sectors should produce — after a proper extrapolation to the continuum limit L → ∞ —

the primaries and descendents (with multiplicities) of these generating functions. We are

not aware of a previous careful study that this is indeed so.

To this end, we first outline in appendix A.3 the extraction of the eigenvalue spectrum

of T in the various sectors relevant for the Potts model. Fixing the values of the momentum

and the conformal spin is a non-trivial operation that is expounded in appendix A.4. Once

this has been done, we can examine the spectrum of T ; this is done first for a generic value

of Q in appendix A.5.1, and then for a few non-generic values: Q = 4 in appendix A.5.2,

and Q = 2 in appendix A.6. When combined, these three cases permit us to test examples

of Verma modules with zero, one, or infinitely many singular vectors.

In all cases we find that the agreement with the expected spectrum generating functions

is perfect. In the generic case, we are able to see descendents up to level 6 for the identity

operator, and up to level 3 for other operators. Moreover, the set of primaries fully agree

with the expectations from the affine TL algebra. In the Ising case we are able to follow

the first 29 scaling levels and observe descendents up to level 9 for both operators (I and ε)

in the even sector, with an agreement better than 10−4 for almost all scaling dimensions.

Moreover, the degeneracy observed for each “completed” level is in perfect accord with the

spectrum generating functions.

The techniques used in the numerical analysis may be of independent interest and can

be consulted in the appendices (see also appendix A.7 for a few practical remarks).

4.3 The numerical algorithm

The geometrical setup for four-point functions is shown in figure 1. As stated earlier, our

lattice discretisation consists in embedding a periodic square lattice G = (V,E) of width

L Potts spins into the cylinder, with the edges E being either horizontal or vertical with

respect to the figure (axial geometry). We possess two different strategies for obtaining

numerical results for the correlation functions.

The first strategy gives access to the most general FK correlation functions, namely

the 15 different Pa1,a2,a3,a4 . It is practically feasible up to size L = 7, after a considerable

numerical effort. It applies for both generic and non-generic values of Q, meaning that in

the latter case it can determine the indecomposable structure of correlation functions.
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The second strategy applies to a smaller set of correlation functions, namely the four

order-parameter correlators Gaaaa, Gaabb, Gabba and Gabab. Its advantage is that it gives

access to larger sizes, in practice up to L = 11, at a much smaller computational expenditure

than the first method. However, it applies only to generic values of Q and, at least in its

present form, cannot determine the Jordan block structure at non-generic Q-values.

We now briefly outline the two methods, while relegating all technical details to ap-

pendices A.1–A.2.

4.3.1 First method

It is shown in the appendix that all Pa1,a2,a3,a4 can be computed, for fixed values of the

distances a, x and l, via a suitable modification of the FK representation of the trans-

fer matrix in which certain clusters (viz., the ones touching one or more of the points

w1, w2, w3, w4) carry specific marks. The spectrum of this modified transfer matrix is con-

tained within that of the original one, namely the one described in section 3.4 in terms

of affine TL representations. The spectrum can be proven to be real, so we can order the

distinct eigenvalues as Λ0 > Λ1 > · · · > Λi > · · · . The correlation function then takes the

following form, for generic values of Q,

Pa1,a2,a3,a4 =
∑
i

Ai

(
Λi
Λ0

)l
, (4.31)

where the amplitudes Ai = Ai(a, x, L) are to be determined. The corresponding expression

for non-generic values has the same form, but with the replacement

Ai −→
ri−1∑
j=0

A
(j)
i lj , (4.32)

whenever the eigenvalue Λi is associated with a Jordan block of rank ri. In the latter case

the generalised amplitudes A
(j)
i = A

(j)
i (a, x, L) are again independent of l.

Remark 6. There is of course an exact degenerescence of the scaling dimension of a CFT

operator with non-zero spin ∆− ∆̄ and that of its conjugate (i.e., obtained by the exchange

ξ → ξ̄). This is prefigured in the lattice discretisation by the exact degenerescence of

the eigenvalues corresponding to eigenstates of T with opposite non-zero lattice momenta

±m (cf. appendix A.4). Because of the regrouping of degenerate eigenvalues in (4.31) it

should thus be remembered to divide the amplitude Ai of such states by a factor of two when

comparing to the CFT predictions (see appendix B for many examples of this phenomenon).

For finite L the set of eigenvalues of T — and hence the number N ≡
∑

i ri of (gener-

alised) amplitudes to be determined — is finite. It follows that the form (4.31) is an exact

expression, not merely an asymptotic expansion. Therefore, to determine the amplitudes

Ai — or the generalised amplitudes A
(j)
i for the cases with Jordan blocks — for given

separations a, x and size L, it suffices in principle to numerically determine the spectrum

{Λi}, compute the correlation functions Pa1,a2,a3,a4 for N different values l, and to invert

the linear system (4.31).
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In practice, of course, things are more complicated, and several remarks must be

made (see appendix A.7). The most important of those is that the magnitude of the terms

in (4.31) decreases exponentially fast, in particular when N , and hence l, is large. Therefore

both {Λi} and Pa1,a2,a3,a4 must be computed to an exceedingly high numerical precision.

For instance, our most demanding computation (see section 5.2.2 for details) required a

4000-digit numerical precision.

Another remark is that when N � 1 we often wish to determine only the first

“few” amplitudes (corresponding to i ≤ some imax). This can be done by using the ex-

pression (4.31), truncated to the first imax terms, as an asymptotic expression, i.e., by

solving for Ai the linear system provided by the numerically computed Pa1,a2,a3,a4 with

l = lmin, lmin + 1, . . . , lmin + imax, where lmin is taken sufficiently large. One then has to

carefully check that the desired Ai are stable, within the desired numerical precision, to

small changes in lmin.

4.3.2 Second method

Our other method applies to the computation of the order-parameter correlators

Ga1,a2,a3,a4 , defined in (2.7). This requires another variant of the FK transfer matrix with

marked clusters, as described in details in appendix A.2. The number of different marks

allowed must be chosen as the number of different symbols among a1, a2, a3, a4, and the

dimension of the transfer matrix grows with this number. In practice we have employed

two different marks, in order to gain access to the four correlators Gaaaa, Gaabb, Gabba and

Gabab.

The spin operator Oa(σk), defined in (2.5), can be expressed within this basis and has

essentially the effect of attributing the label a to the spin situated at vertex k ∈ V . Our

geometrical setup is such that vertices w1 and w2 belong to the same time slice, while w3

and w4 belong to another time slice, with the relative positions within these two time slices

being specified by figure 1. We henceforth denote the spin operators simply by Oak , for

k = 1, 2, 3, 4, and keep implicit their point of insertion in the relevant time slices.

Let 〈vi| and |vi〉 denote the left and right eigenvectors of T . In the case of simple

eigenvalues we then have

〈vi|T = Λi〈vi| , (4.33a)

T |vi〉 = Λi|vi〉 . (4.33b)

But even for the generic values of Q that we consider here, some of the eigenvalues are

degenerate, due to symmetries of the lattice and of the order parameter symbols ak. In that

case we denote the multiplicity of Λi by di, and we endow the corresponding eigenvectors

with an extra label, |vi,j〉, where j = 1, 2, . . . , di.

The left and right eigenvectors can be obtained efficiently within an iterative diagonal-

isation scheme, such as the Arnoldi method (see again appendix A.7 for details). Left and

right vectors will obviously be orthogonal if they correspond to different eigenvalues, but

the Arnoldi method does not guarantee orthogonality within the degenerate subspaces. It

is however possible to perform an additional diagonalisation step that will ensure that the
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orthogonality holds with respect to both labels:

〈vi,j |vi′,j′〉 ∝ δi,i′δj,j′ . (4.34)

Remark 7. Some readers are likely to be well acquainted with the representation theory

of the TL algebra, in which “geometrical” scalar products (see e.g. [49, 50]) are introduced

between basis states (often called link patterns in the context of the loop representation).

These scalar products “count” loops and clusters formed by the gluing of the states, leading

to Q-dependent results. We must therefore stress that the scalar products appearing in

this section are simply the standard Euclidean scalar products between ordinary vectors.

Moreover, all eigenvectors turn out to be real, so there is no issue of complex conjugation.

We now claim that the amplitudes Ai for the generic case without Jordan blocks can

be obtained as

Ai =

di∑
j=1

〈v0|Oa3Oa4 |vi,j〉 〈vi,j |Oa1Oa2 |v0〉
〈v0|v0〉 〈vi,j |vi,j〉

. (4.35)

It is crucial for the validity of this result that the orthogonalisation in degenerate subspaces

has been performed (see appendix A.2).

We have performed extensive checks that the first and second methods give the same

results, in situations where they are both applicable. The advantage of the second method

is that it is numerically much more efficient, and hence gives access to larger sizes L. The

sources for this gain in efficiency are explained in appendix A.2.

Formula (4.35) has a nice geometrical interpretation that makes direct contact with

figure 1. Indeed the numerator of the formula (read from right to left) and the figure (read

from left to right) are completely analogous:

1. The propagation from the free boundary condition at imaginary time t → −∞ to

the time slice containing w1 and w2 corresponds to the production of the ground

state |v0〉.

2. The first two operators are then inserted by Oa1Oa2 .

3. The piece |vi,j〉 〈vi,j | corresponds to the projection on a definite state appearing in

the s-channel of the four-point function.

4. This is followed by the insertion of the two remaining operators, at w3 and w4.

5. The projection on 〈v0| matches the propagation to the free boundary condition at

the other extreme of the cylinder (t→ +∞).

We stress that the validity of (4.35) depends crucially on the orthogonality (4.34).

4.3.3 Continuum limit

To extract the continuum limit (L → ∞) of the amplitudes it is important to be able to

associate each Ai with a definite field in the continuum limit.5 For instance, one question

5But see remark 6 above.
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that one might want to answer is what would be the amplitude contributing to a given

primary Φ∆∆̄, i.e., to identify the Ai that will converge to the amplitude of Φ∆∆̄ in the

expansion (4.13).

Several remarks are in order in this respect. Obviously, it is the ratio between two

amplitudes — rather than each amplitude taken individually — that is universal and hence

related to CFT. Therefore we assume tacitly in what follows that each amplitude of interest

is measured via its ratio to the one that gives the leading contribution to the considered

correlation function. Moreover, the conformal mapping to the cylinder implies that we

should correct the raw lattice result by a conformal factor, namely the powers of sin 2πa
L

appearing in (4.13). Once this has been done, our main claim is that we are capable of

analysing the numerical results so as to establish the convergence

Ai → AΦ∆∆̄
as L→∞ , (4.36)

where the conformal amplitude has been defined in (4.15). More generally, we can obtain

the corresponding results for subdominant contributions from the conformal blocks, cor-

responding to the amplitude multiplying a term of the type ξN ξ̄N̄ in the square bracket

of (4.13). This is interpreted as the (total) amplitude of the descendents at level N , N̄ of

the primary Φ∆∆̄. The challenge involved in making this identification is to make sure that

we possess enough information about the lattice model to unambiguously associate a given

field in the continuum limit with its “corresponding” eigenvalue of the transfer matrix in

finite size L.

In the lattice model, each Ai is unambiguously associated with the eigenvalue Λi. A

careful study of the transfer matrix (see appendix A.4) enables us to attribute to each

eigenvalue three labels `, k,m, formally restricting to a representation denoted V`,k,m. The

first label ` gives the number of propagating FK clusters, so in the notation of the standard

modules Wj,z2 we have j = ` for all ` 6= 1, while ` = 1 corresponds to j = 0. The second

label k is directly related with the momentum of through-lines, via z2 = e2iπk/j . And

finally the third label m is the lattice momentum that gives directly the conformal spin,

h− h̄ = m, at least if L is large enough to accommodate the desired spin.

While certainly very helpful, the three labels `, k,m are not quite enough to determine

which conformal block to associate with Ai, nor at which level N , N̄ . Roughly speaking,

the trouble is that the k’th smallest scaling dimension in the continuum limit does not

necessarily correspond to the k’th largest eigenvalue of T in finite size L. While this is

certainly true for L � 1, there are numerous crossovers in finite size, and these have to

be monitored carefully in order to make to correct identifications. How we overcame this

delicate problem is described in appendix A.5.

Finally, once the finite-size approximation Ai to a given CFT amplitude has been

determined, for several different sizes L, the numerical value of the latter is determined

by finite-size extrapolation techniques. This is again discussed in appendix A.5. A large

number of concrete applications of the entire method can be found in section 5 and (with

more details provided) in appendix B.
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5 Results

5.1 Checks

Our approach, being based on properties of the lattice model, requires a careful control of

the continuum limit. There are several aspects to this. The most obvious one is that, since

we are studying four-point functions of a CFT, we should, ideally, have all ratios |zij | � 1

(where all distances are measured in units of the lattice spacing). On the cylinder, we have

chosen to take points far apart along the cylinder axis, but placed, pairwise, on identical

imaginary time slices. Since the cylinder widths L are limited for technical reasons, this

means that |w12|, |w34| will be limited, in fact, to a few lattice spacings.6

We first observe that the dependence A(x) of the amplitudes on the shift x in the

space-like direction (see figure 1) between the two groups of points is in fact trivial. Taking

into account that all amplitudes have been normalised as ratios with respect to the leading

one, as well as remark 6, it is seen from (4.13) that

A(x) = cos

(
2πsx

L

)
A(0) , (5.1)

where s = ∆ − ∆̄ denotes the conformal spin (which coincides with the lattice momen-

tum, m = s).

An alternative means of deriving (5.1) goes through the inspection of (4.35). Imagine

evaluating the first scalar product in the numerator in a geometry where the cylinder has

been rotated by the amount −x. This rotation will re-align the second pair of operators

Oa3Oa4 with the first pair Oa1Oa2 , like in the computation of A(0). The ground state 〈v0|
is obviously rotationally invariant, but an intermediate state |vi,j〉 of lattice momentum

m 6= 0 is not, and will therefore pick up a corresponding phase factor under the rotation.

Summing this over the degenerate contributions ±m reproduces (5.1).

We have checked numerically on explicit examples that (5.1) holds true exactly in finite

size. As a matter of fact, determining numerically the dependence A(x) is a convenient

means of establishing the lattice momentum m of a given state, complementary to the

techniques explained in section A.4.

A maybe more subtle aspect is that the lattice observables are not in general pure

scaling fields. This means that the conformal field whose four-point functions we want to

study, is identified on the lattice as the Potts spin operator only up to additional corrections

(“higher (or excited) spin operators”), whose contributions become negligible only when

all distances are once again much larger than the lattice spacing: put otherwise, measured

four-point functions on the lattice are a mixture of four-point functions of pure scaling fields.

For our approach to be useful, it is necessary to perform many tests in order to control

these potential drawbacks. As discussed extensively in appendix B, we have checked that,

for the sizes we were able to access:

• The mixture of excited spin operators can be neglected (see appendix B.1); and

6We could take the two points within each pair to reside on different time slices, of course, but this

would only allow us to get real parts of wij bigger, with the imaginary parts similarly limited.
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w1

w2

w3

w4

Pabab

w1

w2

w3

w4

Pabba

Figure 2. FK cluster configurations that contribute to the correlation functions Pabab and Pabba.

• The values of the extrapolated amplitudes AΦ∆∆̄
— see (4.15)—as well as those of

the first few (in practice, a handful) subdominant contributions to each conformal

tower, extracted via the method outlined in section 4.3 are in fine agreement with

their exact CFT values in three exactly solvable cases (Q = 0, 2, 4), which are treated

respectively in appendices B.4, B.2 and B.3. In the most favourable cases the relative

deviations are as small as 10−4.

Moreover, even for operators higher in the spectrum S where the lattice determination

of amplitudes may not have fully converged, our approach, combined with the algebraic

understanding of transfer matrix sectors, indicates unambiguously which coupling constants

will remain non-zero in the scaling limit, even if error bars on their extrapolated values are

not negligible.

5.2 The s-channel spectrum of Pabab or Pabba: Fj,e2iπp/M (M |j, j≥2), j even

We first study the cases where (at least) two distinct clusters are forced to propagate

between the two distinguished time slices in figure 1. Specifically, Pabab is the probability

that points w1, w3 and w2, w4 respectively belong to the same clusters. This quantity is

also called P2 in [1]. Similarly, Pabba is the probability that w1, w4 and w2, w3 belong to

the same clusters. These two correlation functions are depicted in figure 2.

5.2.1 Results in finite size

It is evident from figure 2 that the leading term in this sector should be the term cor-

responding to the propagation of two different clusters, that is, four cluster boundaries.

The affine TL modules Wj,z2 (or their continuum counterparts Fj,z2) correspond to 2j

through-lines, so the propagation of two clusters must have a contribution with j = 2. The

corresponding generating function of levels has two sectors, depending on whether a pair

of boundaries going around the system picks up a phase z2 = 1 or z2 = −1. No other

choice is possible since for two pairs of boundaries (picking up a phase z4), we do not want

a phase.7 Hence we expect the contribution of modules

W2,1 ⊕W2,−1 . (5.2)

We have first checked that all the eigenvalues associated with these two modules contribute

to the probabilities Pabab and Pabba for all finite sizes.

7The reader might wonder why we have used the parameter z since only z2 seems to appear in the

discussions. This is in part to conform with the literature, although z itself may also have meaning for

other questions in the Potts model. For instance, the single shift operator u appplied to the system amounts

to performing a duality transformation.
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This is however not all. Sectors with a higher number of clusters than the two imposed

by the choice of indices might also be thought to contribute to these correlation functions.

One could think of several mechanisms for such contributions. First, there might be more

clusters, distinct from the two imposed by the boundary conditions, that “by chance” con-

nect the two time slices. Second, the two clusters might have more complicated topologies,

with for instance one of them (say, the one containing points w1 and w3 in the left part of

figure 2) starting out at one insertion point (here w1), and wrapping all around the other

cluster (containing points w4 and w2), before arriving at its terminal point (here w3).

We have found it difficult to provide a convincing argument that certain subclasses of

configurations will necessarily lead to further contributions to the correlation functions, in

terms of the modules Wj,z2 ; we think there are underlying symmetry and branching rules

considerations that may answer this riddle on general grounds, and that we do not yet

control. Fortunately the numerical results are completely clear. We find that, for all finite

sizes, all eigenvalues associated with the modules Wj,e2iπp/M ,M |j, with j even, and only

those, contribute to the probabilities Pabab and Pabba. For j = 4 for instance, this allows

contributions from the momentum sectors z2 = 1, exp(iπ/4), exp(iπ/2), exp(3iπ/4), and

thus the following modules, in addition to those of (5.2),

W4,1 ⊕W4,i ⊕W4,−1 ⊕W4,−i . (5.3)

Note that for a given width L, the maximum value of j is bounded from above, j ≤ L. We

have checked that, as L increases, higher values of j start contributing to the probabilities,

provided that the separation 2a between the insertion points is sufficiently large. More

precisely, we have observed that:

• For L = 5 and separation 2a = 2, all the eigenvalues with j = 2, 4 and none of the

eigenvalues with j = 0, 1, 3 contribute to the probabilities.

• Still for L = 5, but diminishing to separation 2a = 1, the contributions from j = 4

disappear.

• For L = 7 and separation 2a = 3, the two probabilities get contributions from all

eigenvalues with j = 2, 4, 6 and none of the eigenvalues with j = 0, 1, 3, 5.

• Still for L = 7, but diminishing to separation 2a = 2, the contributions from j = 6

disappear. Diminishing further to 2a = 1, the contributions from j = 4 disappear

as well.

The above result is corroborated by a closer study of the spectrum of the transfer matrix

described in section 4.3.2, namely the one that produces the correlation functions of order

parameter operator. Its eigenvalues are precisely those corresponding to the modules (3.13)

with j even, while those corresponding to j odd are not observed at all.

Motivated by the above list of observations, we conjecture that in fact a given sector

j ∈ 2N contributes only when 2a ≥ j/2.
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5.2.2 Non-zero coupling to the sector j = 6

The computation with L = 7 and 2a = 3 establishing that the sector j = 6 does contribute

to the correlation functions PP is the most demanding among all of those made for this

paper. For the benefit of readers interested in computational aspects (and those wanting

to scrupulously assess the validity of our conclusions) we wish to describe it in some more

detail — other readers may wish to skip this section and resume the reading below.

This computation was performed for the generic value Q = 3
2 . There is a total of 3 932

distinct eigenvalues in the sectors with j = 0, 2, 4, 6, corresponding to all possible momenta.

Using the methods of appendix A.4 we can classify them in sectors V`,k,m corresponding

to ` propagating clusters with cluster momentum k and lattice momentum m. Ordering

all the eigenvalues as Λ1 > Λ2 > · · · > Λ3932, with Λ1 being the dominant eigenvalue in V0

(i.e., the ground state), the dominant eigenvalues in the sectors V1, V2, V4 and V6 — which

obviously have vanishing momenta, k = m = 0 — are respectively Λ2, Λ5, Λ205 and Λ2390.

Suppose first that we considered some correlation function coupling to all of these

eigenvalues, and we wished to isolate the amplitude corresponding to Λ2390 by using the

first method of appendix A.1. The ratio r = Λ2390/Λ1 ' 3.451 · 10−4, and since we need

to determine 2 390 coefficients Ai in (4.31) we will need the same number of equations,

obtained by choosing the distance l = lmin + 1, . . . , lmin + 2390. We would need (at the

very least) to take lmin = 100 in order to be in the asymptotic regime. Then, since

r2490 ' 2.6 · 10−8821, we see that the terms entering (4.31) would differ by almost nine

thousand orders of magnitude, so allowing some margin for numerical instabilities we would

have to compute the correlation function for (at least) 2 500 different values of l to a

numerical precision of (at least) 10 000 digits. This task is hopelessly impossible, given

that the transfer matrix of appendix A.1 is of dimension ∼ 106 in this case.

To do better, we need to consider a particular well-chosen combination of correlation

functions, designed so that it decouples from a sufficient number of low-lying states in the

spectrum. The quantity

P ∗ = Paaaa + Paabb +
1

Q− 1
(Pabab + Pabba) (5.4)

is a such a good combination. On symmetry grounds, it decouples from the sectors with

odd momenta k. The term Paaaa is rather easily checked to pick up contributions from the

sectors V1, V2 and V4 (and maybe higher values of `), whereas Paabb couples in addition to

V0. Meanwhile, Pabab and Pabba get contributions only from V2 and V4 (and maybe higher

values of `); it is indeed clear that since these terms impose two long clusters (see figure 2)

they cannot couple to V0 and V1. The surprising property of P ∗ is now that, with the above

choice of the two coefficients in its definition, all contributions from V1 and V2 disappear

from the combination. In other words, P ∗ couples to V0, V40, V42, and maybe V`,k with

higher values of ` and even k. We have dimV0 = 232, dimV40 = 190 and dimV42 = 182.

Therefore we shall be able to settle whether there is a non-zero amplitude for the 6-cluster

sector provided we can look beyond the first 604 eigenvalues.

To that end, we have computed P ∗ for l = 100, 101, . . . , 900 to be on the safe side.

Noting that r900 ' 1.3 · 10−3116 we have performed the computations to a numerical preci-
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sion of 4 000 digits. This required about 3 × 105 hours of single-processor CPU time. The

conclusion is that we have unambiguously established that P ∗ picks up non-zero contribu-

tions from the first few eigenvalues in each of the sectors V60, V62 and V64, with amplitudes

in the range ∼ 10−10. While these numbers may seem small, they follow the clear trend

(observed in all cases) that the non-zero amplitudes decay exponentially with the index of

the corresponding eigenvalue. Moreover, these amplitudes are numerically stable towards

changing lmin throughout the range lmin ∈ [100, 200]. We have also checked that the abso-

lute values of contributions which are genuinely supposed to be zero (such as those from

sectors V61, V63 and V65) come out numerically as� 10−500, which is fully compatible with

the above estimates of the required numerical precision.

5.2.3 Exponents

Introducing our usual notation Fj,z2 , the spectrum in the sector with j = 2 propagating

clusters is encoded in the generating functions

F2,1 ⊕ F2,−1 (5.5)

This corresponds to the conformal weights given by (4.24):

(he,−2;he,2) , e ∈ Z , (5.6a)

(he+1/2,−2;he+1/2,2) , e ∈ Z . (5.6b)

Note that for the first part of the spectrum, h − h̄ is an even integer, while it is an odd

integer for the first part. We will denote these two contributions by 2S and 2A respectively,

where S stands for symmetric and A for antisymmetric. Going back to an earlier remark,

this means that we should have, for primary fields

∆− ∆̄ = even in S part , (5.7a)

∆− ∆̄ = odd in A part . (5.7b)

We thus have, for the 2S part

he,2 =
[(m+ 1)e− 2m]2 − 1

4m(m+ 1)
, (5.8a)

he,−2 = he,2 + 2e , (5.8b)

while for the 2A part

he+1/2,2 =
[(m+ 1)e+ 1−3m

2 ]2 − 1

4m(m+ 1)
, (5.9a)

he+1/2,−2 = he+1/2,2 + 2e+ 1 . (5.9b)

Similarly, in the sector with j = 4 propagating clusters we have

F4,1 ⊕ F4,i ⊕ F4,−1 ⊕ F4,−i (5.10)
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The corresponding conformal weights from (4.24) are

(he,−4;he,4) , e ∈ Z , (5.11a)

(he+1/4,−4;he+1/4,4) , e ∈ Z , (5.11b)

(he+1/2,−4;he+1/2,4) , e ∈ Z , (5.11c)

(he+3/4,−4;he+3/4,4) , e ∈ Z , (5.11d)

but the fourth set is identical to the second one. As the number of clusters increases, so

does the number of allowed sectors. Our finite-sizes observations are clearly in favour of

the extension of this pattern, invariably with all even values of j.

Clearly, we find exponents (hr,s, hr,−s) in the s-channel with r ∈ Z and s ∈ 2Z, and

r ∈ Z+1/2, s ∈ 2Z. We will refer to these exponents as sets SZ,2Z and SZ+1/2,2Z, in analogy

with [1]. These sub-spectra arise from the modules Wj,1 and Wj,−1 with j even. But we

find that the s-channel, in finite size at least, contains many more exponents, arising from

phases z2 6= 1,−1 and, in terms of exponents, corresponding to rational values of the first

label with higher denominators, such as those with first label e+ 1/4.

The next key question is whether some sort of simplification might occur in the scaling

limit — for instance, whether some sectors that contribute to the probabilities in finite

size might do so with amplitudes that go to zero as L → ∞. We have seen absolutely no

evidence of this. To make the point as clear as possible, we illustrate it on the case of the

antisymmetric combination Pabab − Pabba.

5.2.4 Amplitudes and the antisymmetric combination Pabab − Pabba

The antisymmetry of the combination implies that only modules with zj = −1 contribute,

which translates into primaries with h − h̄ an odd number — what we have called earlier

the j even, A sectors.

Let us now focus on how this contributes to Pabab−Pabba. We have the first fields at spin

|h − h̄| = 1, 3 with weights (h1/2,∓2, h1/2,±2) and (h3/2,−∓2, h3/2,±2) in the sector SZ+ 1
2
,2Z.

But according to our earlier analysis we also expect contributions from, in particular,

(h1/4,∓4, h1/4,±4).

To make things concrete, we can take for instance Q = 1/2 (so m is irrational), in

which case we find

(h1/2,−2, h1/2,2) = (1.156405 · · · , 0.156405 · · · ) , (5.12a)

(h3/2,−2, h3/2,2) = (2.969378 · · · ,−0.030621 · · · ) , (5.12b)

(h1/4,−4, h1/4,4) = (2.925269 · · · , 1.925269 · · · ) . (5.12c)

We observe that the field with (h1/2,−2 + 2, h1/2,2) has total dimension larger than

(h3/2,−2, h3/2,2). Therefore, at momentum 3, the field (h3/2,−2, h3/2,2) will be the first

contribution, and so will be (h1/2,−2, h1/2,2) at momentum one. It is therefore very easy to
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identify the corresponding contributions to the four-point function:

Paabb − Pabba ∝ (zz̄)−2h1/2,0

(
AΦh1/2,−2,h1/2,2

zh1/2,−2 z̄h1/2,2

+AΦh3/2,−2,h3/2,2
zh3/2,−2 z̄h3/2,2 + . . .

+AΦh1/4,−4,h1/4,4
zh1/4,−4 z̄h1/4,4 + . . .

)
. (5.13)

Since m is irrational, there is no mixing in the conformal mapping, and we have on the

cylinder

Paabb − Pabba ∝ AΦh1/2,−2,h1/2,2

(
4 sin2 2πa

L

)h1/2,−2+h1/2,2

ξh1/2,−2 ξ̄h1/2,2 + . . .

+AΦh3/2,−2,h3/2,2

(
4 sin2 2πa

L

)h3/2,−2+h3/2,2

ξh3/2,−2 ξ̄h3/2,2 + . . .

+AΦh1/4,−4,h1/4,4

(
4 sin2 2πa

L

)h1/4,−4+h1/4,4

ξh1/4,−4 ξ̄h1/4,4 + . . . (5.14)

To restate the obvious, what we do then is measure the combination of probabilities on the

left, identify the various terms on the right (via the exponential l-dependence of ξ, ξ̄), and

account for the geometrical factors (the powers of 4 sin2 2πa
L ) to extract, for a given sizes

L, an estimate of the amplitudes.

5.2.5 The (1/4,∓4) amplitude

We give in figure (3) the results for the ratio AΦh1/4,−4,h1/4,4
/AΦh1/2,−2,h1/2,2

as a function

of Q for various sizes L. While this amplitude is small (amplitudes typically decay very

fast with the dimension of the associated primaries), it is clearly not zero in general, nor

does it show any indication of going to zero as L increases. We note however that, for all

finite sizes, AΦh1/4,−4,h1/4,4
= 0 for Q = 0, 3, 4. This is well expected, as discussed in the

appendices B.4 and B.3 in particular. We find on the other hand that AΦh1/4,−4,h1/4,4
6= 0

for Q = 2 (cf. appendix B.2).

While the amplitude is small in general, it is found to become large — nay divergent

— for two special values:

Q = 4 cos2 π

8
= 3.414213 · · · , (5.15a)

Q = 4 cos2 3π

8
= 0.585786 · · · . (5.15b)

There are several ways to understand this. We will discuss a CFT analysis in the conclusion.

From the lattice point of view, the divergence arises because the transfer matrix exhibits a

Jordan cell in the lowest level of W4,±i. This Jordan cell arises from representation theory

of the Jones algebra for q = eiπ/8, q = e3iπ/8. To illustrate this, take for instance the case

q = e3iπ/8. The moduleW2,−1 becomes reducible for this value of q, and admits a sequence

of submodules as represented in figure 4. The presence of submodules W4,i,W4,−i (in
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Figure 3. The ratio AΦh1/4,−4,h1/4,4
/AΦh1/2,−2,h1/2,2

as a function of Q for L = 5, 6, 7, 8 (blue,

orange, green and red dots respectively). This ratio is generically non zero. It exhibits (in finite

size) simple poles at Q = 4 cos2 π
8 , Q = 4 cos2 4π

8 , and vanishes exactly (in finite size) for Q = 0, 3, 4.

Figure 4. Sub-module structure of W2,−1 for q = e3iπ/8. Note the appearance of sub-modules iso-

morphic toW4,±i, which lead to glueing of standard modules into bigger, indecomposable modules,

and Jordan cells for the transfer matrix.

particular) suggests8 that excited states inW2,−1 (a module with two propagating clusters)

mix with states in W4,i,W4,−i within the module involving four propagating clusters. This

mixture leads to Jordan cells in the transfer matrix. As shown in (4.32)—and further

discussed in appendix B.4 in the case Q = 0 — a Jordan cell in turns translates into a

contribution to the correlation function that is linear in (imaginary) time on the cylinder.

This, finally, corresponds formally to an infinite amplitude.

8While the structure of modules Wj,z2 in degenerate cases is well under control, what happens here is

the glueing of two standard modules for q a root of unity. The understanding of which modules glue with

which ones for a given transfer matrix is a bit more complicated, and involves more representation theory;

see [29] for a discussion of this point.
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5.3 The s-channel spectrum of Paaaa: Fj,e2iπp/M (M |j, j≥2), j, jp/M even

and F0,−1

We now turn to Paaaa: this is the probability that all four points belong to the same cluster.

It is called P0 in [1]. For all finite sizes, we find that the modulesWj,e2iπp/M with M |j, j ≥ 2

and j even contribute when jp/M is even: this corresponds to the sectors with an even

number of clusters propagating, and values of z obeying zj = 1, what we have called earlier

the j even, S sectors. Geometrically, these contributions arise from configurations where

for instance the points 1, 3 and 2, 4 are joined by two clusters which are only connected

outside of the interval between their two (imaginary) time slices. On top of this, we also

have the contribution where the four points belong to a single cluster arising between their

two (imaginary) time slices. As discussed earlier, having a cluster propagating along the

cylinder does not imply that there are boundaries around the cluster. The corresponding

module of the Jones algebra is thus not a module with j = 1: rather, it occurs as W0,−1,

i.e., as a module with no through-lines, but for which non-contractible loops (which would

cut the connection between 1, 2 and 3, 4) are forbidden.

Like for Pabab and Pabba we find that all eigenvalues in these modules do contribute in

finite size, and that none of the amplitudes seem to vanish as L→∞. This suggests that

the spectrum of critical exponents is given by Fj,e2iπp/M (M |j, j≥2), j, jp/M even and F0,−1.

In the two clusters (j = 2) sector, this leads to

(he,−2;he,2), e ∈ Z (5.16)

while in the four clusters (j = 4) sector we find

(he,−4;he,4), e ∈ Z
(he+1/2,−4;he+1/2,4), e ∈ Z (5.17)

These two contributions occur as well in SZ+1/2,2Z. New contributions appear for higher

even values of j. For instance we find also

(he,6;he,−6), e ∈ Z
(he±1/3,6;he±1/3,−6), e ∈ Z (5.18)

On top of this we have the ‘one-cluster sector’, which is described by F0,−1 (i.e., non-

contractible loops are killed). This corresponds to the set of conformal weights

(he+1/2,0;he+1/2,0), e ∈ Z (5.19)

which is also in SZ+1/2,2Z.

5.4 The s-channel spectrum of Paabb: Fj,e2iπp/M (M |j, j≥2), j, jp/M even, F0,−1

and F̄0,q2

The quantity Paabb is the probability for two “short clusters” (as opposed to the “long

clusters” shown in figure 2): points 1, 2 belonging to one cluster, points 3, 4 to the other.
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It is called P1 in [1]. We find that all the eigenvalues occurring in Paaaa also contribute to

Paabb. On top of these, we also find the eigenvalues from the module W0,q2 =W0,q−2 . This

module corresponds to a sector with no (forced) propagating cluster, which is obtained

simply by giving non-contractible loops their bulk weight. As usual now, none of the

corresponding amplitudes seem to vanish in the limit L→∞.

The operator content from W0,q±2 involves diagonal primaries, with weights

(he+e0,0;he+e0,0), e ∈ Z , (5.20)

where

he+e0,0 =
[(m+ 1)(e+ 1)− 1]2 − 1

4m(m+ 1)
. (5.21)

Of course this is the same set as the set

(he,1;he,1), e ∈ Z , (5.22)

after a shift of the electric charge. We will denote this set as SdZ,1.

5.5 Summary

We can now summarise our spectra in the s-channel

s-channel Parities

Paaaa S1 ≡ SZ+1/2,0 ∪ {SZ+ p
M
,j} j ∈ 2Z, jp/M even

Paabb S2 ≡ SdZ,1 ∪ SZ+1/2,0 ∪ {SZ+ p
M
,j} j ∈ 2Z, jp/M even

Pabab/abba S3 ≡ {SZ+ p
M
,j} j ∈ 2Z, jp/M integer

(5.23)

where we have allowed j to take positive or negative values, since the sets of exponents

are invariant under j → −j. Recall that e.g. the set SZ,2Z refers to pairs of exponents

(hr,s, hr,−s) with r ∈ Z, s ∈ 2Z, while SdZ,1 denotes pairs (hr,1, hr,1), with r ∈ Z. Recall also

that p,M are coprime integers, and that the value p = 0 in particular is allowed. The case
p
M = 1

2 appears already in [1].

Note that these are the generic results, i.e., those valid for m irrational. Some contri-

butions vanish for special values of Q, such as Q = 0, Q = 2 and Q = 4 (see appendix B)

and in some cases Jordan blocks appear.

The spectra in the other channels follow from simple geometrical considerations:

t-channel u-channel

Paaaa S1 S1

Paabb S3 S3

Pabab S3 S2

Pabba S2 S3

(5.24)

An important property of our spectra in the case of Paabb is that only states with

positive conformal weights propagate along the cylinder: no “effective central charge”
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Figure 5. A sample of the full spectrum in the s-channel for Pabab−Pabba represented by the pairs

(r, s) of the hr,s exponents (r is on the y-axis, and s on the x-axis. The spectrum considered in [1],

depicted as crosses, is seen to be a tiny subset of the full spectrum: the projections of the dots on the

y-axis in fact should cover it densely (represented here are exponents for M = 2, 4, 6, 8, 10, 12 only).

appears, despite the non-unitarity of the CFT. This is contrast with what would be

observed, for instance, in the case of minimal models corresponding to m + 1 ≡ p
p′ , p, p

′

integer, where the effective ground state with ceff = 1 − 6
pp′ would appear. It is our

understanding that a similar phenomenon takes place in the conjectured expressions of [1].

6 Comparison with results in [1]

The comparison with the proposal in [1] requires some discussion, since the authors in

this reference did not, in particular, provide conjectured results for Paaaa. The simplest

quantity to consider is Pabab − Pabba ≡ P2 − P3 in the notations of that reference. Indeed,

from eq. (3.2) in [1]

Rσ = λ(P0 + µPσ) (6.1)

we see that, in their notations, R2 −R3 = λµ(P2 − P3). The spectrum in the s-channel of

P2−P3 = Pabab−Pabba, according to our analysis, is made of the fields (he+p/M,−j ;he+p/M,j)

for e ∈ Z, with j even and pj/M an odd integer. Note that all these fields have h− h̄ odd.

In [1], meanwhile, the spectrum is SZ+1/2,2Z (after switching indices in [1] to make their

conventions the same as ours), restricted like for us to odd spin h− h̄. So for instance the

field with weights (h1/4,∓4;h1/4,±4) for which we have seen that the amplitude is generically

non-zero, is absent in the solution proposed in [1]. This suggests that their solution is,

generically, not the correct one, and that an infinity of fields is missing in their proposal.

We illustrate this qualitatively in figures 5, 6.

Meanwhile, it is fascinating to compare results for amplitudes that are predicted in [1]

and which are also found to occur in our analysis. A good example of this is the first

amplitudes for the sector with j = 2, namely AΦh3/2,−2,h3/2,2
and AΦh1/2,−2,h1/2,2

. The

bootstrap in [1] produces amplitudes which are in fact simply related with those of Liouville
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Figure 6. The projection on the vertical axis of the exponents represented in figure 5

field theory at c < 1, and thus admit analytical expressions [51, 52]. In particular, their

conjecture is

AΦh3/2,−2,h3/2,2

AΦh1/2,−2,h1/2,2

= 2
− 4
β2

Γ(3
2 + 1

4β2 )

Γ( 1
4β2 )

Γ(3
2 + 3

4β2 )

Γ(1 + 3
4β2 )

Γ(−1− 1
4β2 )

Γ(3
2 −

1
4β2 )

Γ(2− 3
4β2 )

Γ(3
2 −

3
4β2 )

(6.2)

where β2 = m
m+1 ,

√
Q = 2 cos π

m+1 , m ∈ [1,∞]. This conjecture reproduces results which

are believed to be exact at Q = 0, 3, 4 — the result for Q = 0 is discussed in our ap-

pendix B.4; the result for Q = 4 follows from a work by A. Zamolodchikov (as discussed

in [1]), and the result for Q = 3 is unpublished work of R. Santachiara.

Numerical results for this ratio are given in figure 7. They are intriguingly close —

after reasonable extrapolation — to the formula (6.2). The agreement is worse near Q = 4,

but as commented elsewhere in this paper, this discrepancy can possibly be attributed

to the presence of a marginal operator affecting corrections to scaling. We do not know

whether (6.2) might actually be exact, or whether it is just very close to the exact result.

Numerics, at this stage, do not really allow us to settle this issue.

Meanwhile, the uncertainty of the numerical determination shown in figure 7 can be

estimated from the difference between the extrapolations through even and odd system

sizes L. Given that this uncertainty is (for most values of Q) comparable to the distance

to the conjectured result (6.2) is certainly a strong motivation for further improving the

numerical algorithm and gain access to a few more sizes. This could maybe be achieved if

one could impose the sector and momentum constraints within our scalar product method

(see appendix A.2).

7 Conclusion

We believe that the numerical and algebraic evidence presented in this paper invalidates

the results in [1]. This is a very intriguing conclusion, since, in particular, the authors
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Figure 7. Results for the ratio AΦh3/2,−2,h3/2,2
/AΦh1/2,−2,h1/2,2

, as a function of Q, for sizes L =

5, 6, 7, 8, 9, 10, 11 corresponding to colours blue, orange, green, red, purple, mauve, clear blue. The

points in purple are obtained by extrapolating data for L = 5, 7, 9, 11 and those in yellow by

extrapolating data for L = 6, 8, 10. The green curve is the conjecture (6.2).

of [1] presented Monte Carlo simulations of four-point functions in the plane that were in

good agreement with their bootstrap prediction. It is possible that the conjecture in [1],

while not the correct answer to the problem of describing geometrical correlations in the

Potts model, is indeed a solution to the bootstrap, and moreover captures numerically the

essential features of the four-point functions, failing only at an accuracy, or for values of the

cross-ratio z, not accessible using the Monte-Carlo approach. If this is the case, this raises

several questions, in particular about the number of possible solutions to the bootstrap,9

and what, if anything, is truly described by the proposal in [1].

To shed more light on this issue, an obvious route is to build four-point functions

following the methodology in [1] but based on our spectra. This is quite challenging tech-

nically, because of the large number of primary fields with dimensions of the same order of

magnitude we would have to involve. Another, more fundamental aspect worth mention-

ing is that, in our spectrum, many of the conformal weights have degenerate values, with

singular conformal blocks. It is not clear whether the regularisation procedure used in the

bootstrap approach [1] is actually the relevant one for the Q-state Potts model. This, we

believe, could be answered by numerical studies in the spirit of the present paper and [55].

A particularly intriguing fact is that we found numerically a ratio

AΦh3/2,−2,h3/2,2
/AΦh1/2,−2,h1/2,2

which is not incompatible with the proposal in [1]; see

figure 7. It could be that the solution to the bootstrap relevant for the Potts model

involves for this ratio a value close to the one in [1] and yet different, over the whole

range Q ∈ [0, 4]. It could also be that the amplitudes in [1] — which, to the best of our

understanding, are actually given by standard formulae for Liouville at c < 1, naively

extended to the case of fields with h 6= h̄ — are exact, but that something has to be added.

9Recall that there are cases where several solutions to the bootstrap are known to exist, for instance the

Liouville theory at c = 1 and the Runkel-Watts limit of minimal models [53, 54].
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Adding “something” to the spectrum in [1] is definitely necessary if one wishes to avoid

correlation functions with many singularities as Q is varied. To see why this is the case,

we consider the contributions to the antisymmetric combination of probabilities: including

now higher order terms in the conformal blocks

Paabb − Pabba ∝ (zz̄)−2h1/2,0

(
AΦh1/2,−2,h1/2,2

F (s)
h1/2,−2

F (s)
h1/2,2

(7.1)

+AΦh3/2,−2,h3/2,2
F (s)
h3/2,−2

F (s)
h3/2,2

+AΦh1/4,−4,h1/4.4
zh1/4,−4 z̄h1/4,4 + . . .

)
.

Note that we used here conformal blocks where the dependency z−2h1/2,0 (resp. z̄−2h1/2,0)

has been factored out.

When Q → 4 cos2 3π
8 ≡ Q∗, we find that h3/2,2 → h1,2, a degenerate value. The

conformal block in the four-point function coming from

(h3/2,−2, h3/2,2) = (h3/2,−2, h1,2) =

(
− 1

32
+ 3,− 1

32

)
(7.2)

has a null-state at level 2 for the z̄ components, with weights

(h3/2,−2, h1,−2) =

(
− 1

32
+ 3,− 1

32
+ 2

)
. (7.3)

The appearance of the null-state means that the conformal block Fh3/2,2
has a pole of the

form 1
Q−Q∗ multiplying the term zh3/2,−2 z̄h1,−2 . Setting

F (s)
h3/2,−2

F (s)
h3/2,2

≈ . . .+ r∗

Q−Q∗
zh3/2,−2 z̄h3/2,2+2 + . . . , (7.4)

we see that the amplitude of the singular term in the bracket in (7.1) is

AΦh3/2,−2,h3/2,2

r∗

Q−Q∗
zh3/2,−2 z̄h3/2,2+2 . (7.5)

Meanwhile we observe that the weights for the singular term coincide with the weights

from the 1/4 sector:

(h1/4,−4, h1/4,4) =

(
−1

32
+ 3,

−1

32
+ 2

)
. (7.6)

Recall that we have found numerically that the amplitude of this field also has a simple

pole when Q→ Q∗:

AΦh1/4,−4,h1/4,4
≈ R

Q−Q∗
, (7.7)

so the amplitude of the second singular term in (7.1) is

R

Q−Q∗
zh1/4,−4 z̄h4,1/4 . (7.8)

For technical reasons, we normalise all quantities by AΦh1/2,−2,h1/2,2
(this amplitude is not

expected to be singular), so we set

AΦh1/4,−4,h1/4,4

AΦh1/2,−2,h1/2,2

≈ r

Q−Q∗
. (7.9)
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We find numerically that on “resonance”, there is a Jordan cell of rank two mixing the two

terms, but no singularity. This means that we should have the condition

r +
AΦh3/2,−2,h3/2,2

AΦh1/2,−2,h1/2,2

r∗ = 0 . (7.10)

To put things differently, the appearance of a null-state in the conformal block Fh3/2,2
leads

to a divergence in the four-point function (assuming the formula for AΦh3/2,−2,h3/2,2
given

earlier is correct). To cancel this divergence, a contribution AΦh1/4,−4,h1/4,4
is necessary.

Moreover, this contribution must exhibit a simple pole, as we have observed numerically.

It is possible that this picture generalises, with singularities in the proposal of [1] exactly

cancelled out by the additional terms we find in our lattice analysis. This will be discussed

elsewhere [56].

To conclude this paper, we re-iterate the remark that the eigenvalues contributing to

the probabilities are (a subset of) those appearing in the Potts model partition function [11].

While this would be a well expected fact for a model defined locally such as the Ising

model or any kind of height model, this is not so obvious in our case. Indeed, in a model

where correlations are defined non-locally there is no clear connection between the partition

function and at least some of the observables. To give a simple example, we know well that

the probability that two points are connected with a cluster allowing two independent paths

involves exponents not present in the partition function [35, 37]. The fact that no such

exponents are needed for the Pa1a2a3a4 suggests that these are rather close to “ordinary”

observables, and that we may be able to understand them in terms of fully local operators

acting on the space of states. One of the main “elementary” mysteries in this description

is why only sectors with an even number of clusters contribute. We believe that thinking

more deeply about algebraic aspects of the problem on the lattice will shed some light on

this question.
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A Computing four-point functions on the cylinder

In this appendix we gather all the algebraic and numerical technology that enables us to

compute four-point functions in the FK cluster model on a cylinder.

The geometrical setup is shown in figure 1. For the sake of simplicity we shall define

the model on an axially oriented square lattice of width L spins. The four points are

inserted in two different time slices, separated by l lattice spacings, with points w1, w2 in

the first slice and points w3, w4 in the second slice.
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The algebraic tool is the transfer matrix T based on the join-detach algebra, which we

have already briefly reviewed in section 3.1. To adapt it to the computation of correlation

functions the crucial point is the representation of the algebra, i.e., the choice of the set of

states on which T acts. While the partition function Z can be simply computed by taking

these states to be set partitions of L points (see [57, 58] for details) we shall need to endow

these partitions with various kinds of marks.

We are interested in two different situations that present some subtle differences. First

we describe how to compute directly the 15 different FK cluster correlation functions

Pa1,a2,a3,a4 , defined by (2.6), that lie at the heart of the numerical method outlined in

section 4.3.1. Second, we go into the details of the alternative method of section 4.3.2 which

is based on computing scalar products involving the order parameter operators (2.5).

A.1 Computation of Pa1,a2,a3,a4

Let wk (with k = 1, 2, 3, 4) be four marked points on the cylinder, as shown in figure 1.

Let P = {a1, a2, a3, a4} be a set partition of the four points, defined by the corresponding

integer labels ak. We wish to construct a transfer matrix that builds the statistical weight

WP corresponding to a correlation function in which the marked points k and ` belong to

identical (resp. different) FK clusters if ak = a` (resp. ak 6= a`). For instance, the choice

P = {1, 2, 1, 2} means that w1 and w3 belong to the same cluster, while w2 and w4 also

belong to a common cluster which is different from the first one, as shown in the left panel

of figure 2.

On the cylinder there are B4 = 15 different correlation functions, where the Bell

number BN denotes the number of partitions of an N -element set. On the strip there

would be only C4 = 14 correlation functions, where CN denote the Catalan numbers.

We consider the square lattice of width L wrapped on a cylinder. The sites within

each row are labelled by i = 0, 1, . . . , L − 1, with the labels considered modulo L by the

periodic boundary conditions. To make contact with figure 1, we let w1 and w2 correspond

to sites 0 and 2a (with a ∈ N/2) in the row labelled by the transfer matrix “time” t1 = 0,

while w3 and w4 correspond to sites x and x + 2a in the row t2 = l. A cluster containing

(at least) one of the points wk is called a marked cluster.

To allow the marked clusters to wind around their insertion points, we consider a larger

piece of the lattice, going from row t0 = −M to row t3 = l+M . We impose free boundary

conditions on the two extremites of the finite cylinder defined by t ∈ [t0, t3]. The desired

correlation functions (or probabilities) are then given by the limit

PP(l) = lim
M→∞

WP∑15
r=1WPr

. (A.1)

For practical purposes, to obtain PP(l) to a given numerical precision, it suffices to take M

sufficiently large, so that the results for M and M + 1 coincide to the chosen precision. A

more precise criterion for the choice of M can be given once the spectrum of the transfer

matrix is known (see section A.7.2).

The transfer matrix acts as usual on states {s1, s2, . . . , sL} which are certain set par-

titions of L points, but now endowed with suitable markings. We have si = sj if and
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only if sites i and j are seen to be in the same FK cluster at a given time t — by this we

mean that i and j are connected by a piece of FK cluster on the partly constructed cylin-

der t ∈ [t0, t]. The symbols si can take the values 1, 2, . . . , L for unmarked clusters, and

1̄, 2̄, 3̄, 4̄ for marked clusters containing one of the points wk. If a marked cluster contains

more than one marked point, the chosen symbol is the lowest one, in order to avoid any

redundancy in the correspondence between cluster connectivities and states. Unmarked

clusters are indistinguishable.

As shown in (3.2) the transfer matrix can be written as a product of elementary

operators Hi = I + vJi and Vi = vI + Di that add respectively a horizontal edge between

sites i and i + 1 (mod L), and a vertical edge on top of site i. We have v = eK − 1, with

K the Potts coupling, and the critical value on the square lattice is vc =
√
Q. The join

and detach operators, Ji and Di satisfy the join-detach algebra with relations (3.3). We

now describe a modified representation of this algebra that properly takes into account the

possibility of having marked clusters.

A clusters is said to be left behind at site i if Di detaches a singleton in the set partition.

When this happens, Di applies a weight Q, irrespective of whether the cluster being left

behind is unmarked or marked.

Remark 8. In some applications it is natural to give weight 1 to marked clusters. In

particular, this is mandatory in the limit Q → 0, since otherwise all correlation functions

would be identically zero. However, for the time being we choose to give weight Q to any

cluster, including the marked ones, since then
∑15

r=1WPr = Z(Q, v), the partition function

on a cylinder of circumference L and length l + 2M . The quantity Z(Q, v) can easily be

obtained by independent means [59], and the sum rule then provides a valuable check of the

correctness of the algorithm.

To apply the initial condition, we start from the all-singleton state {1, 2, . . . , L} at

time t0. The final condition at time t3 is to project out any state in which the desired

connections between marked clusters have not been achieved. To be precise, if there exists

two distinct labels k̄ 6= ¯̀ in the connectivity state such that ak = a`, then the state must

be discarded. Any state that survives this projection is attributed a weight Q per cluster

(again irrespectively of whether it is unmarked or marked). The weighted sum over retained

states produces the sought-for WP .

Marked symbols are introduced in the time evolution by joining site i = 0 (resp. i = 2a)

to the marked symbol 1̄ (resp. 2̄) at time t = t1, and by joining site i = x (resp. i = x+ 2a)

to the marked symbol 3̄ (resp. 4̄) at time t = t2.

To impose the desired four-point connectivity, we modify the action of the join opera-

tors Ji as follows:

• When Ji joins an unmarked cluster to a marked cluster with symbol k̄, the result is

a marked cluster with the same label k̄.

• Ji can join two marked clusters with labels k̄ and ¯̀ only if ak = a`. In that case, the

result is a marked cluster with the lowest label min(k̄, ¯̀).
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The detach operators Di need a more subtle modification. We describe the marked points

w1 and w2 as unseen (i.e., not yet visited by the transfer process) when the time t < t1.

Similarly the marked points w3 and w4 are unseen when t < t2. The required modifica-

tion is:

• The cluster k̄ is allowed to be left behind only if the label ak is different from the

labels of any other marked cluster in the connectivity state, and also different from

the labels of all yet unseen marked points.

A.1.1 Example

Consider the case P = {ak} = {1, 2, 1, 2} of two propagating clusters. At times t1 < t < t2,

the points w1 and w2 have been seen, so the connectivity state can contain the symbols 1̄

and 2̄. In fact, both symbols must be present, because the Ji operator cannot join 1̄ and

2̄ (since we have a1 6= a2); moreover none of them can be left behind, because points P3

and P4 are unseen. Indeed, a1 = a3 then prevents 1̄ from being left behind, and a2 = a4

prevents 2̄ from being left behind.

At later times t2 < t < t3, all points have been seen. Symbols 1̄ and 3̄ can join, because

a1 = a3 (and similarly for 2̄ and 4̄). But before this happens, none of the clusters 1̄ and 3̄

can be left behind (by the rule on Di). When 1̄ and 3̄ join, the resulting cluster carries the

symbol 1̄ (by the second rule on Ji). After this happens, 1̄ can be left behind (by the rule

on Di, because 3̄ is no longer used in the connectivity state).

A.1.2 Checks

In addition to extensive checks for small systems, where all configurations can be drawn

by hand, we have checked that:

1. The unnormalised sum
∑15

r=1WPr = Z(Q, vc) for any values of Q, L, l, and M .

2. The probabilities converge to any desired numerical precision upon taking M � L, l

large enough.

Moreover, for the situation with shift x = 0 (see figure 1) it is non-trivial from the point

of view of the transfer algorithm that the following lattice symmetries hold true:

3. The four probabilities in which three points are in the same cluster are all equal.

4. The six probabilities in which two points are in the same cluster and the other two

are in two distinct clusters, are equal two by two.

A more restricted set of lattice symmetries holds true also for x 6= 0; for instance the four

probabilities in which three points are in the same cluster, are equal two by two. We have

checked this as well.
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A.1.3 Sample results

To help the readers desirous of writing their own implementation, we here give some sample

results for PP(l) for a system with Q = 1 and size L = 5. We take distance l = 3 between

the time slices and place the points in each slice as nearest neighbours (2a = 1), with no

offset between the two slices (x = 0). The set of 15 probabilities (up to the symmetries

described above) are then:

Paaaa = 0.4137474261084028402728075794444609019425125830604 , (A.2a)

Paaab = 0.0527654414874488570020983215187468064670272213592 , (A.2b)

Paabb = 0.1710044985220526406478058107746167574154887333139 , (A.2c)

Pabab = 0.0008428892255516309347686777944043427144862186950 , (A.2d)

Pabba = 0.0000809519640647414138510576682844254047786037826 , (A.2e)

Paabc = 0.0728732174729894992103081083804105937132582003470 , (A.2f)

Pabac = 0.0082903229000495425925235985388971176349864439965 , (A.2g)

Pabca = 0.0061033620128809220144422552541186396032488302690 , (A.2h)

Pabcd = 0.0287286634582927910878256638963936447516380264857 . (A.2i)

It was necessary to take M = 200 to achieve 50 correct digits. Note that our code is written

so that the number of digits of numerical precision can be adjusted to any desired value.

As a final check we consider the limit l� L. Then we expect

Pabcd = (1− p)2 , (A.3a)

Paabc = p(1− p) , (A.3b)

Paabb = p2 , (A.3c)

where p is the finite probability that two nearest neighbours are in the same cluster. All

other PPr(l) will be negligible in that limit. By taking L = 5 and l = 384 (with still

M = 200) we have verified that this is indeed the case, and we estimate

p = 0.76315602507834269413 . (A.4)

A.1.4 Case of Q→ 0

The limit Q→ 0 (with v =
√
Q→ 0 as well) is somewhat special from the point of view of

normalisations, since then Z(Q, v) = 0. The partition function which is used to normalise

the weights WP and turn them into probabilities, as in (A.1), is then taken as Z̃ = Waaaa,

the number of spanning trees containing all four marked points. Moreover, any marked

cluster is assigned a weight 1 (instead of Q in the general case), whereas unmarked clusters

still have the weight Q = 0, which implies that such clusters are disallowed.

A.2 Computation of Ga1,a2,a3,a4

The second numerical method presented in section 4.3.2 provides a means of computing one

by one the amplitudes appearing in the order parameter correlation functions Ga1,a2,a3,a4
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defined in (2.7). This method is of a very different nature than the one just presented

(i.e., for the computation of Pa1,a2,a3,a4), since it does not compute the four-point corre-

lator directly on a cylinder of finite length, but rather goes directly for the asymptotic

quantities Ai. Thus, the appearance of |v0〉 and 〈v0| in (4.35) amounts effectively to taking

the limit M → ∞ of the distance to the boundary conditions, and the piece |vi,j〉 〈vi,j |
projects directly on an intermediate state in the s-channel, which is equivalent to taking

the limit l→∞.

As a prerequisite to this approach — and in order recover in particular the same

results as with the first method of section 4.3.1 — it is however necessary to produce

yet another representation of the join-detach algebra. In particular, we shall need the

action of the order parameter operators Oa to be well-defined for generic values of Q ∈ R.

By (2.5), this hinges on giving a well-defined meaning — and in particular, a meaning

that extends to non-integer Q — to the operator δσk,a that fixes the value of the spin at

point wk to be equal to the label a. Note that such extensions of order-parameter related

quantities have played an important role in several recent pieces of work involving the

present authors [15–17, 21–23].

As stated around (2.9) we are here only interested in correlation functions Ga1,a2,a3,a4

employing at most two distinct symbols, a and b. We shall therefore take T to act on basis

states which are set partitions of L points with two marked values, denoted a and b. It is

crucial that these values are now different by definition. This provides a difference with

the computation of Pa1,a2,a3,a4 , where two differently marked clusters could be joined under

some circumstances. More precisely, the rules are now the following:

• The operator δσk,a (the non-trivial part of Oa) acts at the point wk by transforming

an unmarked cluster touching that site into a marked cluster of label a. If the cluster

is already marked with label b, Oa acts as the identity times δa,b.

• The join operator Ji acts as usual on two unmarked clusters. When acting on an

unmarked cluster and a marked cluster of label a, the result is a marked cluster of

label a. Finally, when acting on two marked clusters of labels a and b, Ji acts as the

identity times δa,b.

• The detach operator Di transforms site i into an unmarked singleton. If i was already

a singleton beforehand, a weight Q is applied if the corresponding cluster is unmarked,

and 1 if it is marked.

To compute the scalar products in (4.35) it is convenient to produce all the intervening

vectors in the same space. In particular, the ground state eigenvector |v0〉 is written within

the space of set partitions with two marked values, although it is easily seen that its

component along any state containing marked clusters is zero.

A.2.1 Orthogonalisation

It has already been stated in the main text that the scalar product method relies on the

left and right eigenvectors being orthogonal, even within degenerate subspaces. Standard
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numerical methods for non-symmetric matrices, such as the Arnoldi algorithm, do not

immediately produce the eigenvectors in this form. Rather, within each degeneral subspace

corresponding to the eigenvalue Λi, the scalar product of eigenvectors come out as

〈vi,j |vi′,j′〉 = α
(i)
j,j′ , (A.5)

where the nombers α
(i)
j,j′ can be viewed as the elements of some matrix α(i). However, if we

replace the right eigenvectors by the linear combinations

|ṽi′,j′〉 =
∑
k

β
(i)
kj′ |vi,k〉 (A.6)

it is easy to see that we obtain the orthonormality 〈vi,j |ṽi′,j′〉 = δj,j′ provided we take

β(i) =
(
α(i)
)−1

. In practice, the size of degenerate subspaces is rather small (of dimension

1, 2, 4 or 8 in the problem at hand), and so any elementary method of producing the inverse

matrix
(
α(i)
)−1

will solve the problem conveniently.

A.2.2 Checks

We have made extensive checks that the Ai obtained from the scalar product method are

identical to those obtained from the more involved first method based on (4.31), provided

one takes into account the linear relations (2.9), and forms the sum over orthogonalised

degenerated subspaces in (4.35).

We have verified that the scalar product method also gives the correct amplitudes of

Gaaaa in the simpler case where the states of T are constrained to have only one marked

value a. It seems likely — although we have not actually tried this — that it will also

extend to the most general Ga1,a2,a3,a4 provided the number of marked values is (at least)

equal to the number of different symbols ak in the correlation fucntion.

A.3 Spectrum of T

At many occasions throughout this work we need to obtain the eigenvalues Λi of the transfer

matrix. This is obviously a much easier problem than obtaining the correlation functions,

and has been discussed in many places, so we can be rather brief.

A.3.1 First representation

The Λi are related to the asymptotic decay of the two-point functions, so in analogy with

section A.1 they can be obtained by using the representation of the join-detach algebra

in the regime t1 < t < t2, where the boundary conditions t1 → −∞ and t2 → ∞ have

been pushed to the extremities of the cylinder. More precisely, we are interested in the

sector with ` propagating FK clusters, so we can build on the same representation as

in section A.1, but with states employing ` distinct marked symbols. The action of the

elementary operators Ji and Di must ensure that ` distinct clusters propagate along the

cylinder, and the rules match those of section A.1 for t1 < t < t2:

• Ji cannot join two marked clusters corresponding to different labels.

• Di cannot leave behind any marked cluster.
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• The different labels are treated as indistinguishable.

The last rule means that if the first site in the cluster with mark k̄ is denoted ik, we quotient

the set of states in order to impose i1 < i2 < . . . < i`.

We have checked that the spectrum of this transfer matrix coincides with that of

the loop model (2.3) in the affine TL representations (3.13), where as usual j = ` for

j ≥ 2, while the first and the third terms in the direct sum correspond to ` = 0 and

` = 1 respectively.

A.3.2 Second representation

It is also of interest to express T in the representation of section A.2. There are now

precisely two different marks, and the rules read:

• Ji cannot join two marked clusters corresponding to different labels.

• Di can leave behind a marked cluster (with weight 1).

• The different labels are treated as distinguishable.

We find that the spectrum of this transfer matrix reproduces precisely (3.13), but only

for j = 0, 2, 4, . . ., including the structure W0,q±2 ⊕ W0,−1 with two direct summands for

j = 0 and the absence of (at least the first few) odd terms (j = 1, 3). At present it is not

obvious to us what is the precise decomposition of this representation in terms of simple

affine TL modules, but we take the observations just mentioned as a first sign that our

main result on the s-channel of four-point functions might have a natural interpretation

within this representation of the join-detach algebra. We therefore suggest that it might

be worthwhile to study more precisely the algebra obtained from generators Oa(σi), Ji and

Di, which contains the usual join-detach algebra as a sub-algebra.

A.4 Momentum sectors of T

As discussed in section 4.3.3, it is important to be able to associate the eigenvalues Λi

of T with the conformal properties that emerge in the continuum limit. To this end we

shall need to attach to each Λi more information than just the number of propagating FK

clusters that it corresponds to.

It is most practical for our purposes to consider here the loop model, in its representa-

tion of standard modulesWj,z2=e2iK within the affine TL algebra TaN (n). We denote in this

section by TN,2` the corresponding transfer matrix on link patterns with N = 2L strands

(recall that L is the number of Potts spins in a row) and 2` through-lines. Each through-line

picks up a factor z (resp. z−1) when it traverses the periodic boundary condition towards

the right (resp. left).

Our goal is to make apparant two more quantum numbers: the momentum k of the

through-lines, and the lattice momentum m. The former comes directly from the quanti-

sation of z, and the latter is equal, in finite size, to the conformal spin: m = h − h̄. We

shall obtain each momentum sector by transforming TN,2` into an appropriate matrix of

smaller dimension.
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To this end we proceed as follows. The dimension of Wj,z is
(

N
N/2−j

)
. Within this

space we choose one representative state for each orbit of the cyclic group CL generated by

u2, where u is the affine TL shift operator. Note that [TN,2`, u
2] = 0 for the Potts-model

transfer matrix. The orbit length corresponding to a representative state |s〉 is denoted gs,

so the orbit can be written

|s〉, u2|s〉, u4|s〉, . . . , u2(gs−1)|s〉 . (A.7)

Obviously gs is a divisor of L, and the weighted sum over representative states (with each

|s〉 being weighted by its orbit length gs) equals dimWj,z.

Example 1. For L = 3 and ` = 0 the dimension of Wj,z is
(

6
3

)
= 20 (we do not need to

take the quotient yet), and there are 8 distinct orbits (namely 6 with gs = 3, and 2 with

gs = 1). For L = 8 and ` = 4 the dimension of Wj,z is
(

16
4

)
= 1820, and there are 224

orbits with gs = 8, 6 orbits with gs = 4, and 2 orbits with gs = 2.

The motion within orbits gives rise to another momentum variable, distinct from the

twist z of the affine TL algebra. Recall that the twist variable is z = eiπk/` for each

through-line traversing the seam towards the right, and since the total phase factor for

a turn of all 2` through-lines must be z2` = 1 we have k = 0, 1, . . . , ` − 1. Similarly we

now wish to construct the sector of lattice momentum ωm ≡ (ω)m, where ω ≡ e2πi/L, by

attributing a weight ωm to each translation of one Potts spin (hence two TL loop strands)

within the orbits of CL. Since the total phase factor for a rotation through L spins must

be (ωm)L = 1 we have m = 0, 1, . . . , L − 1. We stress that k is related to the number of

FK clusters `, whereas m is related to the system size L.

We now wish to construct a restriction TN,2`,m to given values of the momentum labels

k ∈ Z` and m ∈ ZL. This means that the spectrum of TN,2`(n, z) must be decomposed as

the union of the spectra of TN,2`,m, including multiplicities:

specTN,2`(n, z) =

L−1⋃
m=0

specTN,2`,m(n, z, ωm) . (A.8)

It is practical for us to denote the set of eigenvalues of TN,2`,m(n, z, ωm), with specified

values of the momenta z = eiπk/` and ωm = e2iπm/L, simply as V`,k,m. We denote the reve-

lant dimensions as D` = dimWj,z and d`,k,m = dimV`,k,m, where d`,k,m will be determined

below. We should of course have

D` =

L−1∑
m=0

d`,k,m (A.9)

for any ` = 0, 1, . . . , L and k ∈ Z`, in accordance with (A.8).

Our approach is to construct, for each m, a D` × d`,k,m matrix Sin, and a d`,k,m ×D`

matrix Sout(z, ω), such that

TN,2`,m(n, z, ωm) = Sout(z, ω)TN,2`(n, z)Sin . (A.10)
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In the matrix Sin, each state |s〉 in the restricted space is mapped to the corresponding

representative state in the full space, with a Boltzmann weight equal to gs. In other words,

if the representative state |s〉 is ordered as the j’th basis state in the restricted space and as

the i’th basis state in the full space, then (Sin)ij = gs. All other matrix elements are zero.

In the matrix Sout(z, ω), each state |t〉 in the full space is identified as |t〉 = u2k|s〉,
where |s〉 is the representative state corresponding to |t〉 (i.e., with |s〉 living in the restricted

space) and k the number of double shifts (by convention, towards the left) necessary to

bring |t〉 into the representative form. Notice that under these shifts, it is possible that

a number of through-lines p will cross the periodic boundary condition (towards the left).

We must keep in mind that the convention for TaN (n) is that each through-line that crosses

the periodic boundary condition towards the right (resp. left) acquires the weight z (resp.

z−1). Therefore, the Boltzmann associated with bringing |t〉 into the representative form

|s〉 is (ωm)kz−p/gs. Thus, if |t〉 is ordered as the j’th basis state in the full space and its

representative |s〉 is the i’th basis state in the restricted space, then

(Sout(z, ω))ij =
(ωm)k

gszp
=
ωm·k

gszp
. (A.11)

All other matrix elements are zero.

A crucial point is that the orbit lengths must be compatible with the momentum that

we impose. To be precise, the restricted states corresponding to given values of the labels

k,m are those with orbit lengths gs satisfying

(k −m)gs = 0 mod L . (A.12)

The dimension d`,k,m is precisely determined by the number of restricted states satisfying

this constraint.

Example 2. Let us consider again the case L = 8 and ` = 4. Any V`,k,m with k−m ∈ 4Z
comprises all 224 + 6 + 2 = 232 representative states (corresponding to gs = 8, 4, 2), so

that the corresponding d`,k,m = 232. When k −m ∈ 4Z + 2 only the states with gs = 8, 4

are allowed, so that d`,k,m = 230. And finally, when k −m ∈ 2Z + 1, only the states with

gs = 8 are allowed, so that d`,k,m = 224. To obtain the sumrule (A.9) we notice that for

any k ∈ Z`, the eight values of m ∈ ZL corresponds to 8 cases where gs = 8 is allowed,

4 cases where gs = 4 is also allowed, and 2 cases where gs = 2 is also allowed, i.e., we

recognise the values of the gs themselves in this count. Thus 8×224 + 6×4 + 2×2 = 1820,

as it should. By the same reasoning, (A.9) is verified for arbitrary values of L and `.

We have written an algorithm that produces the basis change matrices Sin and

Sout(z, ω) very efficiently. The crux is obviously to deal with the ordering of the states

and the identification of the relevant orbits. We stress that the construction with basis

change matrices Sin and Sout(z, ω) is perfectly compatible with iterative diagonalisation

schemes (such as the Arnoldi method), which are particularly efficient for dealing with

transfer matrices that allow for a sparse matrix factorisation.

Finally we note that the spaces V`,k,m are invariant upon simultaneously changing the

signs of both momenta (modulo ` and L, respectively). Thus

V`,k,m = V`,`−k,L−m . (A.13)
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We have checked this exhaustively for L = 5 and L = 6.

A.4.1 Checks

To check the algorithm, we have performed extensive tests on the case N = 2L = 10. We

have first checked that [u2, TN,2`(n, z)] = 0 for ` = 0, 1, . . . , L and any values of n =
√
Q

and z.

The sector decomposition was checked in details for a generic value Q = 3
2 . Our

general result is that the union of V`,k,m where k = 0, 1, . . . , ` − 1 and m = 0, 1, . . . , L − 1

produces, for each `, precisely the spectrum of the FK transfer matrix TN,2` with the

correct multiplicities for degenerate eigenvalues. The advantage of this construction is

thus twofold: it suffices to diagonalise much smaller matrices, and at the same time we can

associate the quantum numbers (`, k,m) with each eigenvalue.

• For ` = 0 we formally set k = 0. Without taking the W̄j,z2 quoitient, we have

compared the 42 eigenvalues obtained from numerically diagonalising the FK transfer

matrix with those obtained from the momentum sector decomposition of the full

TaN (n) module. This allows us to assign the correct momentum label to each FK

eigenvalue. We find that V0,0,0 has 10 eigenvalues, while V0,0,1 and V0,0,2 each have 8.

Taking into account the ±m degeneracies, this gives all the required 10+2×(8+8) =

42 eigenvalues indeed.

• For ` = 1 we also formally set k = 0. We find that V1,0,0 has 52 eigenvalues, but

only 21 distinct eigenvalues; of these 5 are fourfold degenerate and the remaining 16

are twofold degenerate. Each of V1,0,1 and V1,0,2 contains 50 eigenvalues, but only

25 are distinct; each of these are twofold degenerate. This accounts for the required

52 + 2 × (50 + 50) = 252 eigenvalues of the affine TL module. The overall twofold

degeneracy is explained by the fact, that since there are no winding loops (recall

d = 0) and the square lattice is selfdual, the TaN (n) module in fact decomposes in

two isomorphic representations each of dimension 1
2

(
2L
L

)
= 126. However, this still

leaves 5 degenerate eigenvalues in V1,0,0. These degeneracies are due to the choice

of the square lattice, which is not only symmetric under rotations but also under

reflections (i.e., the symmetry is the dihedral group D5, which is larger than the

cyclic group C5).

• For ` = 2, we have V2,k,m with k = 0, 1 and m = 0,±1,±2. Each of these contains

24 eigenvalues, which accounts for all 2 × 5 × 24 = 240 = 2 ×
(

10
3

)
eigenvalues

in TaN (n). However, it turns out that V2,0,0 (resp. V2,1,0) has only 18 (resp. 12)

distinct eigenvalues. These degeneracies occur only in the sectors with vanishing

lattice momentum (m = 0), which is indeed compatible with the above remark about

dihedral symmetry.

• For ` = 3, we have V3,k,m with k = 0, 1, 2 and m = 0,±1,±2. Each of these contains

9 eigenvalues, which accounts for all 3× 5× 9 = 135 = 3×
(

10
2

)
eigenvalues in TaN (n).

In this case V3,0,0 has only 7 distinct eigenvalues. Moreover, we observe that V3,1,0 is

equal to V3,2,0, which is compatible with the general symmetry (A.13).
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• For ` = 4, we have V4,k,m with k = 0, 1, 2, 3 and m = 0,±1,±2. Each of these

contains 2 eigenvalues, which accounts for all 4× 5× 2 = 40 = 4×
(

10
1

)
eigenvalues in

TaN (n). In this case V4,2,0 has only 1 distinct eigenvalue. Moreover, we observe that

V4,1,0 is equal to V4,3,0, again in agreement with (A.13).

• The case ` = 5 is obviously very degenerate, as will generally be the case when ` = L.

A.5 Spectrum of T and the CFT limit

We wish to verify the CFT interpretation of the spectrum of the FK model transfer matrix

T in the sectors V`,k,m. As above, ` denotes the number of propagating clusters, k is the

twist parameter for the affine TL through-lines (with allowed values k = 0 for ` = 0, and

k ∈ Z` for ` ≥ 1), and m is the lattice momentum (with allowed values m ∈ ZL for a

periodic strip of width L Potts spins). Moreover we have the symmetry (A.13).

As we shall see, the conformal interpretation of the labels k,m is as follows. The twist

label k fixes the first Kac label in φr,s to be r = k/`+e, where e is an integer. The momen-

tum label m detemines the conformal spin, s = h− h̄ = m mod L. Below we give detailed

evidence that if the true value of the conformal spin is too large to be accommodated in

a given size L (that is, |h − h̄| > L/2), there will in general be an appropriate eigenvalue

with m = (h− h̄) mod L that nicely fits into the finite-size scaling formulae.

In the sequel we consider strips of widths L ≥ 5. For technical reasons, it is feasible

to diagonalise T with respect to all quantum numbers (`, k,m) only for L ≤ 7, but such

sizes are insufficient to numerically determine the scaling dimensions h+ b̄ for a significant

number of low-lying excitations. However, we are able diagonalise T in each sector V` ≡∑
k,m V`,k,m for higher values of L, by simply imposing the number of through-lines (and

for ` = 1, also setting to zero the fugacity of non-contractible loops), without having to

compute the basis change matrices Sin and Sout appearing in (A.10). Concretely, we have

done so for ` = 0 and L ≤ 14, for ` = 1 and L ≤ 13, and for ` = 2 and L ≤ 12.

For a fixed value of `, the eigenvalues are labelled Λ
(i)
` (L), where we have supposed

the ordering Λ
(1)
` > Λ

(2)
` > · · · . Note in particular that we disregard multiplicities (the

eigenvalues with m 6= 0 are two-fold degenerate, as are those with m = 0 and k 6= 0). We

shall refer to i as the “rank” of the eigenvalue within V`. From the eigenvalues we can

compute the effective scaling dimension x = h+ h̄ via

x
(i)
` (L) = − L

2π
log

(
Λ

(i)
` (L)

Λ
(1)
0 (L)

)
. (A.14)

The practical problem is that the rank i = iL of a given scaling level in V`,k,m will

depend on L. We would of course expect i to stabilise at some constant value i∞ for

L sufficiently large, for the level that becomes the i∞’st lowest-lying excitation in the

conformal limit. The trouble is that for all but the few lowest excitations, i∞ turns out

to be comparable to or larger than the values of L that can be accessed numerically. As

explained above, we however know the values of iL that are compatible with given (k,m)

for L ≤ 7. Fortunately, by plotting x
(i)
` (L) against 1/L, and fitting the available sizes to a
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polynomial in 1/L, we can gradually reconstruct the sequence iL by adding one size at a

time, by carefully monitoring the quality of the fit and checking whether the extrapolation

x
(i∞)
` = lim

L→∞
x

(i)
` (L) (A.15)

produces a reasonable value. In this way we obtain excellent fits that extend in general

from Lmin = max(5, 2m) to the largest accessible size Lmax. The outcome of this procedure

can be verified by checking that, for any given L, each value of i is attributed to one and

only one scaling level. Moreover, the extrapolated scaling dimension x
(i∞)
` should make

sense in the CFT, being in particular compatible with the values of (k,m) that we have

thus inferred.

For m > 3 we cannot proceed in this way, because iL is only defined for L ≥ Lmin = 2m

and we only know the sector labels for L ≤ 7. In this case, we can usually work the other

way around, either guessing the possible values of iL from those which are not used by

other levels, or by carefully monitoring the fits starting at the highest values of L (where

iL can be supposed to be constant, or almost constant) and gradually proceeding to include

also lower sizes and in the same time determining the corresponding iL.

A.5.1 A generic case Q = 1
2

In table 1 we report the outcome of these computations within V0, where we have taken

an arbitrary and generic value Q = 1
2 . We show the sequence (i5, i6, . . .) for each level, the

corresponding representation V`,k,m, and the numerically extrapolated scaling dimension

x` ≡ x
(i∞)
` . Comparing this to the possible analytical values10 allows us to identify the

corresponding scaling field in the CFT limit. In the latter we use the notation L−nL−n̄ to

denote any highest-weight representation at level (n, n̄) in the holomorphic (resp. antiholo-

morphic) Verma module. For instance, L−2 denotes here what is usually called either L−2

or (L−1)2, or a linear combination of those terms. In a generic module we should then ex-

pect a multiplicity corresponding to p(n)× p(n̄), where p(n) denotes the number of integer

partition of n. This count can however be smaller due to the presence of null vectors.

Since the method just outlined for identifying the exponents may be of more general

interest, we now give a detailed example of its application.

Example 3. We focus on the scaling level which corresponds to the eigenvalue of rank

i14 = 16 for L = 14, i.e., line 16 in table 1. Assume that the first 15 lines of the table

have already been determined. We then try to determine i13, which a priori can be any

of the values not used in the first 15 lines: i13 = 15, 17, 18, 19, . . .. To this end, plot the

effective scaling dimensions (A.14) for L = 13, 14 against 1/L along with a linear fit in

1/L, for all possible values of i13. It is quickly seen that only the choice i13 = 16 will lead

to an exponent of the expected value x` ≈ 5. Fixing this choice, we next seek to determine

i12, which can take any of the unused values i12 = 15, 16, 18, 19, . . .. Plot now the effective

scaling dimensions for L = 12, 13, 14 against 1/L along with a quadratic fit in 1/L. This fit

10The analytical value is obviously an exact number, but in cases where it is not an integer the table only

shows its decimal representation, truncated to the number of digits to which it agrees with the numerical

result. This allows the reader to quickly assess the accuracy of the numerical work.
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V`,k,m (i5, i6, . . . , i14) x` Identification

5 6 7 8 9 10 11 12 13 14 Numerics Exact of scaling field

V000 1 1 1 1 1 1 1 1 1 1 0 0 φ1,1 × φ1,1 ≡ I
V000 2 2 2 2 2 2 2 2 2 2 1.438925 1.438918 φ2,1 × φ2,1 ≡ ε
V002 3 3 3 3 3 3 3 3 3 3 2.00007 2 L−2I

V001 4 4 4 4 4 4 4 4 4 4 2.4394 2.4389 L−1ε

V003 — 5 5 5 5 5 5 5 5 5 3.0009 3 L−3I

V002 5 6 6 6 6 6 6 6 6 6 3.434 3.439 L−2ε

V000 6 7 8 9 8 7 7 7 7 7 3.4391 3.4389 L−1L̄−1ε

V004 — — — 7 7 8 8 8 8 8 4.01 4 L−4I

V003 — — 7 8 9 9 9 9 9 10 4.41 4.44 L−3ε

V004 — — — 10 11 12 10 10 10 9 3.99986 4 L−4I

V000 8 11 12 12 13 13 13 12 11 11 4.0008 4 L−2L̄−2I

V005 — — — — — 10 11 11 12 13 4.988 5 L−5I

V001 7 9 10 11 12 14 15 14 13 12 4.4381 4.439 L−2L̄−1ε

V004 — — — 7 10 11 12 13 14 14 5.40 5.44 L−4ε

V003 — — 14 15 17 16 16 17 16 15 4.4397 4.4389 L−3ε

V000 11 14 16 17 18 18 18 19 18 16 4.50369 4.50378 φ3,1 × φ3,1 ≡ ε′

V005 — — — — — 15 17 18 20 18 4.9983 5 L−5I

V001 10 13 17 18 20 22 21 21 22 23 4.998 5 L−3L̄−2I

V000 12 18 23 28 32 33 33 34 36 ? 5.984 6 L−3L̄−3I

Table 1. Conformal spectrum in the sector V0, for Q = 1
2 .
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Figure 8. Effective scaling dimension, plotted against 1/L, of the eigenvalues in V0 (for Q = 1
2 )

that correspond to the CFT scaling level φ3,1 × φ3,1, along with a polynomial extrapolation of

order 9.

clearly singles out i12 = 19 and narrows down the value of the exponent to x` ≈ 4.5. Going

on in this way, including one by one the smaller sizes, and increasing the order of the fits,

one determines all the ranks iL in line 16 of the table, down to the smallest size Lmin = 5.

The final fit, using all ten sizes L = Lmin, . . . , Lmax and a polynomial extrapolation of order

9 is shown in figure 8. It leads to a very precise estimate x` ≈ 4.50369, which is in excellent

agreement with the exact scaling dimension 4.50378 · · · of the field φ3,1×φ3,1. Moreover, we

can check that for the three smallest sizes, the eigenvalues with (i5, i6, i7) = (11, 14, 16) all

have lattice momentum m = 0, so the CFT field must indeed have conformal spin h−h̄ = 0.
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The contents of table 1 can be quickly summarised by saying that we have numerically

observed within V0 three different primaries,

φ1,1 × φ1,1 ≡ I , φ2,1 × φ2,1 ≡ ε , φ3,1 × φ3,1 ≡ ε′ , (A.16)

along with their corresponding Kac modules (where the generic Verma module of φr,s has

been quotiented by one singular vector at level rs). More precisely:

• For the identity operator I we have observed all descendents up to and including the

total level N ≡ n + n̄ = 5, and some of the descendents at level 6. This operator is

seen to be degenerate at level 1.

• For the energy operator ε we have observed all descendents up to and including level

N = 3, and some of the descendents at level 4. This operator is degenerate at level 2,

as witnessed by the fact that we only observe a single state (and not p(2) = 2 states)

at level (n, n̄) = (2, 0).

• For the second energy operator ε′ we have observed only the primary at level N = 0,

due to the high scaling dimension x = 4.503782 · · · .

Table 2 gives the results of a similar investigation for the sector V1. We here observe

numerically two different primaries,

φ1/2,0 × φ1/2,0 ≡ σ , φ3/2,0 × φ3/2,0 ≡ σ′ , (A.17)

along with their corresponding Verma modules. More precisely:

• For the magnetisation operator σ we have observed all descendents up to and includ-

ing the total level N = 3, and some of the descendents at level 4.

• For the second magnetisation operator σ′ we have observed all descendents up to and

including level N = 2.

• We have not observed the expected third magnetisation operator, φ5/2,0×φ5/2,0, due

to its high scaling dimension x = 4.960593 · · · .

Remark 9. We stress that no degenerate states appear in these magnetisation operators,

and accordingly their Verma modules are generic. This is in a nutshell why the determi-

nation of four-point functions in the bulk case is so difficult: the absence of degenerate

states implies that we cannot write down differential equations satisfied by the correlation

functions.

Finally, table 3 shows our results for the sector V2. We see here the beginning of the

conformal towers of the primaries φe,2 × φe,−2 for e = 0, 1
2 , 1,

3
2 , 2. As for V1, there are no

singular vectors in this case neither.
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V`,k,m (i5, i6, . . . , i13) x` Identification

5 6 7 8 9 10 11 12 13 Numerics Exact of scaling field

V100 1 1 1 1 1 1 1 1 1 0.082745 0.082757 φ1/2,0 × φ1/2,0 ≡ σ
V101 2 2 2 2 2 2 2 2 2 1.08278 1.08276 L−1σ

V100 4 3 3 3 3 3 3 3 3 1.7091 1.7087 φ3/2,0 × φ3/2,0 ≡ σ′

V102 3 4 4 4 4 4 4 4 4 2.0819 2.08276 L−2σ

V102 5 6 5 5 5 5 5 5 5 2.0830 2.0828 L−2σ

V100 6 7 6 6 6 6 6 6 6 2.08255 2.08276 L−1L̄−1σ

V101 7 8 8 9 8 8 7 7 7 2.704 2.079 L−1σ
′

V103 — 5 7 7 7 7 8 8 8 3.094 3.083 L−3σ

V103 — 9 9 10 10 9 9 9 9 3.072 3.083 L−3σ

V101 9 11 10 11 11 11 10 10 10 3.080 3.083 L−2L̄−1σ

V103 — 12 11 12 12 12 11 11 11 3.075 3.083 L−3σ

V101 12 14 14 14 13 14 13 12 12 3.081 3.083 L−2L̄−1σ

V104 — — — 8 9 10 12 13 13 4.078 4.083 L−4σ

V102 8 10 12 13 14 15 15 14 14 3.712 3.709 L−2σ
′

V100 11 15 17 17 16 17 16 16 15 3.69 3.71 L−1L̄−1σ
′

V102 15 17 18 20 21 18 18 19 16 3.69 3.71 L−2σ
′

V102 10 13 15 18 18 19 19 20 19 4.070 4.082 L−3L̄−1σ

V100 14 19 20 23 25 25 23 24 23 4.0841 4.0828 L−2L̄−2σ

V102 16 20 21 24 26 26 24 25 24 4.075 4.083 L−3L̄−1σ

V100 17 21 23 25 27 27 26 26 25 4.079 4.083 L−2L̄−2σ

Table 2. Conformal spectrum in the sector V1, for Q = 1
2 .

V`,k,m (i5, i6, . . . , i12) x` Identification

5 6 7 8 9 10 11 12 Numerics Exact of scaling field

V200 1 1 1 1 1 1 1 1 1.109570 1.109567 φ0,2 × φ0,−2 ≡ φ0

V211 2 2 2 2 2 2 2 2 1.31286 1.31281 φ1/2,2 × φ1/2,−2 ≡ φ1/2

V202 3 3 3 3 3 3 3 3 1.92257 1.92254 φ1,2 × φ1,−2 ≡ φ1

V201 5 4 4 4 4 4 4 4 2.1099 2.1096 L̄−1φ0

V212 4 5 5 5 5 5 5 5 2.3117 2.3128 L̄−1φ1/2

V210 7 7 6 6 6 6 6 6 2.31299 2.31281 L−1φ1/2

V203 — 8 8 7 7 7 7 7 2.914 2.923 L̄−1φ1

V202 6 9 9 9 9 8 8 8 3.094 3.110 L̄−2φ0

V213 — 10 11 11 10 10 10 9 2.9365 2.9388 φ3/2,2 × φ3/2,−2 ≡ φ3/2

V201 13 13 13 13 11 11 11 10 2.9228 2.9225 L−1φ1

V213 — 6 7 8 8 9 9 11 3.326 3.313 L̄−2φ1/2

V200 9 11 12 15 12 12 12 12 3.1088 3.1096 L−1L̄−1φ0

V202 15 16 16 17 15 13 13 13 3.1098 3.1096 L̄−2φ0

V211 10 12 14 16 16 14 14 14 3.308 3.313 L−1L̄−1φ1/2

V211 11 14 15 18 18 16 15 15 3.310 3.313 L−2φ1/2

V213 — 15 17 19 19 18 16 16 3.311 3.313 L̄−2φ1/2

V211 17 21 20 20 21 21 18 17 3.3131 3.3128 L−2φ1/2

V204 — — — 12 14 17 17 18 3.907 3.922 L̄−2φ1

V204 — — — 10 13 15 19 19 4.347 4.361 φ2,2 × φ2,−2 ≡ φ2

V212 8 17 19 22 24 27 30 31 4.296 4.313 L−1L̄−2φ1/2

Table 3. Conformal spectrum in the sector V2, for Q = 1
2 .
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A.5.2 The special case Q = 4

In appendix B we show that the case Q = 4 can be compared with an exact solution. It

is therefore a particularly important benchmark for the numerical method. Moreover, it is

well known that the Q = 4 case is hampered by slow convergence, due to the logarithmic

corrections produced by a marginally irrelevant operator. To make sure that our generic

analysis applies in this case as well, we shall need the same kind of tables as above with

this value of Q. They are obtained using the same methods as before, and are shown in

tables 4–6.

The precision of the extrapolated exponents x` suffers somewhat from the logarithmic

corrections to scaling. But assuming that the operator content of the generic case carries

over, the assignment of sector labels is nevertheless certain for the levels shown in the

tables. To this end, it is particularly helpful that the observed exponent difference between

a descendent operator and its corresponding primary is determined with considerably better

precision than the exponents themselves.

This phenomenon is vividly illustrated in table 4. For example, the primary ε has the

exact scaling dimension 1
2 , but the numerically measured exponent of 0.62 is very imprecise.

However, the corresponding measurements for the descendents at level 1, 2 and 3 come out

as 1.64, 2.64 (or 2.67) and 3.63 (or 3.60), with the gaps being quite close to integers.

Similarly, the exponent of the primary ε′ is measured as 2.35 instead of the exact value

of 2. This is per se a catastrophic lack of precision — but it actually makes it easier to

correctly identify the descendent L−1ε
′, whose measured exponent comes out as 3.36 with

an almost perfect integer gap! Without this phenomenon one could easily have mixed up

the numerical value 3.36 with the other candidate exact value of 7
2 .

In a similar fashion we have the tables 5–6 for the sectors V1 and V2, respectively. Note

that the rank of eigenvalues whole momentum labels are fixed by analytic continuation —

using the PT symmetry (A.13) — for small values of L are shown as tiny numbers in the

tables. In the previous tables 1–3 (for Q = 1
2) we have left blank such entries, although

they can be determined in those cases as well.

A.6 Ising model

Finally we discuss the case of a unitary minimal model, namely the Ising model (Q = 2).

A special case of the first of the identities (2.9) then reads [18]

Gaaaa = 〈σ1σ2σ3σ4〉 = Paaaa + Paabb + Pabba + Pabab , (A.18)

where we have used the short-hand notation σi = QδSi,+−1 for the usual FK spin operator

Oa(σi) (2.5) and Si = ± are the four Ising spins. Inserting the definition of σi, we can

express Gaaaa in terms of the probabilities P (S1, S2, S3, S4) of having fixed values of the Si:

〈σ1σ2σ3σ4〉 =
∑

S1,S2,S3,S4=±
(−1)

∑4
i=1 δ(Si,+)P (S1, S2, S3, S4) . (A.19)

It is straightforward to write a transfer matrix that computes the probabilities

P (S1, S2, S3, S4) in the Ising spin representation, by simply projecting on the required

values of Si at the position of each operator. Doing this we have verified the above iden-

tity to 4000 decimal places for various systems. Since this relates very non-trivially the
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V`,k,m (i5, i6, . . . , i13) x` Identification

5 6 7 8 9 10 11 12 13 Numerics Exact of scaling field

V000 1 1 1 1 1 1 1 1 1 0 0 φ1,1 × φ1,1 ≡ I
V000 2 2 2 2 2 2 2 2 2 0.619 0.5 φ2,1 × φ2,1 ≡ ε
V001 3 3 3 3 3 3 3 3 3 1.637 1.5 L−1ε

V002 4 4 4 4 4 4 4 4 4 2.0003 2 L−2I

V000 7 7 8 7 7 6 6 5 5 2.338 2 φ3,1 × φ3,1 ≡ ε′

V002 5 5 5 5 5 5 5 6 6 2.646 2.5 L−2ε

V003 5 6 6 6 6 7 7 7 7 2.9994 3 L−3I

V000 6 8 9 8 8 8 8 8 8 2.659 2.5 L−1L̄−1ε

V003 4 6 7 9 9 9 9 9 9 3.620 3.5 L−3ε

V004 3 5 7 10 10 10 10 10 10 3.994 4 L−4I

V001 10 12 12 11 12 13 11 11 11 3.353 3 L−1ε
′

V003 9 11 11 12 13 14 12 12 12 3.603 3.5 L−3ε

V001 8 9 10 13 14 15 15 13 13 3.671 3.5 L−2L̄−1ε

Table 4. Conformal spectrum in the sector V0, for Q = 4.

V`,k,m (i5, i6, . . . , i12) x` Identification

5 6 7 8 9 10 11 12 Numerics Exact of scaling field

V100 1 1 1 1 1 1 1 1 0.133 0.125 φ1/2,0 × φ1/2,0 ≡ σ
V101 2 2 2 2 2 2 2 2 1.138 1.125 L−1σ

V100 3 3 3 3 3 3 3 3 1.212 1.125 φ3/2,0 × φ3/2,0 ≡ σ′

V102 4 4 4 4 4 4 4 4 2.132 2.125 L−2σ

V102 5 6 5 5 5 5 5 5 2.126 2.125 L−2σ

V100 7 8 7 7 7 6 6 6 2.149 2.125 L−1L̄−1σ

V101 6 7 6 6 6 7 7 7 2.218 2.125 L−1σ
′

V103 4 5 8 8 8 8 8 8 3.107 3.125 L−3σ

V103 8 9 9 10 9 9 9 9 3.116 3.125 L−3σ

V102 8 10 10 11 11 10 10 10 3.202 3.125 L−2σ
′

V101 12 13 14 12 12 12 11 11 3.121 3.083 L−2L̄−1σ

V103 9 11 12 13 13 13 12 12 3.131 3.125 L−3σ

V101 10 12 13 14 14 14 13 13 3.145 3.125 L−2L̄−1σ

V100 11 14 15 17 15 16 15 14 3.225 3.125 L−1L̄−1σ
′

V102 13 16 16 18 16 17 16 15 3.236 3.125 L−2σ
′

V104 2 4 8 9 10 11 14 16 4.114 4.125 L−4σ

V100 15 17 17 19 19 18 17 17 3.37 3.125 φ5/2,0 × φ5/2,0 ≡ σ′′

V104 6 10 11 15 17 19 19 18 4.07 4.125 L−4σ

V105 1 2 4 8 10 15 18 19 5.23 5.125 L−5σ

V103 5 9 11 16 18 20 20 20 4.16 4.125 L−3σ
′

Table 5. Conformal spectrum in the sector V1, for Q = 4.

probabilities in the FK representation — whose computation is intricate, as we have seen

in section A.1 — to those in the Ising representation, this provides a strong test of the

correctness of our transfer matrix setup.

We can now compute Gaaaa at larger sizes and analyse it in terms of the eigenvalues

of the Ising spin transfer matrix. Since two spin operators are inserted simultaneously,

the propagating states should only be those of the Z2-even sector, and we have verified

that this is indeed the case. Note that the Z2-even sector is the simple module X0,i =
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V`,k,m (i5, i6, . . . , i11) x` Identification

5 6 7 8 9 10 11 Numerics Exact of scaling field

V200 1 1 1 1 1 1 1 1.83 2 φ0,2 × φ0,−2 ≡ φ0

V211 2 2 2 2 2 2 2 1.97 2.125 φ1/2,2 × φ1/2,−2 ≡ φ1/2

V202 3 3 3 3 3 3 3 2.38 2.5 φ1,2 × φ1,−2 ≡ φ1

V201 5 4 4 4 4 4 4 2.82 3 L̄−1φ0

V212 4 5 5 5 5 5 5 2.96 3.125 L̄−1φ1/2

V210 7 6 6 6 6 6 6 2.96 3.125 L−1φ1/2

V213 8 10 9 8 7 7 7 3.06 3.125 φ3/2,2 × φ3/2,−2 ≡ φ3/2

V203 6 8 7 7 8 8 8 3.36 3.5 L̄−1φ1

V201 10 11 12 11 9 9 9 3.36 3.5 L−1φ1

V202 6 9 10 10 10 10 10 3.84 4 L̄−2φ0

V213 4 7 8 9 11 11 11 4.01 4.125 L̄−2φ1/2

V200 11 13 14 15 12 12 12 3.82 4 L−1L̄−1φ0

V211 9 12 13 16 13 13 14 3.96 4.125 L−1L̄−1φ1/2

V202 14 16 15 17 16 14 13 3.80 4 L̄−2φ0

Table 6. Conformal spectrum in the sector V2, for Q = 4.

W0,q2=i −W3,1 + · · · which is the ‘top’ corresponding to the leftmost diagram in figure 9

(see [29] for details). In the conformal limit we expect the propagating states to be the

identity, φ1,1 × φ1,1 ≡ I, and the energy operator, φ2,1 × φ2,1 ≡ ε.
We postpone the further discussion of these results to appendix B. However, to refine

the analysis and parallel the discussion given above for generic Q and the case Q = 4,

we shall again need to establish the precise correspondence between the finite-size and the

conformal spectra. This is done in table 7, where the rank of eigenvalues now refer only

to the Z2-even part of the spin representation (and not to a sector of the full FK transfer

matrix spectrum).

Note that the spin transfer matrix does not contain sufficient information to attribute

a momentum label to the eigenvalues. However, since the Ising spectrum is included in

the FK spectrum we can still rely on the sizes L = 5, 6, 7 to assign momentum labels to

each level.

Doing this we encounter an interesting phenomenon: in some cases a given eigenvalue

corresponds to two different momentum labels. For instance, the 3rd eigenvalue belongs

simultaneously to V001 and V002 for L = 5, 6, 7; the 4th eigenvalue belongs to V002 and V003

for L = 6, 7; and the 7th eigenvalue belongs to V001 and V003 for L = 7. We recall that we

count here only distinct eigenvalues, so statements of this type mean that the eigenvalue is

degenerate (in addition to the usual degeneracy coming from the sign of the momentum),

with different momentum identifications for each of the degenerate states. The momentum

labels m assigned to the lowest-rank eigenvalues for L = 5, 6, 7 are shown in table 8.

With all these ingredients, a close inspection of table 7 reveals that we observe precisely

the minimal characters χr,s(q) corresponding to the identity and energy operators, namely

χ̃r,s(q) ≡ q−hr,s+c/24χr,s(q) with the expansions

(r, s) = (1, 1) : 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + · · · , (A.20a)

(r, s) = (2, 1) : 1 + q + q2 + q3 + 2q4 + 2q5 + · · · . (A.20b)
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V`,k,m (i5, i6, . . . , i20) x` Identification

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Numerics Exact of scaling field

V000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 φ1,1 × φ1,1 ≡ I
V000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 + 10−12 1 φ2,1 × φ2,1 ≡ ε

V001, V002 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.0000002 2 L−1ε, L−2I

V002, V003 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3.000003 3 L−2ε, L−3I

V000 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 3.0000004 3 L−1L̄−1ε

V003, V004 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 3.9995 4 L−3ε, L−4I

V001 6 6 7 7 8 8 8 7 7 7 7 7 7 7 7 7 4.000003 4 L−2L̄−1ε

V000 7 8 9 9 9 9 10 10 9 8 8 8 8 8 8 8 4.0000002 4 L−2L̄−2I

V005 2 3 4 6 7 7 7 8 8 9 9 9 9 9 9 9 4.99994 5 L−5I

V005 5 6 8 8 10 10 11 11 12 11 11 10 10 10 10 10 4.9999 5 L−5I

V000 — 7 9 10 12 12 12 12 13 13 12 12 12 11 11 11 5.00002 5 L−2L̄−2ε

V004, V001 8 9 11 12 13 13 15 14 14 14 15 13 13 13 12 12 5.000002 5 L−4ε, L−3L̄−2I

V006 — 2 3 4 6 7 9 9 10 10 10 11 11 12 13 13 6.002 6 L−6I

V006 3 5 7 8 11 11 13 13 15 15 16 16 15 15 15 14 5.999 6 L−6I

V007 — 1 2 3 4 6 7 9 11 12 13 14 14 14 14 15 7.0004 7 L−7I

V006 6 7 10 11 14 14 16 16 18 17 17 17 18 17 16 16 5.9998 6 L−6I

V005 7 9 12 14 16 16 17 17 19 19 19 18 19 19 18 17 5.9999 6 L−5ε

V000 — 10 13 15 20 19 20 19 20 20 21 20 21 20 19 18 5.99997 6 L−3L̄−3I

V007 — — 1 2 3 4 6 8 10 12 14 15 16 16 17 19 7.98 8 L−7ε

V003, V002 9 11 15 16 21 21 23 21 22 21 23 21 22 22 21 20 6.000003 6 L−4L̄−1ε, L−4L̄−2I

V007 — 3 6 7 10 11 14 15 16 16 18 19 20 21 23 21 7.0002 7 L−7I

V009 — — — 1 2 3 4 6 8 10 13 15 17 18 20 22 8.9 9 L−9I

V009 — — — — 1 2 3 4 6 9 10 14 16 18 22 23 9.85 10 L−9ε

V007 4 6 9 11 15 15 18 18 21 22 24 24 24 23 24 24 6.999 7 L−7I

V006 6 8 11 14 18 18 22 23 24 23 25 25 25 25 26 25 6.99995 7 L−6ε

V??? — — — 13 17 17 21 22 23 24 26 26 27 26 27 26 6.9993 7

V008 — — 3 6 8 10 13 15 17 18 20 22 23 24 25 27 7.9992 8 L−8I

V006 8 10 14 17 22 23 27 26 29 28 28 27 29 28 28 28 6.9997 7 L−6ε

V??? 9 11 16 18 24 24 29 28 31 29 30 29 31 30 30 29 6.9996 7

Table 7. Conformal spectrum in the Z2-even sector for the Ising model (Q = 2). The rank ik of the

eigenvalues refer to this sector only, and not to the full spectrum of the corresponding FK model.

Rank L

ik 5 6 7

1 0 0 0

2 0 0 0

3 1, 2 1, 2 1, 2

4 2 2, 3 2, 3

5 0 0 3

6 1 1 0

7 0 0 1, 3

8 1 0 2

9 2 1, 2 0

10 0 1

11 2, 3 1, 3

12 1, 2 2

13 0 0

14 0 1

15 2, 3

Table 8. Momentum labels m (modulo L) for the first 15 eigenvalues in the Z2-even sector for the

Ising model (Q = 2). We have not been able to identify the labels iL for line 17 of the table.
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A.7 Practical remarks

A.7.1 Diagonalisation of T

Our diagonalisation of the transfer matrix T is based on its decomposition (3.1) as a product

of sparse matrices. Indeed, the elementary operators Ji and Di have at most one non-zero

entry per column. It is therefore feasible to compute w = Tv — i.e., the action of T on a

vector of weights v — without ever storing T and working only on its non-zero entries. It

follows that it is highly efficient to diagonalise T by iterative methods that require only the

operator w = Tv and not T itself. Among such methods, we have found that the Arnoldi

method is well suited for our situation, where T is a non-symmetric real matrix.

We have used the C++ interface for the Fortran library Arpack [60] for producing

both eigenvalues and eigenvectors, in cases where standard numerical precision (16 digits)

is sufficient. This applies in particular to the scalar product method of section A.2. For

the more direct method of section A.1, a considerably higher numerical precision is needed.

To this end we have used the CLN package [61] (again written in C++) that performs

floating point operators to any desired numerical precision. We are greatly indebted to

Christian R. Scullard who has provided a pure C++ version of Arpack with templates

that are compatible with CLN; this is unpublished work, but it has been described in

recent publications on a different subject [62–64].

A.7.2 Boundary conditions

In the first method (see section 4.3.1) we compute the probabilities PP corresponding to

FK cluster correlation functions on the cylinder (see figure 1). As described in section A.1

this is done in practice by expressing the probability as the the ratio of partition functions

WP on finitely long cylinders, where free boundary conditions have been imposed at a

distance M from the insertion points of the cluster operators.

To ensure that the result does not depend on M , the latter much be chosen large

enough. Let d denote the number of decimal digits in the desired numerical precision.

Let ΛI and Λε be the largest and next-largest eigenvalues of T within the sector V0; it is

easy to compute their values beforehand. We now claim that we must chose M so that

(Λε/ΛI)
M ≤ 10−d.

As the notation shows, these two eigenvalues are associated, throughout the critical

regime 0 ≤ Q ≤ 4, with the scaling levels that determine respectively the identity I and

the energy operator ε. It should be noticed that Λε thus defined is most definitely not the

next-largest eigenvalue of T , if we take into account all sectors. This latter eigenvalue would

rather be Λσ, the largest eigenvalue within the sector V1, associated with the scaling level of

the leading order parameter operator σ, which has the smallest non-zero scaling dimension

in the CFT. In other words, we have ΛI > Λσ > Λε. The point of the claim made above

is then that outside the region t ∈ [t1, t2] of the cylinder (see section A.1 for notations)

that contains the operator insertions, there are no constraints enforcing the propagation

of clusters. This implies that the dominant decaying mode is given by the ratio Λε/ΛI , as

can easily be checked by direct inspection of the numerically computed probabilities.
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A.7.3 Attainable sizes

The largest sizes L attainable in the numerical work are essentially limited by the expo-

nentially growing dimensions of the corresponding transfer matrices. For the first method

(see section 4.3.1) there is however an additional complication, since we do not obtain the

amplitudes Ai directly but acquire them by solving the linear system (4.31).

Suppose first that there are K eigenvalues coupling to PP , and call Λmax and Λmin the

largest and smallest of those. If all computations are done to d decimal digits, and we wish

to obtain the final values of the amplitudes to d0 digits, then we must chose d large enough

that (Λmin/Λmax)K > 10d0−d. Indeed, we will need the separation between operators to

take the values l = 1, 2, . . . ,K in order to have enough equations to solve the linear system

for Ai. And assuming all Ai to be of the order unity, the smallest term on the right-hand

side of (4.31) should not be below the level of numerical precision.

Similar considerations can be made for the case where K is so large that we are unable

(or do not want) to determine all the amplitudes. In that case, we truncate the sum

in (4.31) at some imax, and provide imax different values of l. Since the formula is no

longer exact, we must make sure to use it in the proper asymptotic regime. We therefore

take l = imin, imin + 1, . . . , imax for some suitable large imin. In practice we have chosen

imin = 100 and repeated the computation for a slightly higher value (e.g., imin = 120), in

order to check that the Ai were unchanged to the desired numerical precision.

In our largest computations, for L = 7, we determined more than 500 amplitudes in

this way. This computation needed as much as d = 4000 digits of numerical precision and

required the work of ∼ 100 computers simultaneously for a period of ∼ 3 months. See

section 5.2.2 for further details on this computation.

For the second scalar product method (see section 4.3.2) it was enough to work with

standard double precision (d = 16 digits). This method is altogether more efficient and

could be done up to L = 11 in a much more reasonable time (at most a few days on a

single computer).

A.7.4 Jordan blocks

With the first method it is possible to determine the Jordan block structure of correlation

functions, by using a fit of the form (4.32). To do this in practice requires some reasonable

prior knowledge about where to look for the Jordan blocks, and about their expected order

ri. The analytical understanding of indecomposability in the Temperley-Lieb algebra has

grown steadily over recent years, including in the affine TL case [28], so the search for

Jordan blocks is certainly not devoid of any guidance. However, one can also take a more

naive numerical approach to the problem.

Imagine that we are interested in some specific value Q = Q0, where indecomposabil-

ity is known to occur. Consider a correlation function PP for which we have previously

established, for generic Q, which transfer matrix sectors V`,k,m occur with a non-zero am-

plitude. At the non-generic Q0, some of the eigenvalues from different sectors will collide,

as can be seen by explicit diagonalisation using the methods of section A.4 (or predicted

analytically). The number of eigenvalues that collide at a given value Λi is a natural guess
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for the largest possible rank ri of the Jordan block corresponding to the generalised am-

plitude (4.32). Trying the corresponding Ansatz for different values of imin (see above),

we can examine whether the amplitudes are consistently determined (and non-zero) and

arrive at a quantitative understanding of the Jordan block structure.

A.7.5 Extrapolation of amplitudes

Whichever method is used for obtaining the eigenvalue amplitudes Ai on the cylinder, the

results need to be extrapolated to infinite size (L → ∞) in order to be compared with

predictions of conformal field theory. We shall see in appendix B that in many cases the

finite-size results are quite far away from their CFT limits, more often than not by a factor

in the range 2–5. Obtaining reliable extrapolations is important, in particular because we

only possess rather small sizes (L ≤ 11). Moreover, most amplitudes exhibit mod 2 parity

effects, so that even and odd L must be treated separately.

Some guidance can be taken from our results for the Ising model where larger sizes

can be obtained (L ≤ 16). We find the following method to provide quite accurate results.

First we produce finite-size results with 2a
L equal to or close to a constant, typically 1

2 .

Since it turns out that some amplitudes vanish exactly, by symmetry reasons, for 2a
L = 1

2

precisely, we often take 2a = (L − 1)/2 for odd L, and 2a = (L − 2)/2 for even L. These

results are then corrected by a conformal factor, namely the powers of sin 2πa
L appearing

in (4.13). Finally, we extrapolate the corrected results, separately for odd and even L, by

fitting all available data against a polynomial in 1/L (or in some cases leaving out the first

or first few data points). The reliability of the extrapolation can then be estimated by

comparing the two parities, which are expected to give identical results.

A.8 The split-attach algebra

The scalar product method described in section 4.3.2 and appendix A.2 requires us to find

the left eigenvectors of T . One way to attain this is to take the transpose of the right

eigenvectors of the transposed matrix T t.

The scalar product method described in section 4.3.2 and appendix A.2 requires us to

find the left eigenvectors of T . One way to attain this is to take the transpose of the right

eigenvectors of the transposed matrix T t.

In the join-detach algebra for the FK cluster model, T acts on basis states which are

set partitions of L points. The basic building block of the sparse matrix factorisation

scheme (3.1) is the action of the elementary join and detach operators, Ji and Di, on these

states. If this was presented in explicit matrix form, it would of course be trivial to take

the transpose of the corresponding matrices. The point is, however, that when we use

an iterative diagonalisation scheme (such as the Arnoldi method; see section A.7.1), it is

inefficient to represent Ji and Di as explicit matrices. Rather, we just need to provide their

action on any state: for any in-state vin, the definition of Ji (or Di) in terms of set partitions

provides the corresponding out-state vout = Jivin (or Divin). To treat the transpose in a

similar setting means that we should instead answer the question: given vout, what are the

possible vin that could lead to it (and with which transition weights)?
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We therefore formally define the split operator Si = Jt
i and the attach operator Ai =

Dt
i as the transpose of the join and detach operator, respectively, and provide now their

transition elements in terms of the basis states.

A.8.1 Without marked clusters

We first consider the analogue of the usual join-detach algebra, that is, without any

marked clusters.

The operator Si performs a split between sites i and i + 1. In particular, Si is zero

on states in which sites i and i + 1 are not connected (i.e., in the same block of the set

partition). If the two sites are connected, Si acts by breaking up the block containing i

and i + 1 in all possible ways. To be precise, assume the block consist of k ≥ 2 points,

ordered cyclically: i1 < i2 < · · · < ik < i1 (the inequalities being considered modulo L),

with i1 = i and i2 = i + 1. Place one “separator” between i1 and i2. Place a second

separator at the position of any of the above inequalities, i.e., between i` and i`+1 for any

` = 1, 2 . . . , k, with the subscripts considered mod k. Note that this includes the case

where the two separators are at identical positions. Then break up the block by cutting it

at the positions of the two separators. This produces the k possible out-states of Si, which

each occur with transition weight 1. Note that the block is being broken into precisely two

pieces in the k−1 cases where the two separators are different,11 whereas nothing happens

(i.e., Si acts as the identity) in the remaining case where the separators coincide.

The operator Ai attaches a singleton at site i to certain other blocks of the set partition,

as we now describe. In particular, Ai is zero on states in which site i is not a singleton. If

i is an singleton, Ai leaves the state unchanged with weight Q, and connects i to any other

“visible” block in the set partition with weight 1. To determine whether a block is visible

by i, draw the set partition as a hypergraph with vertex set 1, 2, . . . , L embedded in the

half-infinite cylinder (concretely, in figure 1 this would be the part of the cylinder situated

to the left of the current time slice, with the vertices on the slice). If a block is adjacent to

the face where i resides, the block is said to be visible. Another, less formal way to state

the same, is that we connect i to any block that is not nested within another block, seen

from the position of i.

It is straightforward (albeit somewhat laborious) to verify that the split-detach algebra

thus defined satisfies the algebraic relations which are the transpose of those defining the

join-detach algebra:

S2
i = Si , (A.21a)

A2
i = ADi , (A.21b)

SiAjSi = Si for j = i, i+ 1 , (A.21c)

AiSjAi = Ai for j = i− 1, i . (A.21d)

11To be precise, if one separator is placed between is1−1 and is1 and the other between is2−1 and is2 (with

s2 6= s1), then the resulting blocks are {is1 , is1+1, . . . , is2−1} and {is2 , is2+1, . . . , is1−1}, with all subscripts

considered mod k.
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A.8.2 With marked clusters

We now provide the definition of the split-attach algebra in the representation with marked

clusters having a fixed spin label. This is analogous to section A.2.

The split operator Si acts as zero, unless sites i and i + 1 belong to the same block

(which can be unmarked or marked). Otherwise:

• If i and i + 1 belong to the same unmarked block, Si leaves the block unchanged or

splits it into two unmarked blocks, as before, with a total of k possibilities for a block

of size k.

• If i and i+1 belong to the same marked block, Si leaves the block unchanged or splits

it into two blocks, of which one is unmarked and the other keeps the same mark as

the original block. Both choices for which of the two blocks should carry the mark

are realised.

The attach operator Ai acts as zero, unless site i is an unmarked singleton. Otherwise:

• With weight Q, the operator Ai leaves the singleton block at i unchanged and un-

marked.

• With weight 1, it marks site i by each possible colour of the mark which is used in

none of the other blocks in the partition.

• With weight 1, it attaches site i to each of its visible blocks (which can be marked or

unmarked).

The two first rules cover the cases where the corresponding detach operation is trivial, in

the sence that Di would turn a (marked or unmarked) singleton into an unmarked singleton.

The third rule covers the non-trivial case, where the corresponding detach operation acts

on a (marked or unmarked) block of size ≥ 2.

With these modifications one can again check that the defining relations (A.21) are

satisfied, but within the larger representation that allows clusters to be marked.

B Basic checks

In this appendix we check our general method for computing the amplitudes Ai against a

series of exact results. First we discuss the easy case of two-point functions and quantify

the conformal content of the lattice spin operator. Next we compare our results for the

s-channel spectrum of four-point functions against exact solutions for Q = 2, Q = 4, and

the limit Q→ 0.

B.1 Lattice observables and scaling fields

As discussed in the main text, one of the basic difficulties in our problem is that lattice

observables correspond, in the scaling limit, to combinations of scaling fields weighed with

appropriate powers of the cut-off. The question we want to investigate briefly here is how

this might affect the measurement of amplitudes.
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According to (2.8), the two-point function of the lattice spin operator becomes, in the

geometrical formulation, proportional to the probability that two points belong to the same

cluster. The leading dimension controlling the large distance behavior of this probability

is h1/2,0 and thus we expect, in the scaling limit, to have on the cylinder

Paa
scaling−−−−→

(
ξ

(1− ξ)2

ξ̄

(1− ξ̄)2

)h1/2,0

. (B.1)

We have here used the same notation (4.11) as for the four-point function, so w1 = ia,

w3 = i(a + x) + l, and w13 = −ix − l. As before, we set ξ = e−2π(l+ix)/L, and the above

dependence on ξ, ξ̄ follows from a reasoning similar to the one leading to (4.12). We find

numerically that only the sector F0,−1 contributes, with

F0,−1 =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

qhe+1/2,0 q̄he+1/2,0 . (B.2)

As is usually the case in lattice models, the order operator on the lattice is not purely

represented by a conformal field of weight (h1/2,0, h1/2,0). In general, one expects instead

that this field is only the first in a sum of the type

Oa(σi) ∼
∑
e∈Z

Aeε
2he+1/2,0Φe+1/2,0(z)Φe+1/2,0(z̄) + descendants , (B.3)

where z, z̄ are the complex coordinates corresponding to σi, we have introduced the notation

Φr,s for conformal chiral fields with weight hrs, and ε stands for the lattice cutoff (ε was

set equal to unity so far). In the limit where L, l → ∞ (that is, L/ε, l/ε → ∞ if L, l are

measured in units of length) the contributions of the excited (higher) spin fields will scale

away. For finite values of the parameters, they are unavoidably there. Note that

h3/2,0 − h1/2,0 =
m+ 1

2m
. (B.4)

This is larger for small values of m, i.e., smaller values of Q: therefore, the closer we will

get to Q = 0, the faster these contributions will decrease with ε (ε/L on the cylinder).

We do not know how the Q-dependent amplitudes Ae in (B.3) behave a priori, but

we have studied numerically the two-point function in order to understand the amount

of “mixing” of the order operator with the leading correction at weight h3/2,0. We have

checked that this mixing is small and decreases significantly with increasing L.

As an example, we give here results for Q = 3/2 — a case for which m is irrational,

and all operators in the spectrum can be uniquely identified. The dimension of the order

parameter is h1/2,0 = 0.0583892, and by (B.1) the two-point function in the conformal limit

expands as

P scaling
aa ∝ ξh1/2,0 ξ̄h1/2,0

(
1 + 0.116778(ξ + ξ̄) + 0.0136372ξξ̄ + 0.0652078(ξ2 + ξ̄2) + . . .

)
,

(B.5)

where all numerical constants have been given to six-digit precision. The leading terms

at momentum h − h̄ = 1 and h − h̄ = 2 are easily identified as the ground states of the
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corresponding momentum sectors. With no knowledge of the possible mixing with the term

ξh3/2,0 ξ̄h3/2,0 one would look for the ξξ̄ term in (B.5) in the lattice data as the contribution

of the first excited state in the sector at vanishing momentum, but a careful analysis of

the amplitudes as well as the scaling dimensions shows this is not what happens. On the

lattice, the two point function contains, in addition to the terms in (B.5), a term in the

bracket proportional to (ξξ̄)h3/2,0−h1/2,0 . This follows from (B.3), which leads to

P lattice
aa ∝ 1

|z|4h1/2,0

[
1 +

(
A1

A0

)2( ε

|z|

)4(h3/2,0−h1/2,0)

+ . . .

]
, (B.6)

and, after mapping on the cylinder, to

P lattice
aa ∝

(
2π

L

)4h1/2,0

[(
ξ

(1− ξ)2

)h1/2,0
(

ξ̄

(1− ξ̄)2

)h1/2,0

+

(
A1

A0

)2(2πε

L

)4(h3/2,0−h1/2,0)( ξ

(1− ξ)2

)h3/2,0
(

ξ̄

(1− ξ̄)2

)h3/2,0

+ . . .

]
. (B.7)

The amplitude ratio A1/A0 is non-universal, but, for a given lattice, it is a fixed quantity.

The term L−4(h3/2,0−h1/2,0) goes to zero as L goes to infinity, guaranteeing the disappearance

of the unwanted terms in this limit. The question is how much this might affect the results

for L finite.

Measurement of the amplitudes — or rather the ratio with respect to the leading term

— gives the following results:

L ξ + ξ̄ ξξ̄ ξ2 + ξ̄2 (h3/2,0, h3/2,0)

5 0.1009697881 0.004693387836 0.05633421252 −0.0007594762012

6 0.1044947727 0.006252504965 0.05534757764 −0.0006074838333

7 0.1070768500 0.007528362715 0.05578623767 −0.0004817486169

8 0.1089775943 0.008549110109 0.05665273685 −0.0003834115301

9 0.1103983091 0.009361639062 0.05759817991 −0.0003078006915

10 0.1114793562 0.010010585922 0.05849501339 −0.0002497183860

11 0.1123166454 0.010532656068 0.05930089355 −0.0002048250690

12 0.1129759889 0.010956414072 0.06000781281 −0.0001698028289

∞ 0.11679 0.13644 0.06519 < 10−6

CFT 0.116778 0.0136372 0.0652078 0

The extrapolation to L → ∞ was made via a polynomial of order 7 in 1/L, using all

data points, since there are no discernable parity effects in this case. We observe that on

one hand the expected ratios converge to their conformal values to a very good precision

(4 or 5 digits). On the other, the one that is not expected — corresponding to the coupling

to (h3/2,0, h3/2,0) — decreases fast, and converges to a value close to zero.12 This example

12To make this last extrapolation, we have not used the knowledge of (B.7) concerning the exact power-

law dependence on L. Rather we performed just the usual polynomial fit, in order to establish the same

methodology for other less trivial cases.
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shows that one can obtain fine extrapolations, even though for the sizes considered in this

paper (and the value Q = 3/2 taken here) the mixing of the field (h3/2,0, h3/2,0) with the

order parameter has a rather large relative coefficient of the order of 10−2.

B.2 The case Q = 2

We now consider the case Q = 2 (and later Q = 4) to check the consistency of our approach,

and assess the quality of convergence of the amplitudes in the four-point functions. While

in general, the geometrical probabilities cannot be expressed in terms of simple four-point

functions in rational CFTs, the situation is better for these two values of Q. This has to

do with the relationship [18] between correlation functions of spins in the Potts model and

the geometrical objects, see eq. (2.9). We stress that for Q arbitrary, the left-hand sides of

these equations are only formally defined: it is in fact the right-hand sides that give them

a meaning. In the Q = 2 case the first relation (2.9a) reads simply

Gaaaa = Paaaa + Paabb + Pabba + Pabab , for Q = 2 . (B.8)

On the other hand, recall from (2.7) that

Gaaaa = 〈
4∏
i=1

(Qδσi,a − 1)〉 (B.9)

As discussed in A.6, for Q = 2, the order parameter Qδσi,a − 1 coincides with the Ising

spins Si = ±1, so this four-point function is nothing but the four-point function of the spin

operator in the Ising model [65]

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 =
1

2

∣∣∣∣ z13z24

z12z23z34z41

∣∣∣∣1/4 (∣∣1 +
√

1− z
∣∣+
∣∣1−√1− z

∣∣) (B.10)

=
1

2
|z13|−1/4|z24|−1/4 1

|z(1− z)|1/4
(∣∣1 +

√
1− z

∣∣+
∣∣1−√1− z

∣∣) .
We also recall the structure constant Cσσε = 1

2 , where ε denotes the energy operator;

the latter appears as the non-trivial part of the scaling limit of SiSi+1. The four-point

function (B.10) involves two conformal blocks, corresponding to the fusion channels σσ ∼ 1

and σσ ∼ ε. Expanding the function G as in (4.6) gives then

|z|1/4G(z, z̄) = 1 +
1

4
z1/2z̄1/2 +

1

16
(z1/2z̄3/2 + z3/2z̄1/2)

+
1

64
z3/2z̄3/2 +

1

64
(z2 + z̄2) + . . . . (B.11)

The normalised correlation function on the lattice should then be

1 + s2(ξξ̄)1/2 + (s2 − s4)(ξξ̄)1/2(ξ + ξ̄) +
s4

4
(ξ2 + ξ̄2)

+ (s2 − 2s4 + s6)(ξξ̄)3/2 +
s8

16
(ξξ̄)2 + . . . , (B.12)

where s = sin 2πa
L , and the extra terms arise from the conformal mapping as in (4.12).
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Figure 9. The simple modules X0,i and X0,−1 are the tops of these two diagrams representing the

structure of the standard modules for q = eiπ/4.

B.2.1 Reduction from the generic case

We first checked — by computing the four-spin correlation function numerically for the

ordinary (spin representation) Ising model on the cylinder — that the identity (B.8) holds

exactly in finite size; details are given in section A.6. This computation is certainly a

rather stringent test of the program that determines the Pa1,a2,a3,a4 numerically. Note that

the (large) set of eigenvalues that contribute to the geometrical correlations for generic

values of Q reduces drastically — as expected — when we consider the combination (B.8).

In algebraic terms, generically irreducible representations of the Jones algebra become

reducible, and a complex structure of submodules of the relevant Wj,z2 develops. It turns

out that only two simple quotients contribute to the Ising model: X0,i and X0,−1, which are

obtained as the the ‘tops’ of chains of modules according to the diagrams in figure 9 (for

a detailed discussion of the emergence of simple modules of the Jones algebra describing

minimal models when q is a root of unity, see [29]).

The continuum limit of the simple modules of the Jones algebra is fully expressed in

terms of irreducible modules Xr,s of the Virasoro algebra

X0,i 7→ X1,1 ⊗ X1,1

⊕
X21 ⊗ X2,1 = Xh=0 ⊗ Xh=0

⊕
Xh=1/2 ⊗ Xh=1/2 , (B.13a)

X0,−1 7→ 2X12 ⊗ X12 = 2Xh=1/16 ⊗ Xh=1/16 , (B.13b)

where the factor 2 indicates that, in fact, the representation splits into two isomorphic

direct summands for the subalgebra generated by ei and u2, and Xr,s denotes the irreducible

Virasoro module with conformal weight hrs (and, e.g., character given by the well-known

Rocha-Caridi formula [66]).

We checked that the combination (B.8) receives contributions only from the tops in the

diagrams in figure 9 , which corresponds, in the continuum limit, to the required channels

of the minimal Ising model. Note however that individual probabilities in (B.8), unlike

their sum, do involve contributions outside the simple representations.
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B.2.2 Numerical checks of the amplitudes

We now turn to the question of the convergence of the amplitudes measured on the lattice.

Surprisingly, it seems this question has not been investigated much in the past (see [67] for

early work). Since the Ising model is much easier to handle numerically than the general FK

cluster model, we can study in this case much larger sizes (up to Lmax = 16), and explore

in particular the nature of the convergence of the coefficients in the expansion (B.12).

We present in the following figures 10–11 two different ways of handling the data.

First, we consider the case where a is changed as L increases. For definiteness we consider

2a = L
2 when L is even and 2a = L−1

2 when L is odd. In both cases, sin 2πa
L → 1 as L→∞,

but we should of course expect even/odd parity effects in L because of the different choices

of 2a.

A priori the aim would be to compute the amplitude ratios, with respect to the ground

state amplitude, corresponding to the five last terms in (B.12), namely the contributions

to Gaaaa of ε, (L−1 + L̄−1)ε, T + T̄ , L̄−1L−1ε, and T T̄ , respectively. However it turns

out that (L−1 + L̄−1)ε and T + T̄ correspond to eigenvalues that are exactly degenerate

in finite size, so the corresponding contributions cannot be disentangeled. We thus list the

amplitude ratios in (B.12) that we can access numerically along with their corresponding

analytical predictions:

ε : s2 (B.14a)

(L−1 + L̄−1)ε+ (T + T̄ ) : 2

(
s2 − 3

4
s4

)
(B.14b)

L̄−1L−1ε : s2 − 2s4 + s6 (B.14c)

T T̄ :
s8

16
(B.14d)

The four panels of figure 10 show the corresponding amplitudes ratios, where in each

case we have divided the ratio by the expected analytical result just given. It is seen that

in each case the result tends to 1 after extrapolation, thus confirming the whole analysis.

A number of remarks can be made about figure 10. First, the extrapolations have

to be carried out using some amount of common sense. In some cases the obvious non-

monotonicity of the finite-size results (panel d) makes it clear that one should leave out

the first few points from the fits. In other cases, (panel c) including all points in a high-

order polynomial fit leads to the best results. Second, the comparison between fits through

even and odd sizes appears to be a good measure for the “error bar” on the extrapolated

value. Third, there is a tendency for the finite-size effects to grow as one goes to higher

descendents. Thus, if we were limited to smaller sizes — such as Lmax = 11, as would be

the case for the FK cluster model at generic values of Q — it should be expected that the

last data point might very well be off the true extrapolated value by a factor of 2 or more.

It is also interesting to study what happens when a is fixed while L is increased. In this

case, one does not expect the amplitude ratios to converge to the four-point CFT values

reported in (B.14), since the latter require a, L � 1 (in units of the lattice spacing) with

fixed value of the ratio a
L (and hence s fixed). To illustrate this, we consider for instance
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Figure 10. Measures of the first four amplitude ratios in Gaaaa for the Ising model, divided by

the expected analytical results. The respective panels show the contributions from (a) the energy

operator ε, (b) its first descendent (L−1 + L̄−1)ε along with the stress tensor T + T̄ , (c) its second

descendent L̄−1L−1ε, and (d) the quantity T T̄ . All data is shown against 1/L. The extrapolations

for even and odd L are shown respectively as blue and orange curves.

the case of 2a = 2 fixed, with L increasing — note that we do not expect parity effects

using this protocol. To make the analysis comparable to the one above, we again divide the

ratio by the CFT predictions (B.14). The results are shown in figure 11, to be compared

with the previous figure 10. Clearly the convergence is no longer towards one. It is however

remarkable that the numerical data still appear to converge to a finite value. For the energy

operator and its first two descendents (panels a, b, c) we get fine extrapolations to the values

0.9292, 0.9289 and 0.9292 respectively, which are all compatible among themselves. For

T T̄ the extrapolations are more problematic, but still appear to converge to a finite value

' 0.53, which definitely appears to be different from the previous one.

We are not sure whether these values can be interpreted within CFT — neither whether

the observed convergence is real or only apparent. Repeating the computations for 2a = 3,

a similar extrapolation gives the consistent values 0.9686 and 0.9680 for the energy field

and its first descendent, whereas T T̄ gives another value ' 0.71.

B.3 The case Q = 4

As pointed out in [1], the Potts model at Q = 4 is particularly interesting, since in this case

all geometrical correlation functions can be expressed in terms of spin correlation functions.

This provides analytical results for all the Pabcd, and thus provides a simple benchmark
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Figure 11. Same as figure 10, but for a fixed distance 2a = 2 between each pair of operators.

The panels are as in figure 10. The extrapolations, shown as blue curves, now uses sizes L of both

parities.

against which to test our approach. There is however a drawback to this idea: numerics

for the Potts model at Q = 4 are known to be affected by stronger than usual corrections

to scaling due to the presence of a marginal operator. As a result, convergence to the

expected amplitudes appears to be slower than for other values of Q, especially small ones.

In any case, we start by observing that the Potts model partition function, can be

expressed in the continuum limit as the sum [11, 68],

ZPotts Q=4 =
∑
n∈Z

F2n,1 −
1

2
F2n+1,1 +

3

2
F2n,−1 , (B.15)

where the generating functions are obtained by taking the limit m → ∞ of our general

result (4.24)

Fj,1 =
1

ηη̄

∑
k∈Z

q(j+k)2/4q̄(j−k)2/4 , (B.16a)

Fj,−1 =
1

ηη̄

∑
k∈Z

q(j+k+1/2)2/4q̄(j−k−1/2)2/4 . (B.16b)

In contrast with the case of generic Q [11], we see that only a very small subset of the

Fj,e2iπp/M generating functions contribute. This corresponds to the fact — which we checked

explicitly in finite size, and which has a simple representation theoretic interpretation; see

below — that of all the usual Jones algebra modules, only those corresponding to z2 = ±1

play a role at Q = 4.
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B.3.1 Exact results via the Ashkin-Teller model

After these preliminaries, we now consider four-point functions per se. In [1], some of the

probabilities at Q = 4 are given based on results in [18], combined with the careful reading

of a paper by Al.B. Zamolodchikov [69]. Calling τ1, τ2 the two spins of the Ashkin-Teller

model, we introduce, following [69], the four quantities

R1 = 〈τ1τ2τ2τ1〉 , (B.17a)

R2 = 〈τ1τ1τ2τ2〉 , (B.17b)

R3 = 〈τ1τ2τ1τ2〉 , (B.17c)

G = 〈τ1τ1τ1τ1〉 ; (B.17d)

note that G here must not be confused with G in (4.1). It is then expected that13

Paabb ∝ G+R2 −R1 −R3 , (B.18a)

Paaaa ∝ −G+R1 +R2 +R3 , (B.18b)

Pabab − Pabba ∝ R1 −R3 . (B.18c)

The quantities on the right-hand side are then calculated in [69]. We introduce first

F0(z) ≡ [z(1− z)]−1/8θ−1
3 (q) , (B.19)

where z = z12z34
z13z24

as usual. We shall also need the Jacobi theta functions

θ3(q) =

∞∑
−∞

qn
2
, (B.20a)

θ2(q) =
∞∑
−∞

q(n+1/2)2
. (B.20b)

These two functions are used to define q(z) implicitly via

z ≡ θ4
2(q)

θ4
3(q)

(B.21)

Note that the function q(z) is analytic in z:14

q(z) =
z

16
+
z2

32
+

21z3

1024
+

31z4

2048
+

6257z5

524288
+

10293z6

1048576
+

279025z7

33554432
+

483127z8

67108864
+ . . . . (B.22)

13Note there is a slight change of notations between [1] and [69]: R1 and R2 are interchanged.
14Thus q must not be confused with either the nome q in generating functions of conformal weights, not

with the quantum group deformation parameter q.
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We then set

G = F0F̄0

∞∑
m,n=−∞

q(β+m+β−n)2
q̄(β+m−β−n)2

, (B.23a)

R1 = F0F̄0

∞∑
m,n=−∞

q(β+m+β−(n+1/2))2
q̄(β+m−β−(n+1/2))2

, (B.23b)

R2 = F0F̄0

∞∑
m,n=−∞

(−1)mq(β+m+β−n)2
q̄(β+m−β−n)2

, (B.23c)

R3 = F0F̄0

∞∑
m,n=−∞

(−1)mq(β+m+β−(n+1/2))2
q̄(β+m−β−(n+1/2))2

. (B.23d)

Finally we choose

β+ = 1 , (B.24a)

β− =
1

2
. (B.24b)

The claim is then that the z, z̄ dependent part of the four-point function (the function G

of section 4.1) is given by corresponding combinations of the functions G and Ri. So for

instance

Paabb ∝ |z12z34|−1/4Gaabb(z, z̄) , (B.25)

with

Gaabb(z, z̄) = G+R2 −R1 −R3 (B.26)

= 2F0F̄0

( ∞∑
m,n=−∞

q(2m+n/2)2
q̄(2m−n/2)2 − q(2m+n/2+1/4)2

q̄(2m−n/2−1/4)2

)
.

What we must do then is to expand the combinations (B.23) in powers of z. This gives

expressions of the form

(zz̄)−1/8
∑
∆∆̄

z∆z̄∆̄ . (B.27)

The point is that the set of weights (∆, ∆̄) is the set of conformal weights appearing in the

s-channel expansion of the four point function. (It is not necessarily the set of primary

fields, as the exact result does not distinguish between primaries and descendents. Hence

our use of the notation ∆ is slightly abusive when compared with the general case.) This

must be the same set as the set of conformal weights contributing to the lattice observable.

Hence, we must compare the sets occurring in (B.23) with the sets determined directly.

These sets can be determined numerically, as for Q generic, and are found to be:

Spec Paabb ⊂ Spec W0,1/W1,1 + Spec W0,−1 + Spec W2,1/W3,1 + . . . , (B.28a)

Spec Paaaa ⊂ Spec W0,−1 + Spec W2,1/W3,1 + . . . , (B.28b)

Spec (Pabab − Pabba) ⊂ Spec W2,−1 + . . . , (B.28c)

Spec (Pabab + Pabba) ⊂ Spec W2,1/W3,1 + . . . . (B.28d)
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Here the quotients of modules have a direct meaning in terms of subtracting eigenvalues

common to various sectors in finite size. Like for other non-generic values of q, the modules

contributing to the probabilities are no longer irreducible, and the Q = 4 results correspond

to taking the simple irreducible tops. Indeed we find in general that Spec W2k+1,1 ⊂
Spec W2k,1 for k = 1, 2, . . ..

We have moreover established numerically that Spec (Pabab − Pabba) does not contain

Spec W4,−1, which would otherwise have been a viable candidate in view of symmetries

and the results for generic Q. For these reasons we conjecture that the complete result

generalising (B.28) should in fact read:

Spec Paabb = Spec W0,1/W1,1+Spec W0,−1+
∑
k≥1

Spec W2k,1/W2k+1,1 , (B.29a)

Spec Paaaa = Spec W0,−1 +
∑
k≥1

Spec W2k,1/W2k+1,1 , (B.29b)

Spec (Pabab − Pabba) = Spec W2,−1 , (B.29c)

Spec (Pabab + Pabba) =
∑
k≥1

Spec W2k,1/W2k+1,1 + . (B.29d)

B.3.2 Probability Paaaa

First we consider Paaaa. The spectrum predicted from the decomposition in (B.28) is

(qq̄)1/24F0,−1 = 2q1/16q̄1/16
(

1 + q + q̄ + (qq̄)1/2 + qq̄ + . . .
)
, (B.30a)

(qq̄)1/24 (F2,1 − F3,1 + . . .) = qq̄ + q1/4q̄9/4 + q9/4q̄1/4 + . . . . (B.30b)

Corresponding to this we find

−G+R1 +R2 +R3 = (zz̄)−1/8

(√
2z1/16z̄1/16 +

1

16
√

2
(z1/16z̄17/16 + z17/16z̄1/16)

+
1

8
√

2
(zz̄)9/16 + . . .− 1

128
zz̄ − 1

512
(z1/4z̄9/4 + z9/4z̄1/4) + . . .

)
,

(B.31)

and thus, after mapping to the cylinder

Paaaa ∝ (ξξ̄)1/16 +
cos2 2πa

L

4
√

2
(ξξ̄)1/16(ξ + ξ̄) +

sin2 2πa
L

2
√

2
(ξξ̄)9/16 + . . .

−
(4 sin2 2πa

L )15/8

128
√

2
ξξ̄ −

(4 sin2 2πa
L )19/8

512
√

2
(ξξ̄)1/4(ξ2 + ξ̄2) + . . . , (B.32)

where we recall that

ξ = e−2π(l+ix)/L , ξ̄ = e−2π(l−ix)/L . (B.33)

The first and third terms in this expression are associated with the largest eigenvalue in

F0,−1 at zero momentum (this is denoted V100 in section A.4). The second term also belongs

to F0,−1, but at non-zero momentum (namely V101). Finally, the fourth and fifth terms are
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the leading ones in F2,1 (in respective momentum sectors V200 and V202). To associate these

terms to definite eigenvalues, for each size L, requires going through the detailed analysis

of section A.5. We moreover note that one has to be careful in the comparison, since on

the lattice we do not individually observe the amplitudes of conjugate terms, such as the

two terms in (ξξ̄)1/16(ξ + ξ̄), since they correspond to the same eigenvalue. Therefore, to

make the comparison we must divide the numerically observed amplitude by two in such

cases (cf. remark 6)—this has been done tacitly below and in subsequent similar cases.

This leads to the following results for the second to fifth terms in (B.32):

L (ξξ̄)1/16(ξ + ξ̄) (ξξ̄)9/16 ξξ̄ (ξξ̄)1/4(ξ2 + ξ̄2)

5 lattice 0.01025716807 0.2499038005 −0.1702401995 −0.05899812501

CFT 0.01688067229 0.3197920460 −0.0615759664 −0.02928111207

ratio 0.6076 0.7815 2.7647 2.0149

7 lattice 0.005692994702 0.2821337922 −0.1820689962 −0.06496561673

CFT 0.008753198131 0.3360469943 −0.0675747438 −0.03294025194

ratio 0.6504 0.8396 2.6943 1.9722

9 lattice 0.003595596367 0.2949643343 −0.1820598325 −0.06747242144

CFT 0.005330469599 0.3428924513 −0.0701787272 −0.03455627732

ratio 0.6745 0.8602 2.5942 1.9525

We see that the first two columns come out satisfactorily, and the ratios can be rather

convincingly extrapolated to a number close to one, despite of the small number of sizes.

For the higher-order terms (the last two columns of the table) the convergence is definitely

slower, but still goes in the right direction. We have already seen (witness figure 10 in the

Ising case) that ratios of the order of 2 at small sizes (L ≤ 9 here) are not uncommon, and

it is quite plausible that also these columns could be extrapolated to one, provided one

could obtain a few more sizes. In conclusion, the test of Paaaa is fully compatible with the

exact results.

B.3.3 Probability Paabb

We next consider the probability Paabb of a pair of “short” clusters. The spectrum predicted

from the decomposition in (B.28) is

(qq̄)1/24F0,−1 = 2q1/16q̄1/16
(

1 + q + q̄ + (qq̄)1/2 + qq̄ + . . .
)
,

(qq̄)1/24 (F0,1 − F1,1 + F2,1 − F3,1 + . . .) = 1 + (qq̄)1/4 + (qq̄)1/4(q + q̄)

+qq̄ + (qq̄)1/4(q2 + q̄2) + . . . . (B.34)

Correspondingly, we find

G−R1 +R2 −R3 = (zz̄)−1/8

(
−
√

2(zz̄)1/16 − 1

16
√

2
(zz̄)1/16(z + z̄) + . . .

+ 1 +
1

2
(zz̄)1/4 +

1

16
(zz̄)1/4(z + z̄) + . . .

)
, (B.35)

and thus

Paabb ∝ −
√

2(ξξ̄)1/16 + . . .

+1 +
(4 sin2 2πa

L )3/8

2
(ξξ̄)1/4 + . . . . (B.36)
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The first term is the leading eigenvalue in F0,−1, corresponding in finite size to the largest

eigenvalue in V100. The second and third terms are the two leading eigenvalues in F̄0,1,

corresponding to the two largest eigenvalues in V000. The comparison with numerics —

presented in the by now familiar format — here comes out as:

L (ξξ̄)1/16 (ξξ̄)1/4

5 lattice −1.342154491 0.6006793776

CFT −1.414213562 0.8098363105

ratio 0.9490 0.7417

7 lattice −1.400211084 0.7065845314

CFT −1.414213562 0.8250340627

ratio 0.9901 0.8564

9 lattice −1.431374714 0.7598690826

CFT −1.414213562 0.8312967743

ratio 1.0121 0.9141

It again appears convincing that the ratios will converge to one, i.e., that the numerical

results confirm the analytical ones.

B.3.4 The combination Pabab − Pabba

As a last example we discuss antisymmetric combination Pabab − Pabba of the probabilities

of having two “long” propagating clusters, as shown in figure 2.

It is easy to expand the spectrum of exponents arising from (B.28) on the one hand:

the first few terms are

(qq̄)1/24F2,−1 = (qq̄)9/16(q + q̄ + q2 + q̄2 + 2qq̄ + . . .) + (qq̄)1/16(q3 + q̄3 + . . .) .

The powers of q, q̄ on the right-hand side are expected to be exactly the exponents appearing

in the sum (B.27). Using the foregoing discussion and the expressions of R1, R3, we can on

the other hand identify these exponents by performing a direct expansion whose first few

terms are:

R1 −R3 =
(zz̄)−1/8

128
√

2

{
(zz̄)9/16

(
z + z̄ +

25

32
(z2 + z̄2) +

9

16
zz̄ + . . .

)
+(zz̄)1/16

(
1

16
(z3 + z̄3) + . . .

)}
.

This plays the role of the function G in our general discussion (4.12). It is easy to check that

the two sets agree. Moreover, we have also checked that there is no gap in the spectrum,

that is, all exponents predicted from the generating function (B.28) are indeed present with

non-zero coupling constant.

To check the numerical values of the amplitudes, we need as usual to map the four-point

function on the cylinder. We find the first few terms

Pabab − Pabba ∝ (ξξ̄)9/16(ξ + ξ̄) +

[
9

4
−

9 sin2 2πa
L

4

]
(ξξ̄)25/16 (B.37)

+

[
25

8
− 25

8
sin2 2πa

L

]
(ξξ̄)9/16(ξ2+ξ̄2)+

sin2 2πa
L

4
(ξξ̄)1/16(ξ3+ ξ̄3) + . . .) .
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The first term corresponds to the lowest eigenvalue in the F2,−1 sector with conformal

spin h− h̄ = 1, originating from V211 in finite size. The second and third term correspond

to the leading eigenvalue with h − h̄ = 0 (resp. h − h̄ = 2), originating from V210 (resp.

V212)—note that since the scaling dimension h + h̄ = 25
8 is the same for these two terms

their ordering in the finite-size data cannot be guessed straightaway, and one has to make

use of the lattice momentum to reveal the correct conformal spin. Finally, the fourth term

corresponds to the lowest eigenvalue in the sector with h − h̄ = 3 — we notice that this

state is not present for L = 5, since this size is yet too small to accommodate the high

value of the momentum. The numerical results for the last three terms being discussed

(taking ratios with respect to the first term) now run as follows:

L (ξξ̄)25/16 (ξξ̄)9/16(ξ2 + ξ̄2) (ξξ̄)1/16(ξ3 + ξ̄3)

5 lattice 0.05719383440 0.2474873290 0

CFT 0.10742794066 0.2984109462 0

ratio 0.5324 0.8294

7 lattice 0.03267744359 0.1238111030 0.1246090804

CFT 0.05570501180 0.1547361439 0.2376211084

ratio 0.5866 0.8001 0.5244

9 lattice 0.02135602073 0.07680979880 0.1355927174

CFT 0.03392290080 0.09423028002 0.2424615776

ratio 0.6295 0.8151 0.5592

Finally, observe that the Kac parametrisation

hrs =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
(B.38)

becomes, in the limit m → ∞, hrs = (r−s)2

4 . The exponents appearing in the various

Ashkin-Teller correlators are thus in agreement with the spectra conjectured in [1]

G : SZ,2Z,
R1 : SZ+ 1

2
,2Z,

R2 : SZ,2Z
R3 : SZ+ 1

2
,2Z (B.39)

after the switch of r, s labels mentioned earlier in remark 5.

B.4 The case Q = 0

The case Q = 0 (or rather the limit Q→ 0) is connected to the combinatorics of spanning

trees and forests (see, e.g., [70–72]). It is interesting in the present context for two reasons.

On the one hand, it gives rise to Jordan cells in the transfer matrix, and thus provides an

opportunity to study their effect on the determination of amplitudes. On the other hand,

it also turns out that the combination Pabab − Pabba can be explicitly calculated in this
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case, providing another non-trivial check of our method, this time in the region of small

values of Q.

While for Q generic, the two-point function of the Potts spin operator is proportional to

the probability that the two points belong to the same cluster [see (2.8)], the limit Q→ 0

needs to be handled with care, since the partition function itself vanishes. At leading

order, the only terms left in the partition function are spanning trees: a naive definition

— requiring that the two points still belong to the same cluster — would then lead to a

trivially constant two-point function. To obtain non-trivial results it is better to change the

normalisation by one factor of Q, that is, to redefine the partition function as the number

of spanning trees. A natural redefinition of the two-point function will be given below; it

follows by using the equivalence of the Q→ 0 limit with symplectic fermions [73, 74] and

the theory of spanning trees.

The simplest, in fact, is to start by discussing the combination Pabab − Pabba. Indeed,

consider four points labelled 1, 2, 3, 4 in the plane. As usual, we consider the square lattice

in concrete calculations. We denote by N13,24 (resp. N14,23) the numbers of configurations

of spanning trees where one tree connects points 1, 3 and a different tree connects points

2, 4 (resp. one tree connects points 1, 4 and a different ones points 2, 3). It is possible to

show, by generalising Kirchoff’s original discussion [75] along the lines of [76], that

N13,24 −N14,23 = Det ∆(12)(34) , (B.40)

where the right-hand side is the determinant of the lattice Laplacian after having removed

the lines corresponding to points 1, 2 and columns corresponding to points 3, 4. Here, the

Laplacian is defined as follows. It is a matrix denoted ∆ whose linear size is the number

of vertices of the graph, here a planar lattice, that we suppose loopless (i.e., no vertex

is connected to itself) for simplicity. The diagonal elements ∆ii are the number of edges

incident on vertex i. The off-diagonal elements ∆ij are equal to minus the number of edges

connecting the vertices i and j. We also denote by ∆(kl) the minor of ∆ obtained by erasing

row k and column l. We recall that det ∆ = 0, since by definition the sum of all rows (or the

sum of all columns) is zero. Moreover, by the Kirchhoff matrix-tree theorem [75], det ∆(kl)

is equal to the number of spanning trees on the graph. If we now go back to the Q → 0

limit of the Potts model and the definition (2.6) of the probabilities Pa1,a2,a3,a4 in terms

of the cluster expansion, we see that (B.40) is the leading contribution to Pabab − Pabba
as Q → 0: in this limit indeed, any non-connected additional cluster gets cancelled by a

power of Q, and so do cycles within the clusters (so each cluster is a tree indeed).

Meanwhile, (B.40) can be calculated in the continuum limit, which is simply described

by a pair of symplectic fermions (θ+, θ−) with Euclidean action

S =

∫
d2x dαβ∂µθ

α∂µθ
β , (B.41)

subject to summation over repeated indices, and with d+− = 1, d−+ = −1. The quantity

in (B.40) is then nothing but 〈θ+(1)θ+(2)θ−(3)θ−(4)〉 and gives15 [77, 78]

〈θ+(1)θ+(2)θ−(3)θ−(4)〉 = ln

∣∣∣∣z14z23

z13z24

∣∣∣∣2 . (B.42)

15Note that Wick’s theorem has to be handled with care, since the partition function vanishes.
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B.4.1 Two-point function

Before studying Pabab−Pabba, we can extract from this a useful definition of the two-point

function as well. Indeed imagine sending point 1 to 3, and point 2 to 4. In this case, the

configurations in N14,23 become negligible, while those in N13,24 describe a situation where

1 = 3 belongs to a tree and 2 = 4 to a different tree. We use this to define a two-point

function:

g2(1, 2) ≡ N1,2

N1
, (B.43)

where N1,2 is the number of configurations of spanning forests with two trees only, with

points 1 and 2 belonging to different trees, while N1 denotes the number of spanning trees.

In the continuum limit we therefore have from (B.42)

g2(z, z̄) = 2 ln |z/ε|2 , (B.44)

where ε is a short-distance cutoff. Note that ε cannot be eliminated by multiplicative

renormalisation, as is usually done in CFT. We could, alternatively, set ε = 1, and say

that the two-point function takes the form (B.44) up to a non-universal additive constant.

On the cylinder, we expect the following behavior in the conformal limit [79]:

g2(w, w̄) = 2 ln

(
L

πε
sinh

πw

L

)
+ 2 ln

(
L

πε
sinh

πw

L

)
. (B.45)

We shall measure w,L in units of the lattice spacing. This means that ε will be a (non-

universal) numerical constant of order unity. We now expand g2 to see how it connects

with the results from the transfer matrix:

g2(ξ, ξ̄) = 4 ln
L

2πε
+

4πl

L
− 2

∞∑
n=1

(
ξn

n
+
ξ̄n

n

)
. (B.46)

It is seen that g2 consists of a linear term and a sum of exponentials. All the amplitudes

can be compared with lattice calculations: the sum of exponentials arises from a sum over

eigenvalues of the transfer matrix as usual, while the linear term arises because of the

presence of a Jordan cell of rank two. Write (B.46) as

g2 ∝ Al +
∑
i≥0

Bi(Λi/λ0)l , (B.47)

where Λ0 denotes the ground-state eigenvalue. We get from (B.46) that A = 4π
L while

B0 = 4 ln L
2πε , B1 = −4, and B2 = −2 (where the last term comes from n = 2 in the sum).

However, if we change the normalisation of (B.47) so that A = 1
L , we get instead:

B0 =
1

π
ln

L

2πε
, B1 = − 1

π
, B2 = − 1

2π
, B3 = − 1

3π
, · · · (B.48)

As usual we can confront this with the numerical computations. We find that A = 1
L

exactly in finite size, which motivates the above choice of normalisation. Moreover, g(1, 3)

is found to couple only to a very small set of eigenvalues: apart from the rank-two Jordan
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Figure 12. Structure of standard modules for q = eiπ/2.

cell parameterised by (B0, A), there are only two (resp. three) simple eigenvalues for L = 5

and 2a = 2 (resp. L = 7 and 2a = 3). Presented in the usual table form we find:

L B0 B1 B2 B3

5 lattice 0.4457211803 −0.2933396913 −0.1523814889 −

CFT 0.6560432383 −0.3183098862 −0.1591549431

ratio 0.6794 0.9215 0.9574

7 lattice 0.5509145352 −0.3020464547 −0.1439480976 −0.1049199829

CFT 0.7631456776 −0.3183098862 −0.1591549431 −0.1061032954

ratio 0.7219 0.9489 0.9045 0.9888

Note that we have here set ε = 1 in the CFT result for B0 in order to get an order of

magnitude estimate. Since this term is not expected to be universal, the agreement for B0

is here seen to be reasonable. The agreement for the other terms (B1, B2, B3) is seen to

be very good, even at these small sizes.

We now comment more generally on the structure of the two-point function in terms

of the transfer matrix. The linear term in (B.46) indicates the presence of a Jordan cell of

rank two (since we get a term linear in l), and that the two corresponding (pseudo) eigen-

values must be in the ground-state sector since there is no exponential decay. The sum of

exponentials involves only integer conformal weights, and corresponds simply to coupling to

descendants of the identity. Remarkably, note that we couple only to purely chiral or purely

antichiral fields. This explains the scarcity of non-zero amplitudes observed numerically.

It is also useful here to recall the structure of some of the modules for Q = 0. Since

q is a root of unity, the Wj,z2=e2iK are reducible, and have a structure of submodules that

depends on the values of j, z. For instance we get the structure shown in figure 12.

Meanwhile, we can read the dimension content from the general formulae:

Fj,1 =
1

(qq̄)−2/24P (q)P (q̄)

∑
e∈Z

q
(j−2e)2−1

8 q̄
(j+2e)2−1

8 . (B.49)
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Let us consider in more detail F1,1. This contains the exponents (h, h̄), here ordered by

the total value of the scaling dimension h+ h̄:

(0, 0); (0, 1)× 2; (1, 0)× 2; (1, 1)× 3; (2, 0)× 3; (0, 2)× 3; . . . . (B.50)

We see that the first eigenvalue with h − h̄ = 1 is (h, h̄) = (1, 0), the first eigenvalue

with h − h̄ = 2 is (h, h̄) = (2, 0), etc. This agrees with the expansion (B.46). Since only

purely chiral contributions appear in this expansion, this means that, for a given value of

n = h − h̄, we have only the smallest realisation, (h, h̄) = (n, 0). The same applies to all

the other sectors.

B.4.2 The four-point function Pabab − Pabba

We now go back to the combination Pabab − Pabba, which we write in terms of the variable

z ≡ z12z34
z13z24

:

Pabab − Pabba ∝ −[ln(1− z) + ln(1− z̄)] , (B.51)

and expanding this we get

Pabab − Pabba ∝
∞∑
n=1

zn + z̄n

n
. (B.52)

Note that, if we exchange points 1 and 2, we have z = z12z34
z13z24

→ z21z34
z23z14

= z
z−1 . This

corresponds to sending 1 − z → 1
1−z , and thus to changing the sign of Pabab − Pabba, as

required from the geometrical interpretation. This does not mean that only odd spins

appear in the expression (4.6), because in this case there are large degeneracies (in fact,

only a few of the terms correspond to primary fields).

Going to the cylinder as usual we find now

Pabab − Pabba ∝
∞∑
n=1

(−1)n

n

(
4 sin2 2πa

L

)n ξn

(1− ξ)2n
+ h.c. (B.53)

To compare with the numerical work, we rewrite (B.53) as

Pabab − Pabba ∝
∞∑
n=1

Cnξ
n + h.c. (B.54)

and choose the normalisation C1 = 1, so that the amplitude ratios can be read off directly

from the following coefficients. The first few then read explicitly

C2 = 2

(
cos

2πa

L

)2

, (B.55a)

C3 =
1

3

(
1 + 2 cos

4πa

L

)2

, (B.55b)

C4 =

(
cos

2πa

L
+ cos

6πa

L

)2

. (B.55c)
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As above, the numerical work was done for L = 5 and 2a = 2 (resp. L = 7 and 2a = 3).

The contributing eigenvalues are then found to be exactly the same as for the two-point

function g2(1, 2), corresponding to the terms n = 1, 2 (resp. n = 1, 2, 3) in (B.54). There

is no longer any Jordan cell (the term n = 0). Note also that in both cases, we expect at

all orders to have only chiral or antichiral contributions. The numerical results compared

with the conformal predictions run as follows:

L C2/C1 C3/C1

5 lattice 0.1984202998 −
CFT 0.1909830056

ratio 1.0389

7 lattice 0.09439172580 0.2233910496

CFT 0.09903113209 0.2143680440

ratio 0.9532 1.0421

Once again the agreement is very reasonable, given the rather small sizes.

A peculiarity of this four-point function — as well as of the two-point function g2

considered above — is that only fields with h = 0 or h̄ = 0 appear. Since the spin h− h̄ is

limited to values 0, 1, . . . , L− 1 for a finite size L, this means only a very small number of

eigenvalues contribute to the correlation function at finite L. This is quite different from

the usual case, where having h − h̄ fixed does not preclude eigenvalues with larger h + h̄

from contributing. Of course, it could be that some eigenvalues would contribute in finite

L, although their amplitude would tend to zero when L increases, because they would not

be present in the continuum limit. But this does not seem to be the case here — a fact

that can probably be proven exactly in finite size using the Laplacian on the cylinder.

B.4.3 The combination Paabb − Pabba

It is also interesting to observe that, under crossing z2 ↔ z3, ie z → 1
z , the combination

Pabab−Pabba that we have just discussed becomes Paabb−Pabba. We have studied the latter

combination independently. From our analytical result (B.51) we now find

Paabb − Pabba ∝ ln z − ln(1− z) + ln z̄ − ln(1− z̄) . (B.56)

Hence on the cylinder we expect

Paabb − Pabba ∝ ln(4 sin2(2πa/L)) + ln ξ

+
∞∑
n=1

(
2
ξn

n
+

(−4 sin2(2πa/L))n

n

ξn

(1− ξ)2n

)
+ h.c. . (B.57)

It is easy to ascertain that the correct sectors are observed in the numerical study.

Indeed we observe now again a Jordan cell on the ground state, plus the same 2 (resp. 3)

simple eigenvalues as before for the case L = 5 and 2a = 2 (resp. L = 7 and 2a = 3). The

indecomposability parameter, i.e., the coefficient multiplying l in the correlation function,

is found to be A = 1
L exactly in finite size, like it was for the two-point function. Let us
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write the remaining terms, concerning the simple eigenvalues, as
∑∞

n=1Dnξ
n + h.c. The

comparison with numerics can then be summarised as follows:

L D2/D1 D3/D1

5 lattice −0.1984202998 −

CFT −0.1909830056

ratio 1.0389

7 lattice −0.3298008395 0.08579175620

CFT −0.3460107358 0.08232653457

ratio 0.9532 1.0421

It will not have escaped the reader’s attention that the ratios are exactly the same as for

the previously considered case Pabab − Pabba. This presumably extends to arbitrary L and

implies that the symmetry z → 1
z is respected exactly on the lattice — something that we

again suspect can be proven by a careful study of the Laplacian on the cylinder. Per se,

this close relationship between the foregoing two four-point functions is pretty remarkable,

since after all, in the lattice study of Pabab we have two long clusters, while in Paabb we

have two short ones.
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