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The neutron star crustal EoS and transition point properties are computed within a unified meta-modeling ap-
proach. A Bayesian approach is employed including two types of filters: bulk nuclear properties are controlled
from low density effective field theory (EFT) predictions as well as the present knowledge from nuclear exper-
iments, while the surface energy is adjusted on experimental nuclear masses. Considering these constraints, a
quantitative prediction of crustal properties can be reached with controlled confidence intervals and increased
precision with respect to previous calculations: ≈ 11% dispersion on the crustal width and ≈ 27% dispersion
on the fractional moment of inertia. The crust moment of inertia is also evaluated as a function of the neutron
star mass, and predictions for mass and radii are given for different pulsars. The possible crustal origin of Vela
pulsar glitches is discussed within the present estimations of crustal entrainment, disfavoring a large entrainment
phenomenon if the Vela mass is above 1.4M�. Further refinement of the present predictions requires a better
estimation of the high order isovector empirical parameters, e.g. Ksym and Qsym, and a better control of the
surface properties of extremely neutron rich nuclei.

The standard theory of pulsar glitches, this sudden spin-up
of the rotational frequency of a compact star observed in al-
most 200 different pulsars since their discovery [1], assumes
that the observed phenomenon originates from an abrupt
transfer of angular momentum from the neutron superfluid to
the solid crust of the star, due to the unpinning of the super-
fluid vortices from the crystal lattice [2]. For this mechanism
to justify the large glitches observed in some pulsars such as
Vela, the neutron star crust must be sufficiently thick to store a
significant amount of angular momentum. The corresponding
fraction of crust moment of inertia Icrust/I can be estimated
[3–5] in a range going from 1.6 % up to 15 %, depending on
the importance of the effect of crustal entrainment, which is
currently under debate [6, 7].

A reliable estimation of the crust thickness and of the as-
sociated moment of inertia is therefore crucially needed to
validate the crustal origin of pulsar glitches. This quantity is
also a key parameter for the simulations of neutron star cool-
ing [8]. For this estimation, constraints from low energy nu-
clear physics appear more promising than direct constraints
from astrophysics [9, 10]. Indeed, the only poorely known
parameter for the determination of the crustal thickness of a
neutron star is the nuclear EoS and, most important, the den-
sity and pressure at the transition point from the solid crust to
the liquid core [11].

In this Letter, we present a unified EoS treatment [12–14],
where the core and crust EoS are built within the same func-
tional. To evaluate the uncertainties induced by the incom-
plete knowledge of the EoS, a meta-modeling technique is
used. It consists in generating a large set (100 millions) of
models with fully independent model parameters using the
strategy proposed in Refs. [15, 16]. The probability distribu-
tion of the parameters is evaluated in a Bayesian approach,
by constraining energy and pressure in low density homoge-
neous matter from a many-body perturbation theory (MBPT)
based on two and three-nucleon chiral EFT interactions at

N3LO and generating band predictions in isospin-symmetric
and neutron matter [17]. The priors are determined from nu-
clear phenomenology and a similar meta-modeling technique
was already employed in Ref. [18].

The nuclear experimental and low density theoretical un-
certainties can thus be translated into a confidence ellipse [19]
for the crustal thickness and moment of inertia. This is shown
by the ”LD” correlation curve of Fig. 1 which anticipates our
main result.

The predictions considering only the nuclear experimen-
tal constraints included as uncorrelated parameter set are la-
belled as ”Prior” while the predictions from EoS models
which further satisfy basic physical constraints at high den-
sity – see more details in the following – are labelled ”HD”.
Fig. 1 shows that the ”LD” prediction is considerably less dis-
persed than the ”Prior” or ”HD” ones. The 2σ surface of the
complete (LD+HD) prediction including all constraints corre-
sponds to a 84% confidence level [39], and the corresponding
EoS is represented in the lower part of the Figure.

As discussed above, the crust properties require the knowl-
edge of the crust-core transition density and pressure. They
have been calculated by many authors using different versions
of the density functional theory [11, 20]. Most calculations
are based on the thermodynamical spinodal, while this method
provides only a qualitative estimation of the crust-core transi-
tion [21–23]. Indeed, the transition occurs when the inhomo-
geneous phase becomes energetically favored over the homo-
geneous one [24], which is governed by the interplay between
the surface tension and the Coulomb energy. As a matter of
fact, none of these terms contribute to the thermodynamical
spinodal. A better estimation is obtained from the so-called
dynamical spinodal [25], which corresponds to the instability
border with respect to finite size density fluctuations. Such
calculations have however been performed for a small set of
models [20–23].

Following Ref. [15], the generated meta-models are
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nt (fm−3) Pt (MeV/fm3) ρc,1.4(×1014) (g/cm3) R1.4 (km) lcrust,1.4 (km) Icrust,1.4/I1.4 (%)
Average σ Average σ Average σ Average σ Average σ Average σ

prior 0.089 0.037 0.310 0.340 6.661 1.102 12.77 0.61 1.13 0.29 3.40 3.34
HD 0.075 0.032 0.392 0.328 6.455 1.013 12.80 0.65 1.17 0.29 4.39 3.26
LD 0.074 0.011 0.364 0.122 7.820 1.075 11.94 0.42 0.95 0.11 3.54 1.33
LD+HD 0.077 0.010 0.389 0.111 6.756 0.606 12.47 0.25 1.03 0.10 4.50 1.25

TABLE I. Average value and standard deviation of the transition density nt , transition pressure Pt , central mass density ρc, radius R, crust
thickness lcrust , and crustal fraction of moment of inertia for a 1.4M� neutron star for different filters. We impose p = 3.
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FIG. 1. (Color online) Top: 1σ confidence ellipse for the crust thick-
ness lcrust and the fraction of crust moment of inertia Icrust/I for a
1.4M� neutron star with different filters (see text). Minimal values
needed to justify Vela glitches without [3] and with [5] entrainment
are represented. Bottom: behavior of the equation of state retained by
this study compared to some popular models. The recent constraint
from GW170817 [10] is also given.

characterized by a set of empirical parameters {~Pα} =
{nsat ,Ksat ,Qsat ,Zsat ,Esym,Lsym,Qsym,Zsym,m∗,∆m∗,b}, corre-
sponding to the successive density derivatives at saturation of
the uniform matter binding energy in the isoscalar and isovec-
tor channels. They characterize the density dependence of the
energy in symmetric matter, and of the symmetry energy. An
expansion up to the fourth order is necessary and sufficient to
guarantee an excellent reproduction of existing functionals up
to 4nsat , where nsat is the saturation density of nuclear mat-
ter [15]. Two additional parameters rule the density depen-
dence of the effective mass m∗ and the effective mass splitting
∆m∗, and an extra b parameter enforces the correct behavior

at zero density. This last parameter measures the low density
deviation from a Taylor expansion at saturation, and turns out
to be completely uninfluential in this study (see Fig. 3 below).

In the neutron star crust, the meta-modeling is extended
with a surface term, validated through comparisons with
Thomas-Fermi calculations [26],

σs(x) = σ0
2p+1 +bs

x−p +bs +(1− x)−p , (1)

where x is the cluster proton fraction, see also Refs. [27, 28].
The crust composition is then variationally determined within
the compressible liquid drop model (CLDM) approximation
[13, 14, 24, 29].

The expression (1) for the surface tension requires three
additional parameters. σ0 and bs are adjusted to reproduce
experimental masses of spherical magic and semi-magic nu-
clei: 40,48Ca, 48,58Ni, 88Sr, 90Zr, 114,132Sn, and 208Pb [40]. The
isovector surface parameter p determines the behavior of the
surface energy for extreme isospin values, and it cannot be
determined from experiments. In the following, we consider
two different choices: either a fixed value p = 3, as suggested
in Ref. [27], or including p in the parameter set {~Pα}.

For each set of uniform matter parameters {~Pα}, our fit pro-
vides optimal values for σ0 and bs and the resulting χ2 enters
the Bayesian likelihood probability defined as,

plik({~Pα}) = N e−
1
2 χ2({~Pα}) ∏

α

g({~Pα}), (2)

where the functions g are flat priors corresponding to a
fully uncorrelated parameter set, which range is taken from
Ref. [16], and N the normalization.

The posterior distribution is obtained by filtering the results
of Eq. (2) imposing either physical constraints at high (supra-
saturation) density (HD), or ab-initio EFT constraints at low
(sub-saturation) density (LD), or both (LD+HD):

ppost({~Pα}) = plik({~Pα})δ (F ({~Pα})−F0), (3)

where F0 is the chosen filter. The HD filter corresponds to the
set of constraints: (i) positive symmetry energy up to Mmax,
(ii) stability of the EoS, (iii) causality up to the maximum
mass, (iv) compatibility with the maximum observed masses
Mmax >∼ 2M� [30, 31], see Ref. [16] for more details. The
LD filter retains only the EoS passing through the uncertainty
band of the MBPT calculations of symmetric and neutron mat-
ter by Drischler et al. [17]. Other calculations can be found
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in Refs. [32–34], which provide comparable theoretical band
predictions. The use of a symmetric matter constraint is how-
ever important for the determination of the crust thickness,
because the transition is governed by isoscalar instabilities.
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FIG. 2. (Color online) Transition density nt (top) and transition pres-
sure Pt (bottom) as a function of Lsym for several interactions. The
empty dots (squares) are the transition points calculated in Ref. [20]
using the dynamical spinodal. The filled circles, squares, and tri-
angles corresponds respectively to our estimation of the transition
points with p = 2.5, p = 3, and p = 3.5.

Note that the HD filter implicitly implies that first order
phase transition does not occur in the star core up to 2M�, as
the only hypothesis of the meta-modeling is the analyticity of
the EoS [15]. Therefore, imposing the LD filter alone might
also be physically acceptable, and we will consider the two
filters separately in the following.

Table I gives the average values and the standard deviations,
defined as

〈X〉= ∑
{~Pα}

X({~Pα})p({~Pα}), (4)

for a set of observables X . Fixing p = 3, we consider differ-
ent probability distributions : the uncorrelated prior distribu-
tion p({~Pα}) = ∏α g(~Pα) (first line), or the posterior distri-
bution Eq. (3) filtered according to the different constraints,
p({~Pα}) = ppost({~Pα}), see rows 2 to 4. Knowing the tran-
sition point, a numerical solution of the TOV equation allows
computing the star radius, the thickness of the crust, and the
crustal moment of inertia [11, 35]. The first two moments of
the distributions of these quantities are also reported in Table I

for a representative 1.4-solar mass neutron star. The results in
Table I show that the high density constraints are essential to
establish the average crustal properties, but the knowledge of
the low density EoS is very constraining on the second mo-
ment of the distributions. Still, the transition pressure Pt and
the fraction of crust moment of inertia have large uncertain-
ties [36] of the order of 34% (resp. 37%) considering the LD
probability, decreasing to about 28% (resp. 25%) if we addi-
tionally assume an analytical behavior of the EoS in the full
density range covered by the observed neutron star (LD+HD,
see last row in Table I).

The isovector surface parameter p plays an important role
in the energetics of the inner crust [28], and may depart from
its assumed value suggested in Ref. [27]. To determine a
reasonable prior for p, we analyse its effect on the transi-
tion point. Fig. 2 displays the transition density and pressure
obtained for a set of relativistic and non-relativistic function-
als, in comparison with the dynamical spinodal calculation of
Ref. [20]. We can see that values of the order p ≈ 3 lead to
a general good agreement with the instability analysis, and a
variation±0.5 around p= 3 provides a good boundary for im-
proved adjustment [41]. The impact of varying the isovector
surface parameter p = {2.5,3,3.5} is shown to be quite large
in the 1σ confidence ellipse in Fig. 1.

Which empirical parameters contribute the most to the
uncertainty in the observables shown in Fig. 1? To an-
swer this question, the linear correlation coefficients rXY =
σXY/(σX σY ) between Icrust and the empirical parameters
{~Pα} are shown in Fig. 3. Very similar values for rXY are
found for the crustal thickness lcrust . We can see that isovector
empirical parameters are far more influential than the isoscalar
ones, as expected, Esym, Ksym and Qsym being the more influ-
ential parameters. The absence of correlation with the Lsym
parameter deserves some comments. It is well known that the
NS radius R is well correlated to Lsym [12, 35, 36]. The same
is true for the core radius Rcore, explaining why the correla-
tions cancel in the crustal thickness lcrust = R−Rcore and con-
sequently on Icrust,1.4. It then clearly appears that the higher
order parameters beyond Lsym must be better constrained to
improve the prediction of the crustal properties.

Fixing p tends to increase those correlations, as expected.
However, if p is included in the parameter set, we can see
that the uncertainty in the surface energy have an impact on
the observables shown in Fig. 3 comparable to the one of the
empirical parameters, see LD row. This is a new feature which
has not been reported by previous analyses.

Fig. 3 also shows the correlation coefficients between ob-
servables. Large correlations are observed for the transition
density and pressure, as expected from previous studies, e.g.
Ref. [11], and the correlation between lcrust,1.4 and Icrust,1.4 is
also found to be very large, see Fig. 1.

Finally, we show in Fig. 4 the full impact of our present
knowledge on the relation between the glitch amplitude and
the neutron star mass and radius. One-σ confidence ellipses
for three different pulsars estimated from the observed glitch
amplitude from Ref. [38] are given in the upper part of the fig-
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FIG. 3. (Color online) Correlation between the fraction of crust moment of inertia Icrust/I for a 1.4M� neutron star and several parameters for
different filters. The red (blue) color scale gives the intensity of the positive (negative) correlation, and the correlation coefficient is explicitly
given for each parameter.
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FIG. 4. (Color online)Top: 1σ confidence ellipse with the LD+HD
p = 3 filter for the mass and radius of different pulsars estimated
from the observed glitch amplitude from Ref. [38], without crustal
entrainment. Bottom: average fraction of crust moment of inertia
Icrust/I as a function of the mass. The 1σ and 2σ confidence regions
are represented, as well as the minimum values needed to justify Vela
glitches, with [4, 5] and without [3] crustal entrainment.

ure. Note that an innovative method was proposed to deter-
mine the mass and radius using observations of the maximum
observed glitches [37]. It would be interesting to compare this
approach with ours. The lower part gives a complete study of

the effect of entrainment in the case of Vela: the average value
of the fraction of crust moment of inertia Icrust/I is shown, as
well as the boundaries of the 1σ and 2σ probabilities. The
different black lines represent the values proposed with [4, 5]
and without [3] entrainment effect on the crust moment of in-
ertia to explain Vela glitches. From Fig. 4 we can conclude
that the value determined for the maximal entrainment effect
is incompatible with the present nuclear physics knowledge.

In conclusion, considering the experimental and EFT theo-
retical predictions at low density, the uncertainty on the crust
thickness (relative moment of inertia) is of the order of 9%
(25%), for M = 1.4M�. These uncertainties originate from
the dispersion in the predictions of the crust-core transition
point, which in turn depends on the high order isovector em-
pirical parameters Ksym and Qsym, as well as on the isovector
surface energy parameter p. Higher precision in the exper-
imental determination of Ksym and Qsym, in the low density
EFT theoretical predictions, and in the microscopic modeling
of the surface energy at extreme isospin ratios are needed to
reduce the uncertainties of crustal observables.

This work was partially supported by the IN2P3 Mas-
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