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Abstract. We consider a dynamical field theory (Active Model B+) that minimally
extends the equilibrium Model B for diffusive phase separation of a scalar field,
by adding leading-order terms that break time-reversal symmetry. It was recently
shown that such active terms can cause the bulk phase separation of Model B to
be replaced by a steady state of microphase separation at a finite length scale. This
phenomenon was understood at mean-field level as due to the activity-induced reversal
of the Ostwald ripening mechanism, which provides the kinetic pathway to bulk phase
separation in passive fluids. This reversal occurs only in certain ranges for the activity
parameters. In this paper we go beyond such a mean-field analysis and develop a
1-loop Renormalisation Group (RG) approach. We first show that, in the parameter
range where bulk phase separation is still present, the critical point belongs formally
to the same (Wilson-Fisher) universality class as the passive Model B. In contrast, in a
parameter range associated with microphase separation, we find that an unstable non-
equilibrium fixed point of the RG flow arises for d ≥ 2, colliding with the Wilson-Fisher
point in d → 2+ and making it unstable in d = 2. At large activity, the flow in this
region is towards strong coupling. We argue that the phase transition to microphase
separation in active systems, in the physically relevant dimensions d = 2 and 3, very
probably belongs to a new non-equilibrium universality class. Because it is governed
by the strong-coupling regime of the RG flow, our perturbative analysis leaves open
the quantitative characterization of this new class.

ar
X

iv
:1

80
9.

10
43

3v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

6 
N

ov
 2

01
8



From bulk to microphase separation in scalar active matter 2

1. Introduction

Universal properties play a crucial role in theoretical physics, providing cases where
the precise analysis of a minimal model gives accurate – and non-trivial – information
about much more complex systems. In equilibrium systems, one of the most famous
universality classes is that of φ4 theory describing vapor-liquid phase separation in
the proximity of the critical point where the two phases become identical. The same
theory describes the critical behavior of a binary fluid mixture close to its demixing
transition, as well as the transition between paramagnetic and ferromagnetic states in
the Ising model of ferromagnetism [1]. While sharing a universality class for equilibrium
statistics, φ4 systems have several classes for their dynamics depending on whether the
order parameter φ is conserved (true for fluids but usually not for magnets) and also
whether momentum is conserved (true for bulk 3D fluids but not for quasi-2D fluid films
supported by a momentum-absorbing wall).

Since the introduction of dynamical Renormalization Group (RG) techniques [2],
universality classes in non-equilibrium systems have also been classified and studied
in depth [3]. A well defined and important subset of non-equilibrium systems comprise
active materials, in which individual particles continually consume a fuel source in order
to self-propel [4, 5]. Active systems are widespread and varied, so that a number of
different universality classes are needed to describe them. Toner and Tu [6, 7] studied
self-propelled particles, without momentum conservation, whose interactions cause them
to align their directions of motion with those of their neighbors. In the ‘flocking’
phase they found that the number of particles in a mesoscopic box undergoes giant
fluctuations, with an universal exponent, and that spatial and temporal correlations
decay algebraically. Other classes describe active nematics (with or without momentum
conservation) [8, 9, 5], incompressible flocks [10, 11] and chemically interacting and
dividing particles [12].

Arguably the simplest active systems involve self-propelled particles without
alignment interactions but with a finite relaxation time for random rotation of the
swimming direction. (In the case where the rotational dynamics is Brownian diffusion,
these are called Active Brownian Particles or ABPs.) At large length and time scales
the system can then be described by a scalar density field, which is dynamically
conserved. We call these ‘scalar active’ systems. The isotropic interactions between
particles can be simple pairwise forces (responsible for inter-particle collisions), and/or
represented by a local dependence of propulsion speed on density. Somehow surprisingly,
with the exception of a very recent computational work [13], the universal critical
properties of scalar active systems have not yet been analysed. However, much is
known phenomenologically (and from mean-field theory) about their phase equilibria
well away from any critical regime. Specifically, broken time-reversal symmetry inherent
in the microscopic definition of active systems, can lead to various features impossible
in thermal equilibrium.

One of these is motility-induced phase separation (MIPS) where an assembly of
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repulsive, but active, particles phase separates into bulk dense and dilute regions [14,
15, 16]. In some cases, the kinetics of this phase separation closely resembles that of a
passive system with attractive interactions, allowing the possibility that time-reversal
symmetry (TRS) might be recovered upon coarse-graining [14, 15], thus mapping MIPS
to an effective equilibrium system at large spatial and time scales. If exactly true, this
would imply that the critical transition from homogeneous to phase separated states
in active systems belongs to the same universality class of passive Model B in the
classification of Hohenberg and Halperin [17]. In particular, adding the simplest TRS-
breaking term λ(∇φ)2 to the chemical potential to the Model B dynamics (creating a
model called Active Model B) changes the coexisting densities but does not qualitatively
alter the phase-separation dynamics [18, 19, 20].

However, in simulations of purely repulsive particles [21] and in experiments with
synthetic self-propelled colloids [22, 23, 24], physics resembling microphase separation
is also seen in some regions of parameter space. This can be either in the form of a
dynamic population of dense clusters in a dilute sea [22, 23, 24], or dilute vapor bubbles
in a liquid [21]. More specifically, the simulations of [21] show that purely repulsive
ABPs can undergo bulk phase separation between a vapor phase and a microphase
separated state, the latter composed of a dense liquid which supports in its interior
dilute vapor bubbles. This closely resembles the state shown in Fig. 1(b) below.

Very recently [25], it has been argued that microphase separation can be expected
generically in many scalar active systems, without any need to invoke system-specific
details [26, 27, 28, 29, 30] or the presence of long-range interactions [31, 32, 24, 33, 34].
This is due to the fact that macroscopic currents that break time-reversal symmetry
can reverse Ostwald ripening, thus arresting phase separation to a finite length scale,
independent of the system size. Refs. [35, 25] introduced and analysed a field-theory
that extends equilibrium Model B to include nonlinearities up to the first nontrivial
order (in the sense that TRS is broken) in a gradient expansion. The resulting model
was named Active Model B+ (AMB+) and is defined by equations (1)-(3). In [25], the
phase diagram of AMB+ was studied far from any critical point by analytical mean-field
arguments and numerical simulations.

In this paper we go beyond the mean-field analysis of [25] and study the critical-
point behavior of phase separation in active systems by applying one-loop dynamical RG
to AMB+. For dimension 2 ≤ d < 4, we argue that the transition from homogeneous
to bulk phase separation belongs formally to the universality class of equilibrium Model
B, while the transition to microphase separation represents a new nonequilibrium
universality class. The latter result is surprising from a technical point of view, because
any nonlinearity that can be added to Model B in order to both break TRS and respect
mass conservation should be expected to be irrelevant from dimensional analysis. Our
one-loop computation however shows that a new fixed point in the RG flow arises,
which is repulsive along a single direction, given by a linear combination of the active
couplings λ and ζ that requires the latter to be nonzero. Beyond a separatrix in the
space of these couplings, the one-loop RG flow is towards strong coupling. This regime
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is closely connected with one recently reported for a nonequilibrium surface growth
model (which is actually obtained from AMB+ by removing all non-gradient terms from
the free energy) [36]. As there, while our perturbative calculation cannot definitively
identify the resulting behavior, the most likely interpretation is that we have a new
class whose existence is only possible because of the presence of active terms in the
equations of motion. If so, the idea that TRS could be restored at large scales in active
systems remains a possibility near the critical point for bulk phase separation but not
in other regions of the phase diagram of equally general interest. Careful investigation
is needed [35] and indeed we show elsewhere that even near the Wilson-Fisher (model
B) fixed point, where active terms are irrelevant in the RG sense, they might still lead
to nontrivial steady-state entropy production [37].

The rest of this paper is organised as follows. In Section 2, we introduce the model
of interest (AMB+) and recall its phenomenology, summarising the results obtained at
mean-field level and using numerical simulations in [25]. In Section 3 we outline the RG
calculation and arrive at the main technical results of this paper, namely the RG flow
equations of AMB+ to one loop. This section is mainly technical and can be skipped in a
first reading. We then discuss the physics that can be gleaned from these calculations in
Section 4, by focusing on a case where we neglect a specific activity-induced nonlinearity.
(The latter arises as a cross-term between the explicit activity terms in (λ, ζ) and the φ4

nonlinearity that is already present in passive Model B.) This approximation allows us
to obtain analytical, and easily interpretable, results. In Section 5 we numerically study
the full one-loop RG flow of AMB+ and thereby confirm the main conclusions drawn
from the approximate treatment in Section 4. Some details of the more technical parts
of the RG calculation are deferred to Appendix A and Appendix B. We summarize our
work and discuss future perspectives in Section 6.

2. Active Model B+

The model we consider is AMB+, which was introduced in [35, 25], first on the basis of
symmetry arguments, and then by explicit coarse graining of a model of self-propelled
particles. It describes both bulk phase separation and microphase separation in scalar
active systems. Within this model, the qualitative physics of bulk phase separation
emerges quasi-passively, in the sense that the even if the underlying mechanism is
purely active (as in MIPS), after coarse-graining this leads to an effective free-energy
structure which has two competing minima corresponding to the dense and dilute phases.
Active gradient terms play a quantitative role only, by perturbing the densities of these
coexisting phases. In contrast, explicitly active terms (those that break TRS in the
coarse-grained equations of motion) are essential for microphase separation within this
model: the terms in the equations of motion that are compatible with an effective
free energy cannot by themselves support steady-state ordering on a finite, rather than
infinite, length scale. (Of course, one can construct passive models that do support
microphase separation, but the passive limit of AMB+ is Model B, which does not.)
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Figure 1. Reproduced with permission from [25]: phase diagram of AMB+. In
(a), analytical results within the mean-field approximation (D = 0) predict where
Ostwald Ripening is normal (region A), where it is reversed for dense clusters in a
dilute environment (region B), and where it is reversed for dilute bubbles in a dense
environment (region C). In (b) are shown numerical results obtained at finite noise
(D 6= 0): crossing the transition line from regions A to B or from A to C corresponds
to going from a bulk phase-separated state (top row, second and third panel) to a
microphase-separated one (bottom row, third panel), or to a coexistence between
a homogeneous state and a microphase separated one (bottom row, second panel).
Parameters used are −a = u = 1/4,K = 1, ν = 0 = K1.

AMB+ is defined by an equation of motion for a scalar conserved density field φ

(related to the physical density via a standard linear transformation [19]):

∂tφ = −∇ ·
(
J +
√

2DMΛ
)
, (1)

J/M = −∇µ+ ζ(∇2φ)∇φ , (2)

µ =
δF
δφ

+ λ|∇φ|2 +
ν

2
∇2φ2 . (3)

Here J is the current and Λ(r, t) is a Gaussian noise with zero mean and unit variance.
The (nonequilibrium) chemical potential is denoted by µ. This has an effectively passive
part, inherited from Model B, where

F =

∫ (
f(φ) +

K

2
(∇φ)2

)
dr, f =

a

2
φ2 +

u

4
φ4 (4)

where f is the local thermodynamic potential, with K > 0. The mobilityM is normally
set to be φ-independent in equilibrium (M = 1) and we do so here too, although a
φ-dependent mobility M arises when deriving AMB+ from explicit coarse graining of
a particles model. The same applies to passive Model B, to which AMB+ reduces
when λ = ζ = ν = 0. Whereas passive Model B is symmetric under φ → −φ, this
symmetry is at first sight broken by the active terms. But in fact symmetry is not
lost, merely altered: AMB+ remains symmetric under the generalized transformation
(λ, ζ, ν, φ)→ −(λ, ζ, ν, φ).

Two lines of reasoning originally motivated the introduction of AMB+. First, and
similarly to what was done in passive Model B [17], AMB+ describes phenomenologically
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a system undergoing active phase separation at leading nontrivial order in a gradient
expansion, allowing all terms in φ̇ to order O(∇4φ2); this is the order at which the first
terms to explicitly break TRS arise. Second, it was shown in [25] that the coarse-graining
of a model of self-propelled particles indeed leads to AMB+, albeit with non-constant
mobility M (resulting also in multiplicative noise), and with a more complex local
thermodynamic potential f(φ).

In [25], the parameter ν in (3) was set equal to zero, but the constant K in (4) was
generalized to take the form K + 2K1φ. This formulation is equivalent to ours because
all possible non-linear terms at order O(∇4φ2) can be written as a linear combination
of either (λ, ζ, ν) or of (λ, ζ,K1) nonlinearities. (Note that in [35] terms of even higher
order were additionally considered; these will not concern us here.) Observe that, in
our representation, whenever 2λ = −ν, the chemical potential µ can be restored to an
equilibrium form by setting K → K(φ) = K + 2λφ within F . Accordingly, there are
only two independent sources of explicit activity within the model. Note that for much
of the analytic mean-field theory in [25], the (effectively passive) nonlinearity K1 was
furthermore set to zero. It may seem reasonable to ignore any nonlinearity that is not
explicitly active, and indeed it was shown in [25] that doing so does not qualitatively
alter the mean-field behavior. Here, however, we do not set ν to zero because this
coupling can acquire a finite value under the RG flow even if zero initially. This has
important consequences for the critical behavior, as will become clear below.

The phenomenology of AMB+ shows unexpected regimes of microphase separation.
In passive systems undergoing diffusive phase separation without momentum
conservation, coarsening of domains is driven to completion by the Ostwald process [38,
39]. As normally understood, this process always causes the shrinkage of small domains
and the growth of large ones. Instead, in the active case, the Ostwald process can
go into reverse leading to stable, finite-size clusters or bubbles. The analysis of the
Ostwald process for AMB+ performed in [25] is a mean-field one, and leads to the
phase diagram in Fig. 1(a). In region A (λ and ζ small in magnitude or of opposite
signs), Ostwald ripening is normal both for dilute bubbles in a dense environment and for
dense clusters in a vapor environment. The system however undergoes a phase transition
with increasingly positive λ, ζ into region C: here, dilute bubbles in a dense environment
undergo reversed Ostwald ripening, where the smaller ones grow at the expense of larger
ones, which shrink. (In contrast, dense clusters in a dilute environment undergo normal
Ostwald ripening in this region.) Finally, region B is obtained from C exploiting the
symmetry of the model (λ, ζ, ν, φ) → −(λ, ζ, ν, φ). Here the reverse Ostwald process is
seen for dense clusters in a dilute vapor.

The effect of noise in AMB+ was so far investigated via numerical simulations
only. It was shown that, crossing the transition line between A and C regions, bulk
phase coexistence is transformed into microphase separation, or into phase coexistence
between a uniform state and a microphase-separated one; see Fig. 1(b) where the
numerically obtained steady state is shown for different values of the average density
φ0. In region C the microphase-separated state is formed of dilute bubbles while in
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region B it is formed of dense clusters.
While TRS is always broken at the level of the equations of motion (unless both

2λ = −ν and ζ = 0) no clear large-scale signature of this irreversibility has yet been
identified for systems within region A of the phase diagram in Fig. 1(a). The bulk
coarsening dynamics seen here numerically instead appears qualitatively very similar to
that of passive Model B. In contrast, in the steady states featuring microphase separation
(regions B and C), time-reversal symmetry is manifestly broken at or beyond the length
scale of the emergent structures. This is particularly clear when noise is low: here
bubbles (clusters) are created by nucleation but disappear either because of coalescence
with other bubbles (clusters) or because they are ejected out into a coexisting bulk
vapor (liquid) phase – see Supplementary movie 4 in [25].

To summarize the above, AMB+ shows an interesting variety of phenomena
including, but not limited to, activity-driven microphase separation. While some
elements of this behavior, such as reverse Ostwald ripening, can be understood already
at mean-field level, the length scale of the observed microphase separated steady states
depends on the noise level and is therefore not a mean-field property. Moreover these
steady states show manifest TRS breaking at least at intermediate, if not larger, length
scales. The peculiar interplay of noise and activity in this model suggests that a closer
investigation of its critical phenomena, using the tools of RG, is merited. With this
motivation, we next study the various critical points of the AMB+ model by employing
a perturbative dynamical RG to one-loop order.

3. One-loop RG

Close to the Gaussian fixed point we can assume K and D are fixed under the RG
flow [3]. Standard dimensional analysis then shows that u is irrelevant for d > 4, while
λ, ζ and ν are irrelevant for d > 2. This simple argument seems to lead to the conclusion
that, in the physically relevant dimensions d = 2 and d = 3, any type of phase separation
in AMB+ should be ruled by the Wilson-Fisher fixed point of passive Model B, and that
activity should not have any impact on the physics involved.

However, dimensional analysis does not always lead to the correct conclusion. A
famous example is in the Kardar-Parisi-Zhang equation where, although the nonlinearity
is formally irrelevant above d = 2, a strong coupling fixed point is present for d ≥ 2.
Even now it remains unclear whether any upper critical dimension exists for the KPZ
equation [3, 40]. Moreover, when a = u = ν = 0, AMB+ reduces to a surface growth
model called cKPZ+ [36]. This describes a conserved version of the KPZ dynamics
with an additional nonlinearity given by the ζ term, alongside the traditional KPZ
nonlinearity described by λ. This model of roughening surfaces was only recently
introduced and studied both with one-loop RG and numerical simulations [36]. Its
RG flow closely resembles the one of KPZ, with a strong coupling fixed point present
for d ≥ 2. In addition, numerical simulations seem to support the presence of a strong
coupling fixed point in d = 2.
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(a) (b) (c) (d)

Figure 2. Diagrammatic notations used: a line denotes a zeroth-order field φ0 (a);
the correlation function C0(q, ω), is represented as a circle between two incoming
lines (b). We have two vertices. The one corresponding to the λ, ζ, ν non-linearities
is represented in (c) and reads (G0(q, ω)/2)

∫
q̂′ g(q,q′)φ(q̂′)φ(q̂ − q̂′), with q̂ the

wavevector entering into the vertex. The vertex corresponding to u, represented in
(d), is instead −uG0(q̂)

∫
q̂′,q̂′′ φ(q̂′)φ(q̂′′)φ(q̂− q̂′ − q̂′′).

This motivates the one-loop analysis that we perform below. We will conclude that,
while the active nonlinearities are formally irrelevant for any d > 2, this irrelevance is
reflected in the physical behavior only when the system undergoes bulk phase separation.
In contrast, we argue that the transition to microphase separation is likely connected
with a strong-coupling regime whose existence is predicted by our one-loop calculation
even thought exploring its full character lies beyond our perturbative approach. This
suggests that in the microphase-separation regime, active terms have a controlling
influence on the large scale physics in dimensions d = 2, 3, as already indicated at
mean-field level [25].

We first transform (1) into Fourier space with wavevector q (of modulus |q| = q)
and frequency ω:

φ(q̂) = φ0(q̂) +
G0(q, ω)

2

∫
q̂′
g(q,q′)φ(q̂′)φ(q̂− q̂′)

− uG0(q, ω)

∫
q̂′,q̂′′

φ(q̂′)φ(q̂′′)φ(q̂− q̂′ − q̂′′) (5)

where q̂ = (ω,q),

φ0(q̂) =
G0(q, ω)

q2
η(q̂) , (6)

the bare propagator is

G0(q, ω) =
q2

(−iω + aq2 +Kq4)
(7)

and η is a Gaussian white noise with zero average and variance 〈η(q̂)η(q̂′)〉 =

2Dq2(2π)d+1δd+1(q̂ + q̂′). We also denote the two-point correlation function of the
linear theory (u = λ = ζ = ν = 0) by

C0(q̂, q̂′) = (2π)d+1C0(q, ω)δd+1(q̂ + q̂′) (8)

C0(q, ω) =
2D

q2
G0(q, ω)G0(−q,−ω) . (9)

In (5), the nonlinearities λ, ζ and ν enter via the function g(q,q′) that (after
symmetrising, q′ ↔ (q− q′), without loss of generality) reads

g(q,q′) = 2λq′ · (q− q′) + νq2 − ζ

q2

[
q′2q · (q− q′) + |q− q′|2q · q′

]
.(10)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. All the diagrams at 1-loop. Their contributions are discussed in the text.

Diagrammatic notation is introduced following the rules in Fig. 2.
We next apply dynamical RG with dimensional regularisation [3], using the small

parameter ε = 4 − d, meaning that we perform a perturbative expansion just below
the upper critical dimension found by dimensional analysis (dc = 4). At 1-loop, all the
diagrams shown in Fig. 3 might contribute in principle. We give the explicit computation
of the diagrams in 3(a,f) in Appendix A and Appendix B. All other diagrams can be
computed using the same techniques so we leave out their explicit derivation. Here we
summarise the results of these lengthy computations.

First, we observe that the diagrams in Fig. 3(g) and 3(h) only involve the φ4 vertex,
so their contribution is exactly the same as in passive φ4 theory (Model B) which can
be found in the literature [17]. Second, the diagram in Fig. 3(d) may in principle
renormalize the noise strength D, but a closer look shows that its first nonvanishing
order in q is q4, thus producing only higher-order terms in the noise which can be safely
discarded close to d = 4. Again, an explicit computation is not necessary. All other
diagrams, given in Fig. 3(a), 3(b), 3(c), 3(e), 3(f), have to be computed explicitly.

Second, we observe that, due to the presence of the λ, ζ, ν terms, AMB+ is not
symmetric under the φ → −φ transformation (in contrast to passive Model B). It is
then not surprising that the diagrams in Fig. 3(b),(c),(e),(f) produce a cubic nonlinearity
which enters in the equation for ∂tφ as ∇2(cφ2). We absorb this term by an additive
shift of the field. This ensures that the critical density remains at φ = 0 under the
RG flow and is equivalent to demanding that φ is always defined relative to the critical
density (at which the transition is second order). A similar procedure is standard in the
study of the liquid-vapor critical point where there is in general no symmetry between
positive and negative order parameters. Despite this, that system lies in the symmetric
φ4 (Ising) universality class, because the critical point is precisely the one at which cubic
terms vanish and symmetry is restored. We discuss below how this cubic nonlinearity
does not change the flow equations around the critical point.

Third, upon integrating over a thin momentum shell q ∈ [Λ/(1 + db),Λ], with Λ

the ultraviolet cutoff, we thereby obtain the following intermediate (subscript I) values
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of the coupling constants:

aI = a+ 3KūΩdΛ
d−2db+

Kν̄

2d

[
(d− 2)ζ̄ + 2dλ̄

]
ΩdΛ

ddb (11)

DI = D (12)

KI = K
(
1−MΩdΛ

d−2db
)

(13)

uI = u
(
1− 9ūΩdΛ

d−4db
)

(14)

νI = ν +
K3/2

D1/2

(
Tν̄Λ

d−2 +B2,ν̄Λ
d−4 +B1Λd−4

)
Ωddb (15)

λI = λ+
K3/2

2D1/2

(
Tλ̄Λ

d−2 +B2,λ̄Λ
d−4
)

Ωddb (16)

ζI = ζ − K3/2

D1/2
Tζ̄Λ

d−2Ωddb (17)

where we have rewritten all non trivial contributions in terms of the reduced couplings
λ̄2 = λ2DK−3/2, ζ̄2 = ζ2DK−3/2, ν̄ = ν2DK−3/2, ū = uDK−2, ā = a/K, Ωd =

Sd/(2π)d, with Sd the surface of the d-dimensional sphere. In the above equations

M =
1

2d(d+ 2)

[
(d− 2)(2d+ 1)ζ̄2 + dζ̄((4− d)ν̄ + 4(d+ 2)λ̄)

− (d+ 2)
(
2dλ̄ν − dν̄2 + 4λ̄2

) ]
(18)

Tν̄ =
ν̄

d(d+ 2)

[
(d− 2)(2d+ 1)ζ̄2 + dζ̄((4− d)ν̄ + 4(d+ 2)λ̄)

− (d+ 2)
(
2dλ̄ν̄ − dν̄2 + 4λ̄2

) ]
(19)

Tλ̄ =
ν̄

4d(d+ 2)

[
− 2(d− 2)(7d+ 4)ζ̄2 − 4(d+ 2)λ̄(2(d− 2)λ̄− 3dν̄)

− 4ζ̄(2(d(4d+ 5)− 10)λ̄− (d− 2)dν̄)
]

(20)

Tζ̄ =
2ν̄ζ̄

[
4(d− 3)ζ̄ − 8(1 + d)λ̄− d(6 + d)ν̄

]
4d(d+ 2)

(21)

B1 =
3u
[
2(4− d)ζ̄ − (2 + d)(4λ̄+ dν̄)

]
d(d+ 2)

(22)

B2,ν̄ =
3u
[
2(d− 1)ζ̄ − (d− 2)ν̄

]
d

(23)

B2,λ̄ = − 6u
[
2(d− 1)ζ̄ − (d− 2)ν̄

]
d

. (24)

The fourth step to obtain the RG flow equations is to rescale the equations of
motion, in which the parameters are now given by the intermediate values, to restore the
original momentum. This means applying the transformation q → bq, with b = 1 + db,
leaving two free exponents for the time frequency and the field: ω → bzω and φ→ b−χφ.
In Model B, the transition between uniform and fullly phase separated states, governed
by the Wilson-Fisher fixed point, can be accessed by asking that K and D are kept fixed
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under the RG flow. We make the same choice here of fixing K and D under the RG flow,
so that in the limit of no activity we recover the equilibrium results. Reabsorbing all
the scaling factors into the couplings, with primes denoting their new values, we obtain:

a′ = bz−2aI (25)

K ′ = bz−4KI (26)

u′ = bz−2+2χuI (27)

D′ = bz−2−d−2χDI (28)

(ν ′, λ′, ζ ′) = bz+χ−4(νI , λI , ζI) (29)

where the intermediate values are given in the previous section.
Lastly we let db become infinitesimal and consider the resulting parameter

increments a′ = a+ da, etc.. Expanding both sides of (25-29) and writing the result in
terms of reduced couplings as defined above (which removes the dependence of the flow
equations on z and χ) we finally obtain:

dā

db
= 2ā+ 3ūΩdΛ

d−2 +
ν̄

2d

[
(d− 2)ζ̄ + 2dλ̄

]
ΩdΛ

d + āMΩdΛ
d−2 (30)

dū

db
= ū(4− d)− 9ū2ΩdΛ

d−4 + 2ūMΩdΛ
d−2 (31)

dν̄

db
= ν̄

(
2− d

2
+

3

2
MΩdΛ

d−2

)
+
(
Tν̄Λ

d−2 +B2,ν̄Λ
d−4 +B1Λd−4

)
Ωd (32)

dλ̄

db
= λ̄

(
2− d

2
+

3

2
MΩdΛ

d−2

)
+

1

2

(
Tλ̄Λ

d−2 +B2,λ̄Λ
d−4
)

Ωd (33)

dζ̄

db
= ζ̄

(
2− d

2
+

3

2
MΩdΛ

d−2

)
− Tζ̄ΩdΛ

d−2 (34)

In the steps needed to go from the intermediate values to the final flow equations,
we have so far ignored the additive renormalization of the φ field that was previously
introduced to eliminate a term cq2φ2 generated in the equation of motion. However,
this does not change the flow equations: in the expression ∇2(aφ+ cφ2 + uφ3), the field
shift required to eliminate the quadratic term is φ → φ + c/(3u) and the only other
parameter modified is a → a − 5c2/(3u). Since c is of order db, the resulting shift in a
is quadratic in db and therefore does not enter the flow equations.

The RG flow equations in (30-34) represent the main technical results of this
paper and they will be further analysed in what follows. Two observations are due
immediately. First, and most obviously, the flow in (30-34) reduces to that of Model B
when λ̄ = ζ̄ = ν̄ = 0. Second, the flow respects time-reversal symmetry if we start from
any equilibrium model as our initial condition: if at bare level we have that ζ̄ = 0 and
2λ̄ = −ν̄, both conditions are maintained along the flow.

4. RG flow for ν̄ = 0: strong coupling

The RG flow in (30-34) is rather complex. In order to get physical insight, we first
analyse it while assuming that ν̄ = 0, not only at bare level but all along the flow. Note
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however that even if ν̄ = 0 at bare level, an inspection of (32) reveals that it acquires
a non-zero value as the flow proceeds. Barring some physical mechanism that would
prevent this from happening (and we have not identified one), the analysis of this section
represents an approximation involving a continuous projection of the differential flow
onto the ν̄ = 0 subspace. However, the approximate (or ‘projected’) flow that results is
much more clearly understood than the full one, and moreover it produces results that
are qualitatively very similar to the full flow as will be shown in Sec. 5.

Setting ν̄ = 0, the topology of the projected flow can be obtained analytically.
Indeed, in this case, the flow is most conveniently written in terms of ζ̄ and of χ̄ = λ̄/ζ̄.
We then find that the latter does not flow at all and, in this representation, we obtain

dā

db
= 2ā+ 3ūΩdΛ

d−2 + āNΩdΛ
d−2, (35)

dū

db
= ū

(
4− d− 9ūΩdΛ

d−4 + 2NΩdΛ
d−2
)
, (36)

dζ̄

db
= ζ̄

(
2− d

2
+

3

2
NΩdΛ

d−2

)
, (37)

dχ̄

db
= 0 , (38)

where

N ≡M(λ̄ = χ̄ζ̄, ν̄ = 0) (39)

= − ζ̄2

2d(2 + d)

[
−4(d+ 2)χ2 + 4d(d+ 2)χ+ d(2d− 3)− 2

]
, (40)

with M given in (18). The projected RG flow is graphically represented in Fig. 4 for
different values of d and χ̄.

We now make two observations. First, when λ = ζ = 0, we recover the RG flow
of Model B, with the Gaussian fixed point u = 0 attractive for d > 4 and repulsive for
2 ≤ d < 4. In the latter case, the Wilson-Fisher (WF) fixed point becomes attractive.
Second, when the φ4 nonlinearity is absent (u = 0), AMB+ at a = ac = 0 reduces to
the surface growth model cKPZ+, describing a particular type of roughening surface
as described in [36]. In the latter work it was shown at one loop that in a specified
region of (λ, ζ) parameters, the RG flow of cKPZ+ leads to strong coupling for any
d ≥ 2, even though naive dimensional analysis would lead to the conclusion that all
nonlinearities are irrelevant. This shows up in the projected RG flow via the fact that
the Gaussian fixed point is unstable in d = 2 for a certain parameter range of λ̄, ζ̄. For
d > 2, the Gaussian fixed point is then stable, but a second fixed point FcKPZ+, with
(u = 0, ζ 6= 0), is created, beyond which the flow diverges to infinity. The FcKPZ+ fixed
point is represented in Fig. 4 in cases where it exists.

For a more precise discussion, taking advantage of the symmetry (λ, ζ, φ) →
−(λ, ζ, φ), we can restrict ourselves to the case ζ̄ > 0. First, the Gaussian fixed point is
locally attractive for d > 4 and the WF fixed point is locally attractive when 2 < d < 4,
see Fig. 4. Moreover, the WF fixed point is globally attractive when 2 ≤ d ≤ 4, and
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ū

⇣̄

G

WF

FcKPZ+

F4

ū
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Figure 4. 1-loop RG flow of AMB+ for d ≥ 2 and ν = 0. With respect to Model B,
where only the Gaussian (G) and Wilson-Fisher (WF) fixed points are present, two
new ones arise (FcKPZ+ at ū = 0 and F4 at ū, ζ̄ 6= 0) when χ̄ ∈ [χ̄

(1)
c , χ̄

(2)
c ]. FcKPZ+ is

fully repulsive while F4 is attractive in the ū direction but repulsive in the ζ̄ one. The
WF fixed point is locally attractive in all directions for 2 < d < 4.

χ̄ 6∈
[
χ̄

(1)
c , χ̄

(2)
c

]
, where

χ̄(1)
c = d−

√
d(d+ 2) +

12

d+ 2
− 7 (41)

χ̄(2)
c = d+

√
d(d+ 2) +

12

d+ 2
− 7 . (42)

Up to this point, our results could have been expected a-priori from dimensional analysis.
The most interesting fact is, however, that when 2 ≤ d < 4 and χ̄ ∈

[
χ̄

(1)
c , χ̄

(2)
c

]
, while

the WF fixed point is locally stable (marginally in d = 2), two new fixed point of the
projected RG flow appear. One of them is that of the cKPZ+ equation FcKPZ+ already
discussed above, while the second appears at non-vanishing ū and ζ̄ and will be called F4

hereafter. The two fixed points FcKPZ+ and F4 converge to, respectively, the Gaussian
and the WF fixed point in the limit d→ 2+. Moreover, while FcKPZ+ is unstable both
along the ū and the ζ̄ directions, F4 is unstable along the ζ̄ but stable along ū. The
non-equilibrium fixed point F4 that we found in this study represents a modification of
the WF fixed point; we can consider ζ̄ and χ̄ as control parameters and thus F4 governs
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the transition between critical bulk phase separation, and a new behavior arising when
the one-loop RG flow is towards strong coupling. All we know about the AMB+ model
at both mean-field and numerical levels [25] suggests that this new behavior represents
microphase separation. If so, F4 should be closely related to the Lifshitz point of an
equilibrium system (although we will see in the next section that it is not identical).

Summarising, the above analytic results for the projected RG flow imply that the
critical point separating a homogeneous phase from bulk phase separation falls in the
same universality class as Model B, and is governed by the WF fixed point. In contrast,
the critical transition from bulk to microphase separation is governed by a new F4 fixed
point. The critical exponents at F4 can be found formally at 1-loop by simultaneously
expanding in 4− d and d− 2:

z = 4 +
d− 2

3
(43)

χ =
2− d

3
(44)

ν−1 = 2 + c4 +
d− 2

3
. (45)

Here z and χ are calculated by fixingK andD under the projected RG flow, and ν−1 (not
to be confused with the coupling ν), is the exponent associated with the divergence of
the correlation length, calculated by linearizing the flow of ā close to the transition point.
Finally, c4 = −(4−d)/3+o((4−d)2) is the correction to the correlation length exponent
coming from the passive φ4 theory. (Recall that there are no similar corrections to z or
χ at one-loop level [41]). The rest of the contributions to the exponents are calculated
to first order in the d− 2 expansion.

We note that the critical exponents given above should be trusted only qualitatively.
Indeed, the structure of the flow summarised in Fig. 4 implies that there is no regime
where F4 can be accessed perturbatively: for d → 4− dimensions the value of ū at F4

is small but the value of ζ̄ is not. Instead, ζ̄ becomes small in the limit d → 2+ (F4

approaches the WF fixed point) but ū is not. Put differently, this limitation of the
one-loop calculation is reflected in the requirement to expand simultaneously in 4 − d
and d− 2 which cannot, of course, both be small at once.

As mentioned already above, our study of the projected flow with ν̄ = 0 has the
advantage of giving a simple result that can be treated analytically. Importantly, most
conclusions drawn above from doing this still hold qualitatively for the full flow in which
ν̄ 6= 0. This is the topic of the next section.

5. Complete RG flow

We now turn to analyse the full RG flow given in eq. (30-34). Technically, this is much
harder because the flow is no longer radial in the (λ̄, ζ̄) plane, making χ̄ not conserved
along the flow. We thus restrict ourselves to a numerical analysis of the flow close to
the WF fixed point when 2 ≤ d < 4.
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Figure 5. Numerical integration of the full RG flow in (30-34) obtained for 5 different
initial conditions, all of them with bare values λ̄ = 3.24, ν̄ = 0 and dimension d = 2.5.
The flow is represented in the (ζ̄-ū)-plane. As it was the case in Fig. 4, a separatrix
(black, nearly vertical line) between two different regimes appears: when ζ̄ is small
(blue lines), the flow converges back to WF fixed point (we checked that also λ̄ and
ν̄ are flowing to zero). On the right of the separatrix (red lines), the flow diverges to
infinity (strong coupling).

We employ the Newton method to find the fixed points of the flow. Restricting to
ζ̄ > 0, we found two fixed points that merge into the WF one when d→ 2+; one of them
is the generalization of F4, while the other one, which we will refer to as Feq, represents
an equilibrium fixed point. This satisfies the condition 2λ = −ν, ζ = 0, and thus the
dynamics at this fixed point admits a free energy functional. The flow equations have
several other fixed points that we do not explore here, as they do not connect to the
Gaussian or WF fixed points as d → 2+. Accordingly these additional fixed points are
most likely artefacts of the 1-loop computation.

The stability of F4 and Feq can be studied numerically. In dimensions 2 < d < 4,
the WF point is still locally attractive; F4, as in Section 4, has one unstable direction.
Instead, Feq has two unstable directions, one of which is along the equilibrium subspace.
When d → 2+, the collapse of F4 and of Feq onto WF make the WF fixed point
marginally unstable along two directions. This means that the linearization of the flow
in d = 2 around the WF fixed point has two zero eigenvalues but the flow is non-linearly
unstable. One of these two directions is along the equilibrium subspace.

Note that the presence of an unstable fixed point in the equilibrium subspace might
have been expected. This is because this subspace effectively describes models with a
square gradient coefficient of the form K(φ) = K + 2K1φ so that the system is unstable
at initial densities φ0 (either positive or negative) of sufficient magnitude. Although
the theory is set up close to φ = 0, we have already noted the generation of a cubic
term which is removed by an additive renormalization of φ. In this process the value
of K should also change; depending on the sign of K1 it may move towards negative or
positive values. Should negative K ultimately result, the system becomes unstable; in
an equilibrium context stability must be restored by adding gradient terms in the free
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energy. Such an equilibrium model gives finite-wavelength ordering (with wavelength
fixed by the free-energy structure) and describes microphase separated states [42]. The
point of first instability K = 0 is then a new critical point, the Lifshitz point, at which
the wavelength of this ordering diverges. We offer this as the interpretation of Feq.

Notably, however, the microphase separated states in AMB+ are found to be stable
(at least in the case of ν̄ = 0) without the need to introduce higher order derivatives;
moreover, the length scale of these states is found numerically to be controlled by the
noise level [25]. We therefore consider it unlikely that the transition from bulk phase
separation to microphase separation arising in AMB+ lies in the same universality class
as the equilibrium Lifshitz point. This is supported by the fact that our RG flow carries
any active system (one whose initial parameters are not on the equilibrium subspace),
not to Feq, but instead to F4. Thus F4 is a strong candidate for a nonequilibrium
counterpart of the Lifshitz point. Apart from when they merge at d = 2+, these remain
distinct fixed points and so there can be no expectation that they share a universality
class. Note also that, for an equilibrium system beyond the Lifshitz point, fluctuations
drive the microphase separation transition first order: the system always jumps direct
from a uniform phase to one where the ordering is of finite amplitude. Therefore there
are no critical exponents to be calculated in this regime; the first order behavior is
properly captured by a self-consistent calculation [43, 44] and not an RG one. It is not
clear at present whether the flow to strong coupling (arising beyond the separatrix on
which both Feq and F4 reside) is itself a signature of this first order transition. Our RG
approach cannot therefore shed light on whether activity-induced microphase separation
is also generically first order.

Finally, our numerical integration of the full flow equations (5) gives qualitatively
similar results to those shown in Fig. 4(e) for the projected flow in which ν is held fixed
at zero. In Fig. 5 we show the results of such numerical integration obtained using five
different initial conditions and projecting the final results on the subspace (ζ̄ , ū). (Unlike
the ‘projection’ of the previous section this is not an approximation, but simply a way of
representing the results on the printed page.) Note that in this projected representation
the full flow can self-intersect as happens in one of the trajectories shown. Of course this
does not happen if the flow trajectories are instead represented in the full (u, λ, ζ, ν)-
space. Two of our initial conditions (represented in red) are chosen in the region where
the flow does not converge to the WF fixed point, while three of them (represented in
blue) are in the region where the flow converges to WF fixed point. The aforementioned
unstable fixed point belongs to the black line, which represents the critical surface.

We conclude from various numerical results discussed above that the full RG flow
of AMB+, at least in the proximity of the WF fixed point, is qualitatively similar to
the one obtained imposing ν = 0 as we did in Section 4. If so, the physical conclusions
drawn there still hold.
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6. Conclusions

Many works concerning phase separation in scalar active matter have either directly
relied upon the idea that an effective equilibrium picture emerges at large scales, or used
this possibility to motivate specific approximation schemes [14, 45, 26, 46, 47, 48, 49].
The value of this approximation depends on where the parameters of the system lie in
relation to the dynamical phase diagram that governs steady-state behavior.

For the model studied in this paper (Active Model B+, or AMB+), as well as
a first-order coexistence of liquid/vapor type ending in a critical point, it was shown
in [25] that a qualitatively different phenomenology also arises, involving microphase
separation instead of bulk phase separation, at large activity levels. (This microphase
separation regime is absent in the subspace representing a simpler model, AMB, that
does not include all the leading-order TRS-breaking contributions to the current [18].)
The resulting phase transition between bulk and microphase separation was studied
analytically at the level of mean-field kinetics, as should hold far from any critical
points, in Ref. [25]. This study showed that the transition is due to the reversal, within
specified parameter ranges, of the Ostwald mechanism. The latter provides the diffusive
pathway to full bulk phase separation in equilibrium fluids. Notably, this form of active
microphase separation arises despite the absence, within the passive sector of the model,
of any free-energy terms that would directly promote ordering at a finite length scale.
Such terms would, in equilibrium, allow the critical point for bulk phase separation to
connect continuously to one for microphase separation via a Lifshitz point, at which the
wavelength of the steady-state density pattern diverges smoothly [42].

In this paper we have presented the first Renormalization Group study of critical
phenomena within Active Model B+. Our main results are twofold. First, we showed
that the critical point describing the transition from a uniform phase to bulk phase
separation lies in the same equilibrium universality class as for passive Model B: the
low noise phase is controlled by standard WF fixed point, and time-reversal-symmetry
breaking terms flow to zero upon coarse graining. This is exactly what one would have
expected from the dimensional analysis of the couplings that can be added to Model
B to break time-reversal symmetry at leading order in ∇, φ. Notably though, although
this implies that exponents for the divergence correlation lengths, relaxation times etc.
coincide with those of passive Model B, there could still be nontrivial irreversibility of
the active model at this critical point – codified, for instance, in a nontrivial scaling of
the entropy production. Building on ideas developed in [35], we will explore this feature
elsewhere [37].

Unexpectedly, however, we find that the critical phase point separating bulk phase
separation from microphase separation (which would in equilibrium systems be the
Lifshitz point) appears to be ruled by a new fixed point F4 of the RG flow, which
is repulsive along a single direction, described by a linear combination of the active
couplings. This is at first sight surprising because standard dimensional analysis predicts
that all active terms in AMB+ should be be irrelevant near the Wilson-Fisher point
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and thus flow to zero upon coarse graining. Instead the fixed point F4 lies on the
separatrix between systems that flow back towards the WF fixed point and those in
which the active parameters flow towards strong coupling. Within our perturbative
approach, it is not possible to identify with certainty the physics of the strong coupling
regime but it is natural to assume that this corresponds to microphase separation.
Notably, F4 is distinct from Feq which also lies on the separatrix but governs the
subspace of equilibrium models and is interpreted as a Lifshitz point. We therefore
believe that our F4 fixed point represents a counterpart of the Lifshitz point, occupying
a new nonequilibrium universality class. It is possible that finite-wavelength microphase
separation (lying beyond the Lifshitz point) could also be different for active and passive
systems, although this cannot be established perturbatively. A hint that this is indeed
the case is given by the fact that, as shown numerically in [25], this finite length-scale
depends on the noise amplitude in the active case, while it is selected at deterministic
level in the equilibrium one.

As always happens when a perturbative calculation points to nonperturbative
physics, our predictions, in particular those concerning the critical exponents at the F4

transition, cannot be trusted quantitatively. Indeed, within our one-loop analysis, we
can find no upper critical dimension beyond which all non-linear couplings are small at F4

(which is why we introduced a simultaneous expansion about 2 and 4 dimensions to study
this fixed point). Further studies are clearly needed to characterize quantitatively the
new non-equilibrium universality classes ruling microphase separation in active systems.
In this direction, the application of non-perturbative RG [50, 51] could shed further light
on the surprisingly complex phase behavior of AMB+. Fluctuations are also important
deep within the microphase-separated phase. Indeed, as shown numerically in [52],
the finite length-scale selected here is strongly noise dependent and it remains an open
question how to characterize it theoretically.

Finally, we note that a recent computational work [13] investigated a critical point
for phase separation of a many-body active particle system. (The latter comprised
repulsive Active Brownian Particles (ABPs), one of the systems for which AMB+ ought
to serve as a good continuum description [19].) The authors gave evidence that the
static critical exponents differ from those of liquid-gas phase separation; if true this
would place the system outside the passive Model B universality class, contrary to
our predictions concerning the character of bulk phase separation in active materials.
One possible explanation is that the system of [13] actually lies close to a microphase
separation (which, in the context of ABPs, correponds to vapor droplets in a liquid
continuum or “bubbly phase separation” [25]). If so, the reported observations in [13]
could be governed by either the F4 fixed point, or the strong coupling regime that
lies beyond. However, this explanation remains speculative: we are not aware of any
particle-based simulation studies that unambiguously probe the critical region for active
microphase separation. We hope our work will stimulate such studies, as well as a closer
investigation of the critical behavior of continuum models of activity such as AMB+.
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Appendix A. Computation of the diagram in Fig. 3(a)

Following the diagram rules defined in the main text, the diagram reads:

= 4G0(q̂)

∫
q̂,q̂I

1

2

[
2λqI · (q− qI)− ζ

q2
Iq · (q− qI)

q2

− ζ |q− qI |2q · qI
q2

+ νq2

]
×

1

2

[
− 2λq · qI + ζ

q2qI · (q− qI)

|q− qI |2

− ζ q
2
Iq · (q− qI)

|q− qI |2
+ ν|q− qI |2

]
×

G0(q̂− q̂I)C0(q̂I)φ(q̂), (A.1)

where the prefactor is the symmetry factor, and the two parenthesis are the vertices. We
see that the diagram is of course proportional to φ (to φ0 once we truncate the iterative
expansion, where φ0 is defined in equation 6), so it will only produce contributions to
the linear terms in the equation of motion: φ,∇2φ,∇4φ, ...

We then perform a small wavelength expansion. Because this is done on external
wavelengths (since internal momenta have high wavelengths that are integrated out),
it means performing a Taylor expansion on q. It is useful to rewrite q · qI = qqI cos θ.
After doing this expansion in both the vertex function and the zero order propagator
and correlator (note that we drop the incoming propagator G0 since we divide by it to
count the contributions to each coupling, and we also do not consider the external fields
that multiply everything, this is just the loop), we get:

= −Dν(−ζ cos(2θ) + 2λ)

2K2
+

qD

2K2qI
cos(θ)(−ζ cos(2θ)(−ζ + 2λ+ 2ν)− ζ(2λ+ ν) + 2λ(2λ+ 3ν)) +

q2D

2K2q2
I

(− cos2(θ)
(
7ζ2 − 6ζν + 4λ2

)
+ 2ζ2 + 4ζ(ζ − ν) cos4(θ)

− ζ(ν − 4λ) + ν(ν − 2λ)) + o(q3). (A.2)

The first term is the zeroth order term, contributing to the mass term a: it is
proportional to ν, as it should be, since for ν = 0 an additional symmetry prevents
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this kind of term from being generated [36, 53]. The second term is odd in q, and
therefore in cos θ, so it will vanish once we finish the loop integral by integrating all
angles. The last term is quadratic in q and so it contributes to K. This gives the
expression for M we reported in eq. (18). To get the final expression we simply need to
integrate all angles, here the only one appearing in the integral is θ which varies between
0 and π.

The integrals have to be done in continuous dimension, and there are two non trivial
ones: the integral of cos2 θ and cos4 θ. The first one can be done seeing how cos2 θ = uxd ,
where uxd is a unit vector in the direction of the last axis in the coordinate system, so
the integral will be:∫

sphere
cos2 θ =

∫
uxd (A.3)

=
1

d

∫
(ux1 + ux2 + . . .+ uxd) =

1

d

∫
1 =

1

d

Sd
(2π)d

,

where Sd is the surface of the sphere and the (2π)d comes from Fourier transform of the
equations of motion. The step between the second and third integrals can be done due
to isotropy of the space.

The integral of cos4 θ can be done in a similar fashion, writing cos4 θ = u2
xd

and
rewriting it as a generic isotropic tensor, the result being∫

sphere
cos4 θ =

3

d(d+ 2)

Sd
(2π)d

.

Using this in the expression of the second order term of the diagram and simplifying,
we get:

2 =
q2K

2d(d+ 2)
M

∫ Λ

Λ/b

q−2
I qd−1

I dqI , (A.4)

whereM is the contribution to the q2 term of the equations of motion as reported above,
and the subindex on the diagram refers to its second order contribution.

Appendix B. Computation of the diagram in Fig. 3(f)

This diagram must be written, once we write specific momenta into the outcoming fields,
as a sum of two diagrams in order to symmetrize it, so we write:

=
1

2

 q̂′

q̂ q̂− q̂′ +
q̂− q̂′

q̂ q̂′

 . (B.1)

In both diagrams we consider the correlator to carry the loop frequency qI and the
propagator to carry the corresponding frequency to ensure momentum conservation. We
have

= 12
1

2
G0(q̂)×
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q,q′,qI

[V1G0(q̂− q̂′ − q̂I) + V2G0(q̂′ − q̂I)]×

C0(q̂I)φ(q̂′)φ(q̂− q̂′), (B.2)

where the first factor of 12 is the symmetry factor, the 1/2 comes from the
symmetrization above, the two fields at the end are the two external legs, and where V1

and V2 are the contributions from both diagrams in the symmetrization:

V1 =
−u
2

(
2λ(−qI) · (q− q′)− ζ q

2
I (q− q′) · (q− q′ − qI)

(q− q′ − qI)2

− ζ (q− q′)2(−qI) · (q− q′ − qI)

(q− q′ − qI)2
+ ν(q− q′ − qI)

2

)
(B.3)

V2 =
−u
2

(
− 2λq′ · qI − ζ

q2
Iq
′ · (q′ − qI)

(q′ − qI)2

− ζq′2(−qI) · (q′ − qI)

(q′ − qI)2
+ ν(q′ − qI)

2

)
. (B.4)

Again the same strategy is followed as in Appendix A: we will expand in low external
frequencies q and q′ and collect terms. In this case, because the zero order term would
produce a cubic term in the e.o.m. of the form of φ̇ = c∇2φ2 + . . ., that we are absorbing
in the field via an additive renormalization, we study only the second term, that will
contribute to the couplings.

We rewrite the scalar products by explicitly writing the angles between each pair
of momenta. Unlike before, we know have three momenta so we need three angles, that
we define as

q · q′ ≡ qq′ cosψ (B.5)

q · qI ≡ qqI cos θ (B.6)

q′ · qI ≡ q′qI cosφ, . (B.7)

One last transformation has to be done to the angles. We will perform the internal
frequency integral in spherical coordinates so we must transform these angles to those
of this coordinate system. We consider q to be in the xd axis, and q′ to be on the plane
of the axes xd and xd−1 (this can be done without losing generality by a rotation of the
reference frame), and consider qI to be an arbtirary vector with the following spherical
coordinates,

qI,1 = qI sin θ . . . sinφd−1 sinφd−2 (B.8)

qI,2 = qI sin θ . . . sinφd−1 cosφd−2 (B.9)
... (B.10)

qI,d−1 = qI sin θ cosφ1 (B.11)

qI,d = qI cos θ. (B.12)

Here all angles vary in the interval [0, π] except φd−2 which varies in the interval
[0, 2π]. We observe that θ as defined is already appropriate for integration. We must



From bulk to microphase separation in scalar active matter 22

therefore express φ in terms of the {θ, φ1, ..., φd−2}, for which we use the following
expression:

q′qI cosφ = q′ · qI = q′qI(cos θ cosψ + sin θ cosφ1 sinψ).

The last step is performing the spherical integrals in the same way as we did in the
Appendix A. This can be done term by term identifying trigonometric expressions with
unitary vectors. The terms in this diagram will have the same integrals shown above,
plus a new one, that can be calculated exactly as cos2 θ:∫

sphere
cos2 φ1 sin2 θ =

∫
ud−1 =

1

d

Sd
(2π)d

.

We then obtain

2 =
3Du [2(d− 1)ζ + (2− d)ν]

K2d

Sd
(2π)d

×

(
q2 + 2q′2 − 2q′q cosψ

) ∫ Λ

Λ/b

q−4
I qd−1

I dqI . (B.13)

Notice we have three terms, one proportional to q2, one proportional to q′2 and the
last proportional to q · q′. We have to absorb these three terms into the couplings ν,
ζ and λ. This diagram in particular will not contribute to ζ since with those terms
we cannot build the neccessary dot products, so we can calculate the contributions by
rewriting the general expression

Aq2 +Bq′2 + Cq · q′ = Aq2 + Cq′ · (q− q′) + (B + C)q′2,

where the first term is absorbed by ν, the second one by λ, and the third should be zero
(and it trivially is) because the diagram must respects the symmetry of interchanging
the two external legs which we imposed. Taking into account the prefactors in the
equation of motion, A and C here are the terms B2,ν̄ and B2,λ̄ in the flow equations.
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