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Abstract

In this paper the technological aspects of the FAZIA array will be explored. After a productive commissioning
phase, FAZIA blocks started to measure and give very useful data to explore the physics of Fermi energy
heavy-ion reactions. This was possible thanks to many technical measures and innovations developed in
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the commissioning phase and tuned during the first experimental campaigns. This paper gives a detailed
description of the present status of the FAZIA setup from the electronic and mechanical point of view, trying
also to trace a path for new improvements and refinements of the apparatus.

Keywords: FAZIA, front-end electronics, data acquisition, telescope array, heavy-ion reactions, nuclear
physics
PACS: 29.85.Ca, 29.40.Wk

1. Introduction and specific requirements

FAZIA (Forward-angle A and Z Identification Array) is a modern and innovative three-layer telescope
[Si + Si 4+ CsI(T1)] array. This review paper follows the work of R. Bougault et al. [I] where the R&D
phase of the FAZIA project was carefully described. In this paper we will give a detailed overview on the
technological aspects of the final detector array; in particular, we will focus on the electronics, the data flow
and the mechanical aspects of the apparatus.

The multi-detector FAZIA aims at detecting and identifying particles and fragments produced in heavy-
ion reactions around Fermi energy. The main requirement of FAZIA is the modularity and portability:
in fact, FAZIA was designed to measure in various laboratories, in different setups and coupled to several
detectors. Another important objective is to maximise unit identification for charges and masses of detected
nuclei. In the present situation, we clearly discriminate charges up to Z ~ 55 and masses up to Z ~ 25. This
goal was achieved using custom detectors produced following a well-studied recipe [2], B] and using original
electronics with novel pulse-shape discrimination (PSD) techniques [4H6] based on high speed analog-to-
digital converters with rates up to 250 MS/s and 14-bit resolution. The whole electronics is embedded in
the proximity of the telescopes inside the vacuum chamber.

The commissioning runs of FAZIA proved the capability to integrate inside the scattering chamber all
the electronics required for silicon detectors and scintillators read-out by photodiodes. This very innovative
electronics includes pre-amplifiers, analogue chains, high speed converters, read-out logic, high voltage de-
vices and pulse generator for analogue chains. Indeed, the first experimental campaigns proved that it is
possible to integrate, on the same multi-layer card, some potentially noisy power-supplies (such as switch-
ing regulators) with sensitive low-noise pre-amplifiers whose power-supply rejection ratio is not high. This
integration has been possible by applying strict electromagnetic compatibility design guidelines.

The great complexity and the fine granularity of the apparatus implies a difficult scalability and thus
a relatively poor angular coverage: in fact a 16-telescope block, which is the smallest independent FAZIA
unit, covers only around 0.05% of the full solid angle at 1 m distance from the target. Indeed, the next
FAZIA schedule foresees the mounting of a 12-block array in 2019, coupled with INDRA detector array [7]
at GANIL to increase the angular coverage.

The electronic cards are described in Sec. [2} Both the “block” electronics, that is mounted directly next
to detectors inside the scattering chamber (in vacuum) and the devices outside the chamber are detailed.
Afterwards, a functional description of the apparatus follows (Sec. : in particular the clock distribution
(Sec. , the data packet structure (Sec. , the trigger logic (Sec. , the data flow (Sec. , the
possibility of coupling (Sec. , the acquisition (Sec. , and the slow control (Sec. are presented. In
Sec. 4] the adopted mechanical solutions necessary to hold and to cool the block electronics and to align the
detectors are described. Finally, in Sec. [5], we give an overview on all the innovative aspects of the FAZIA
modular array and the next improvements we are going to realise.

2. Description of the electronic boards

The first feature which could be noticed when looking at the FAZIA apparatus is the absolute scarcity
of electronic racks outside the scattering chamber (Fig. [I). In fact, the so-called regional board (RB) is
the only electronic card placed outside (see Sec. and it performs the functions of a standard “event
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building” card. Only two connections per block are necessary: a 48V (6 A) power supply line and a 3 Gbit/s
full-duplex optical link used to transfer data, to synchronise the clocks, to send triggers, and to manage any
block parameter via slow control.
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Figure 1: Schematic representation of the FAZIA electronic cards inside and outside the scattering chamber. For a detailed
description see the text.

Inside the vacuum chamber, the basic element of the FAZIA array is the block, which consists of 16
detector telescopes. The telescopes are connected to 8 front-end electronic (FEE) cards (see Sec. [2.2)), which
feature, among other components, charge sensitive pre-amplifiers, ADCs, Si bias voltage regulators, and
FPGAs for data handling. Up to two telescopes can be connected to each front-end card. All the FEE cards
are connected to a “Block Card” (see Sec. [2.3)) via a common backplane, which hosts also two power supply
boards (see Sec. [2.1)). The Block Card (BC) is mainly devoted to handle I/O operations and to merge data
coming from the FEE cards. Power Supply (PS) and Half Bridge (HB) cards produce and monitor the
voltages needed to the other boards on the block. The FAZIA blocks communicate with the event building
electronics via the Block Card through the 3 Gbit/s optical link. A metallic housing covers all the block;
there is also a metal screen around the BC, PS and HB cards to avoid that electromagnetic emissions from
DC/DC converters reach the FEE cards. All the electronic cards of the block are supported by (and firmly
screwed to) a copper plate in which water can flow for cooling. The FEE cards and the electromagnetic
shield structure have been designed at IPN Orsay; BC, PS and HB boards have been developed at INFN —
Naples; the copper plates are built at INFN — Bologna and Firenze; the RB has been designed at Jagiellonian
University in Krakéow (Poland) in collaboration with INFN — Naples.

2.1. Power supply

The DC levels needed by the block electronics (BC and FEEs) are produced by two cards that are both
connected to the backplane: Half Bridge and Power Supply. As previously mentioned, the FAZIA block
needs only an external 48 V DC line to work. This voltage is provided to the Half Bridge card, which performs
a high power conversion to 22V DC (14 A max) and 5.5V DC (70 A max) by means of two commercial
switching converters (CUI VHB350 series). These devices have an insulation, with low parasitic capacity,
between primary and secondary stage to avoid ground loops. To reduce the electromagnetic interferences
produced by the converters, a particular two stage filter was added at the 48 V input line: the first stage
is a BALUN (balanced-to-unbalanced) transformer used to balance the interferences and the second stage
contains a common-mode transformer to filter them. The output 5.5V voltage is split into two lines: one
(4 A max) is dedicated to the Block Card and it is equipped with an over-current protection circuit; the



other (40 A max) is used to power the FEE cards and it is controlled by a power MOSFET. The 22V output
line, together with the 5.5V voltage monitor line, is connected to the Power Supply card via the backplane.

The PS card main task is to produce and monitor the voltages required by the Block Card and the FEE
cards. In particular, it uses DC/DC switching converters to transform the 22V input to 13V DC (2 A),
-9V DC (1A), 6V DC (5A), and —6V DC (2A). The 13V and —9V lines, which are used to bias the
pre-amplifiers, have an additional linear regulator to reduce the high frequency ripple. The PS card produces
also a negative HV line, currently used to bias the CsI(Tl) crystal photodiodes, which is user settable in
the range 0-600 V DC (4 mA max). Due to the huge range of the output voltage, it was not possible to use
only a flyback converter. In particular, a step down power supply stage (controlled by the same driver) is
placed before the standard flyback circuit implemented with the UC3842 driver. In this way, we obtained
that the voltage at the input of the flyback stage is reduced when the output voltage decreases. Moreover,
to achieve a better commutation precision of the driver Pulse-Width Modulation (PWM) stage, a circuit
that modulates the switching frequency in function of the set voltage was implemented.

The PS card is also equipped with a PIC microcontroller which continuously measures the voltages and
the current flowing through the power supply lines; it also monitors the temperature of the board and, in
the case of overheating, it shuts down the FEE card lines.

2.2. FEFE cards

The core of the FAZIA block is the front-end electronic card [8]. Up to 8 FEEs can be mounted on
each block. The area of these boards (299 x 88 mm?) is subdivided into three parts (Fig. . The first stage
embeds all the low-noise analogue electronics (pre-amplifiers, amplifiers and anti-aliasing filters). At the
opposite side, the FEE hosts the switching power-supplies which are sources of electromagnetic disturbances
and thus are placed, by design, far from the analogue stages. In the middle part, among many other
components, two Xilinx Virtex-5 (model XC5VLX50) FPGA chips (one for each telescope and called “A”
and “B” from now on), a PIC microcontroller, and 12 ADCs are mounted. The printed circuit board has 16
layers on which 1700 components are located on the top surface only. The power consumption of a card is
about 30 W. The connection toward the heat sink is done by two aluminium plates: one pressed and sticked
on the upper side of both FPGAs and one entirely covering the back side of the card. This second sheet has
a shelf that is screwed on the main cooled copper plate of the block (see Sec. .

Analogue stage Digital Stage Converters stage

Figure 2: Picture of a front-end electronic card without the protection and dissipation plates. The three stages in which the
card is subdivided are highlighted.

Analogue stage. Six charge pre-amplifiers (three per telescope) are placed on each front-end card just next
to the detector connectors. Their architecture is based on a folded cascode amplifier and the output dynamic
range is 8V for a total energy of 4GeV (~ 300 MeV Si-equivalent for the CsI(Tl) channels), providing a
sensitivity of 2mV /MeV for both Sil and Si2. The detector signals are AC coupled with a 10 nF capacitor
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to block the bias voltage. A circuitry (containing a DAC) is added to the pre-amplifier output stage to
tune the output offset voltage. This function allows one to set the analogue chain baseline close to the
bottom level of the ADC input range, in order to better exploit the available dynamic range of the ADC.
The baseline level could be remotely controlled in any moment via a slow control command, since the DAC
input buses are directly connected to the FPGAs. The analogue lines then split to have multiple channels
per detector. In particular, for the first Si stage, we have three paths: high range charge signal (QH1), low
range charge signal (QL1) and current signal (I1). For the second Si stage we have the high range charge
signal (Q2) and the current signal (I2). For the CsI stage we have only one charge signal (Q3). The high
range (low gain) signals (QH1, Q2 and Q3) are attenuated by a factor 4, to adapt the 8V dynamic range
of the pre-amplifiers to the 2V input range of the ADCs. On the contrary, the low range (high gain) signal
(QL1) is amplified by a factor 3. The current signals (I1 and I2) are obtained by analogue differentiation
of the Sil and Si2 pre-amplifier outputs. All the six signals described above pass through an anti-aliasing
filter before being sampled by the ADCs.

A square pulse generator has been built on the front-end card in order to test the analogue chain response.
It is also useful to verify possible amplification changes during data taking (which, incidentally, have never
been observed up to now). The generator is based on a simple MOSFET clocked switch connected to the
inputs of all the pre-amplifiers through a capacitor. The user can change the amplitude, the frequency, and
the duty cycle of the pulse generator via slow control instructions. The pulser amplitude is set by a DAC,
whose input bus is connected to the front-end PIC microcontroller. Frequency and duty cycle depend on the
switch clock, that is generated by the FPGA “B”. Alternatively, an external clock could be used by setting
the appropriate slow control register.

Digital stage. In the previous paragraph, the twelve signals (six per telescope) that are generated in the
analogue stage of the card were described. QHI, Q2 and Q3 signals are connected to 14-bit, 100 MS/s
analog-to-digital converters with a 2V input range. Since we have a 2mV/MeV sensitivity from the pre-
amplifier and then we reduce the signal by a factor 4, at the end we get an energy conversion factor of about
4.1 ADC units per MeV for QH1 and Q2 signals. The relatively slow sampling rate is more than sufficient
for energy measurements. Moreover, the very high effective number of bits (ENOB = 11.4) of the ADCs
guarantees an accurate reconstruction of the released energy inside the detector. QL1, I1 and I2 signals are
sampled by 14-bit, 250 MS/s ADCs with a 1.5V input range. Considering the QL1 signal, we have again a
2mV /MeV sensitivity from the pre-amplifier but in this case we amplify the signal by a factor 3, so at the
end we get an energy conversion factor of about 66 ADC units per MeV (16 times larger with respect to
the corresponding high range signal). The low range line is thus very useful to identify and measure energy
of particles that produce small energy losses within the first Si layer, such as light fragments up to Z ~ 10.
Another important feature of the QL1 signal is the possibility to use it for timing, because it is acquired by
a fast sampling ADC. Current signals are also acquired by 250 MS/s 14-bit ADCs. In fact, because of their
fast time evolution, their shape cannot be faithfully reconstructed by interpolation if sampled at 100 MS/s.
Indeed, the current signal represents an accurate image of the charge collection process within the detector
and allows the best identification performances via pulse-shape discrimination for ions stopping in the first
stage of the telescope [OHIT].

The twelve analog-to-digital converters are read by the two FPGAs: the six signals from the first telescope
are handled by FPGA “A” and the six signals from the second telescope are handled by FPGA “B”. The
two programmable arrays compute in real time the energy through digital filtering. They also generate local
triggers, data packing and transmission to the acquisition (see Sec. .

Also the 8-bit PIC microcontroller lies in the digital part of the FEE card. It is capable to accept and
execute commands received through a serial slow control link and it can subsequently write and read the
slow control FPGA registers by Serial Peripheral Interface (SPI) link. As previously said, the PIC controls
the pulser amplitude. It controls also the high voltage devices (described in the next paragraph) and reads,
by means of a dedicated 16-bit ADC, the current flowing through the Si detectors. When this reverse
current increases, the PIC automatically increases the HV device output to compensate the voltage drop
on the 10 M2 bias resistor and to maintain the biasing voltage of the silicon detectors at constant value.
This function is quite important to preserve good PSD during an experiment. Finally, the PIC also gets
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temperature values coming from embedded sensors located in several critical positions on the cards.

Conwverters stage. The voltage conversion stage is placed just close to the backplane connector. The low
voltage power supply part includes four switching converters and more than 20 linear regulators. Four high
voltage devices are also embedded on the board. The high voltages are generated from a common 5.5V
input and their purpose is to bias the silicon detectors of the two telescopes. The architecture of the HV
modules is based on a switching regulator and a transformer. The high voltage devices for Sil can ramp up
to 300V with a precision of less than 0.1 V. The HV device for Si2 can ramp up to 500V with the same
absolute precision. The HV functions and values are remotely controlled via the PIC microcontroller. The
integrated high voltage device represents a new and original solution within the nuclear physics community,
as it is embedded into one single electronic card operating under vacuum.

2.3. Block card

The main task of the Block Card (shown in Fig. 3 is to retrieve all the data coming from the FEE
cards and to build from them a partial event. The main communication path between the BC and FEE
cards is implemented with 24 serial buses in a “star” configuration: each front-end card is reached by three
400 Mbit/s buses. Two buses connect each FEE card to the BC and one goes from the BC to each FEE.
The implementation of these fast serial links was done using Xilinx “ISERDES” and “OSERDES” cores.
To align and synchronize data, a programmable delay was also added before the ISERDES unit. Moreover,
other common signals reach every FEE card from the Block Card: i.e. the validation signal, the external
pulser clock and the slow control line. Every kind of communication between BC and FEEs passes through
the backplane. On the contrary, the communication with the event building electronics takes place through
a 3 Gbit/s optical link. In particular, the Block Card hosts a small form-factor pluggable (SFP) optical
transceiver that supports two (RX and TX) SX fibers (850 nm wavelength) with a LC connector.

Figure 3: Picture of a Block Card. In the center, the FPGA is covered by the heat sink. In the right side, the SFP transceiver
used to communicate with the Regional Board can be seen.

Communications and data sorting are handled by a Xilinx Virtex-5 FPGA (model XC5VFX70T), to-
gether with the fundamental task of capturing a special packet from the optical link to produce a synchro-
nized clock (see Sec. . The Block Card contains also a photodiode which reads another optical fiber
and a 50 MS/s ADC to sample the signal coming from it. To exploit the full ADC range, a variable gain
amplification circuit was also implemented. This system is used as an extra synchronization method, as it
will be described in Sec. [3:1] Finally, the BC features a microSD slot. If a memory card with a special file
is present in the slot when the board is switched on, the block identification number (ID) is read from that
file. In this way it’s very easy to change the block ID during the experiment. The block ID is the only way
to distinguish the blocks when a slow control command is sent. The microSD card could also be used to
reload the FPGA firmware with a “xsvf” file.



2.4. Fvent building electronics

The regional board (Fig. 4] is a 6U size VME card (operating outside the reaction chamber, in air) whose
main tasks are: to read data from the FAZIA blocks and form a complete event, to analyze the triggers
from the blocks and possibly send validations to them, to handle slow control requests from many PCs and
eventually to communicate with acquisition servers. The RB is an evolution of the “test card” developed by
INFN — Naples group. That card featured an USB protocol to transmit data to the acquisition system and it
was capable to handle up to 8 blocks. The test card was widely used to develop many features implemented
in the regional board, such as the internet protocol on the on-board FPGA.

The RB can manage up to 36 blocks and, in case of configurations that need a higher number of blocks,
multiple regional boards may be interconnected using optical links and/or the VME bus. However, this
feature has not been yet implemented.

XC5VTX150T™
FRG11S61GU1125

Figure 4: Picture of the regional board with highlights of the most important features: (a) VME connectors and CPLD,
(b) FPGA and crystal oscillators, (c) special connectors for block communication; (d) SFP slots; (¢) LEMO connectors and
CENTRUM port.

In addition to the VME bus, regional board connections include six special connectors for block commu-
nications, three SFP slots for RB interconnection and communication with acquisition (through Ethernet
protocol), four LEMO connectors (“veto in”, “veto out”, “trigger in” and “trigger out”) in LVTTL logic for
trigger coupling with other devices and a port for event synchronization among many compatible detectors.
The connectors for block communications allow the installation of an optical translator over each of them.
At the other end of the optical translator, a compact 12-fiber connector is placed. Each translator handles
up to twelve mono-directional fiber connections (RX or TX), thus two translators are needed to operate up
to twelve blocks (four translators for up to 24 blocks and all the six translators for up to 36). The port for
event synchronization uses the CENTRUM technology developed at the GANIL laboratory (Caen, France).
This technology was chosen in view of the forecast coupling of FAZIA with the INDRA detector array, which
is installed at GANIL and already uses CENTRUM protocol. All the features and communications (except
the VME bus management) are handled by a Xilinx Virtex-5 FPGA (model XC5VTX150T). The VME
bus is operated by a Xilinx CPLD (model XC95144XL) that is directly connected to the FPGA. The 5V

operating voltage is supplied by the VME bus.



3. Functional description of the electronics

3.1. Clock distribution

FAZIA is designed to measure over a broad range of beam energies. On some application, mainly with
low energy beams, the time of flight (ToF) technique is very useful and the clock synchronization among
all the ADCs is necessary. In fact, if the ADCs in different blocks had independent clocks, the accuracy
of the time measurement could not be better than one clock cycle (4ns or 10ns depending on the kind
of ADC). So, to synchronize all the sampling ADCs, they must be provided with exactly the same clock
on all the cards. The clock distribution tree is schematically represented in Fig. [f] and it is detailed here.
The primary clock is generated on the regional board: there are two crystal oscillators set at 125 MHz and
150 MHz and both are connected to the FPGA chip. The former is used only to clock the Ethernet part
of the FPGA project. The latter is used to generate (inside the FPGA) a 25 MHz clock, and to clock the
built-in GTX transceivers, which are used to send and receive data from the blocks through the optical link.
The transceivers are devices embedded inside the FPGA. In our case they convert 16-bit data at 150 MHz
(2.4 Gbit/s) to a serial line at 3 Gbit/s and vice versa. The missing 1.25 factor in the data rate comes from
the 8b/10b coding (see Sec. [3.2)) of the serial line. Xilinx GTP and GTX transceivers are very suitable to
implement a connection with fixed latency, as they can provide an extremely reduced clock skew [12].

125 MHz Ethernet Acquisition and
oscillator GTX > slow control
150 MH Digital 55 i,
“ Clock ekt Block TX .. toblocks
oscillator M builder GTX
lanager

Regional T from blocks
Board = GTX
25 MHz 150 MHz : 100 MHz
Block VCX0 : E VCX0 EPGA
Card S
: PLL

toandfrom T RX/TX Packet :
regional board GTX catcher : >
P : PLL o6

Figure 5: Schematic representation of the FAZIA clock distribution, which was designed in order to sample all the signals with
the same phase. Further details in the text.

The optical fibers leaving the regional board enter the scattering chamber and reach the various blocks.
They are connected to the SFP optical translators on the block cards. The signals eventually arrive inside
the block card FPGAs, where they are de-serialized by GTX transceivers. As briefly introduced in the
previous section, the BC has a peculiar system to recover the 25 MHz clock from the optical link: on the
card there is a voltage controlled crystal oscillator (VCXO), connected to a phase-locked loop (PLL) device,
which is used to clock the FPGA. The PLL reference is the signal recovered from the fiber by the FPGA
itself. So, when the BC is switched on, the PLL is not locked and the FPGA is clocked by a 25 MHz signal
that is uncorrelated with the 25 MHz signal generated on the regional board. Then the block card starts
to catch the special K28.5 sequences (see Sec. from the optical link and generates the synchronized
25 MHz signal that enters into the PLL device. At this point the PLL is locked and so is the FPGA clock.
The PLL output is also split into eight outputs that reach the FEE cards through the backplane. The
front-end cards use the phase-locked 25 MHz signal to produce (using VCXO and PLL devices) 100 MHz
and 250 MHz frequencies. Finally, these signals are used to clock the ADCs and the FPGAs. Due to the
physiological delays between clock edges and ADC sampling, practically the various sampled signals are
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not exactly synchronous, since the delays are not identical among the ADCs. The methods to reduce the
residual asynchronism, of the order of 100 ps, are currently under study and they will be the subject of
another work.

The phase-locked 25 MHz clock on the FEEs is used also to increment a universal 15-bit timestamp
counter. To ensure that all the cards are assigning the same timestamp at the same moment, a “time tag
zero” signal (TTSync) is sent on the optical fibers by the RB every time that the timestamp counter goes
overflow (1.31ms).

To improve the block cross-synchronization, an external sinusoidal signal (the same for all blocks) could
be sampled by the block cards at 50 MS/s. Time marks extracted from sinusoidal waveforms are very precise,
even when the sampling rate is not very high [I3]. This method allows to check the clock synchronization
among blocks with a precision down to 10 ps. The 50 MHz clock is generated by means of VCXO and PLL
from the synchronized 25 MHz clock, as also the 150 MHz reference used to clock the GTX devices on the
Block Card.

3.2. Packet structure

Since each block is connected with the regional board using only an optical link, the packet structure
should be optimized to reduce the data overhead while transmitting all the needed information. The optical
link is composed of two fibers: one is used to transmit data to the block (TX) and the other to receive (RX).
In both directions data are structured in packets of six 16-bit words and the 8b/10b encoding is used. That
means that each byte, when is sent on the fiber, is converted into a 10-bit frame: this conversion helps to
provide enough state changes to allow clock recovery. Converting 8-bit sequences to 10 bits means also that
some 10-bit sequences have no corresponding 8-bit data. One of these sequences (called “K28.5”) is used to
distribute and synchronize the master clock among all the blocks (see Sec. .

‘Word TX RX
0 sync and control sync and control
1 event number data
2 - data
3 block acq. busy data
4 block acq. busy data
5 block acq. busy data

Table 1: Summary of the packet structure used in the data transmission between the RB and the blocks. More details in the
text.

The first 16-bit word of the packet is always a special synchronization and control frame, both in TX
and RX transmission. In particular, the first 8 bits are not defined and they are substituted by the K28.5
sequence in the 8b/10b conversion. The whole packet structure is summarized in Tab. [1|and detailed in the
next two paragraphs.

3.2.1. TX packet structure

As said before, the first frame of the transmitted packet is used by the block card to synchronize the
master clock via the K28.5 sequence. The remaining 8 bits have the following use:

bit 7 validation signal generated by the RB (see Sec. ;
bit 6 slow control TX line (see Sec. [3.7));

bit 5 TTSync signal (see Sec. ;

bit 4 global reset of all blocks;

bit 3:0 not assigned.



When a validation signal is sent, the second frame of the TX packet contains the 12-bit event number
used to check the consistency in the event building phases (see Sec. . The third frame is not used.
The last three frames are used to selectively block the data transmission from the blocks. In fact, when a
regional board FIFO dedicated to a specific block is about to be completely full, the RB must block the data
acquiring process only from that block. That is achieved by writing on a TX frame a block ID followed by its
acquisition status (enabled/disabled). The involved block always reads the last three TX frames searching
for its ID: if it is found, the block reads the acquisition enable bit and updates its own status.

3.2.2. RX packet structure
The first frame of the received packet is, also in this case, a synchronization and control word and the
first part is again the K28.5 sequence. The remaining 8 bits of the first RX frame are the following:

bit 7 GTT flag (see Sec. [3.4));

bit 6 slow control RX line (see Sec. ;

bit 5:1 block trigger multiplicity (see Sec. ;
bit 0 not assigned.

The other five frames of the packet contain the data flow coming from the block.

3.3. Trigger logic

On both FPGAs of the front-end cards, fast trapezoidal shaping filters are implemented on the QH1, Q2
and Q3 signals in order to generate local triggers. There are also slow control registers to adjust, for each
channel, the filter parameters (rising edge and flat top lengths), the low threshold and the high one. Usually,
the filter is set at a 200 ns rising edge and a 200 ns flat top: these values do not affect the sustainable event
rate, which is limited by the data acquisition (see Sec. . For each front-end, the user can also choose
the trigger timeout, the trigger source (logic OR among any combination of Sil, Si2 and CsI) and the kind
of threshold: i.e. one may use the low threshold only (trigger is produced when the maximum amplitude
of shaped signal is larger than it) or both low and high thresholds (trigger is produced when the maximum
amplitude of shaped signal is between them). The local triggers generated by the FEEs reach the block card
through 16 dedicated lines (one per telescope) on the backplane.

FAZIA trigger system is multiplicity based: on each block, the BC counts the local triggers and sends
the total to the regional board every 40ns through the optical link. The RB collects all the multiplicity
values coming from each block and applies up to eight programmable rules. For each one the user can
choose (via slow control) the blocks checked by the rule, the multiplicity threshold and the downscale factor
K. The regional board will then integrate inside a time window the multiplicities coming only from the
blocks specified by the rule, and it will produce a “rule trigger” only if the integrated value overcomes the
multiplicity thresholds. The trigger is then accepted once every K occurrences. The logic OR among all the
rule triggers is eventually the global trigger signal. The RB then checks if there are any alerts: FPGA data
buffers are almost full, the GTT flag (see Sec. from any block is true or there is an external veto from
the “veto in” LEMO connector; if there is at least one alert, then a veto flag is issued. In these cases, except
when there is only an external veto, the flag is also sent to the “veto out” LEMO connector. The “trigger
out” LEMO connector is true when there is a global trigger without the veto flag. The main output of the
trigger component on the regional board is the validation signal: it is produced when the veto flag is false
and the global trigger or the external trigger from the “trigger in” LEMO connector are true. The user may
also choose to work in “slave” mode (when coupling FAZIA with other devices): in this case the validation
is only produced when the veto flag is false and the external trigger is true. In any case the validation signal
is sent at a 25 MHz rate to every block via the optical links, captured by the block cards and distributed to
every FEE through the backplanes. Together with the validation signal, also an event number, generated
by a counter on the regional board FPGA, is always sent to the FEEs using the same path.
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3.4. Data flow

On both FPGAs of the front-end cards, four trapezoidal shaping filters are implemented, in addition to
the trigger shapers described in the previous section, to calculate in real time the energy released in each
stage of the telescope. There is one shaper on the QHI signal, one on Q2 and two on Q3. In fact, the
CsI(T1) signal has a “fast” and a “slow” filter in order to exploit the well known fast — slow technique [14]
to identify the light ions that stop in the last stage of the telescope. As in the case of the trigger shapers, all
the rising edge and flat top lengths of the filters are user adjustable. Usually, the filters on QH1 and Q2 were
set at a rise time of 2 s and a flat top of 1yus. Rise time and flat top for Q3 shapers were set respectively
at 2us and 10ps for the slow filter and at 2ps and 500 ns for the fast one. These values do not affect the
sustainable rate because it is limited by the maximum acquisition rate (~2000ev/s). Since a faster rate is
not affordable, the beam intensity can be accordingly chosen to avoid pile-up and dead time. In addition to
being shaped, all the signals (including also QL1, I1 and I2 that have no shaper) are continuously stored in
circular buffers with dimension N < 1024, settable via slow control.

When a front-end card FPGA receives a validation, all the raw signals are transferred from their circular
buffers to FIFO memories, whose lengths are adjustable via slow control up to a maximum of 4096 samples
(~ 41ps) for QH1, Q2 and Q3 signals and 8192 samples (~ 33 ps) for QL1, I1 and I2. At the same time,
the acquisition thresholds are checked. These thresholds are again user programmable via slow control and
act on the energy shaped signals. If any of the QH1, Q2, Q3 “fast” and Q3 “slow” shaped signals exceeds
its respective acquisition threshold, then all the telescope signals are marked for acquisition. A single large
FIFO memory is finally used to store the whole local event from the telescope handled by the FPGA. On
this memory, if the telescope is marked for acquisition, the six waveforms are transferred together with the
four maximum values of the shaped signals and the event number sent by the RB. Between each front-end
card and the block card, the data travel on two 400 MHz serial buses (introduced in Sec. , thus capable
to offer a throughput of 800 Mbit/s. The buses are connected to the FPGA “A” on the FEE side, so data
sampled by the telescope “B” must pass through FPGA “A”. If any of the FIFO memories on the front-end
card is about to fill up, the Global Trigger Throttle (GTT) flag is raised and the RB is vetoed.

When a block card FPGA receives the validation signal, it enters a state where it starts to read the
FIFO memories on the front-end cards. The event number written inside the data coming from each FEE is
checked and the event is discarded if the number is less than expected. If the actual number is greater than
expected, instead, the FEE is skipped but the data are kept for the next event. In this way the block card
builds a coherent partial event and stores it in a FIFO buffer waiting to transfer it to the regional board.
Inside the partial event, also the external sinusoidal signal (see Sec. is stored.

After the generation of the validation signal, the regional board enters a state where it starts to read
the FIFO memories on the block cards. In complete analogy to the block card behavior, the RB checks the
event number written inside the data coming from each block and the event is discarded if the number is less
than expected. If the actual number is greater than expected, instead, the block is skipped but the data are
kept for the next event. In this way the regional board builds a full coherent event and stores it in a large
FIFO buffer. The RB adds also some trigger information (i.e. number of accepted and vetoed triggers in
the last ten seconds) to allow the calculation of the dead time. The FIFO memory is continuously read by
a component of the FPGA code that produces Ethernet frames using the User Datagram Protocol (UDP)
and send them to the acquisition system through a optical fiber connected to a SFP translator. The user
may specify up to 16 machines (sending their IP and MAC addresses via slow control) to which data will
be sent. The RB will send an event to the first computer, then another to second and so on. Then it will
start again from the first. In this way the dead time due to computing time is minimized. The maximum
throughput obtained with the Ethernet communication is about 800 Mbit /s.

3.5. Coupling with other detectors

The regional board features some programmable auxiliary connections which can be used to couple
FAZIA with other detectors. In particular, they will be used soon to measure together with INDRA at
GANIL. The coupling is done on different levels. The lowest is the trigger level: to ensure a common
dead time between FAZIA and INDRA we need to properly interconnect the trigger in/out and veto in/out
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LEMO connections (see Sec. between the two detectors. The second level consists in the generation of a
timestamp: this is performed thanks to the CENTRUM module, which is an absolute timestamp generator
connected to both apparatuses. When FAZIA generates a validation signal, it also sends a timestamp request
to the CENTRUM system, which dispatches to the RB a frame containing a 48-bit timestamp and a 32-bit
event number, plus a 16-bit checksum. A similar packet is sent to INDRA when it produces a request. The
FAZIA regional board, after checking the checksum, inserts the CENTRUM frame inside the data flow that
is sent to the acquisition. The third and highest level is done by NARVAL, an acquisition system developed
by IPN Orsay (France). NARVAL receives data from both INDRA and FAZIA acquisitions and merges
those events with timestamp differences smaller than a pre-defined (and reaction-dependent) coincidence
window, producing global events composed of data from both the apparatuses.

Of course this system is designed to be as general as possible and it may be used in the future also to
couple FAZIA with other detectors than INDRA. Moreover, both CENTRUM and NARVAL technologies
support the connections of many apparatuses, so one may also think to easily couple three or four different
devices with FAZIA.

3.6. Acquisition

The FAZIA acquisition (DAQ) has been developed and it is currently maintained by INFN — Naples.
FAZIA DAQ is a multi-threaded and multi-machine system, written in C+4 language and consisting of
different classes (DAQ modules) that exchange messages and events through ZeroM(Q sockets [I5]. The
main DAQ modules are the following:

FzReader It acquires raw data coming from the Regional Board by listening to the dedicated UDP socket.
Then it forwards the data to FzParser thread pool.

FzParser Each FzParser includes a Finite State Machine (FSM) able to analyze and validate each acquired
event in order to put all the information inside a structured format based on the Google Protocol
Buffers [16]. Multiple FzParser threads can run on a multi-core machine in order to benefit from
parallel execution of tasks. Each thread eventually forwards data to the FzWriter module through a
10 Gbit/s dedicated network.

FzWriter This module stores data in files and directories with Google Protobuf data format. It also runs
a data spy in order to allow on-line data processing and analysis by external data visualization tools.

FzNodeManager It is a local supervisor for FzZReader /FzParser or FzZWriter that run on each FAZIA DAQ
deployed machine. It sends a report on module status to FzController and it receives run control and
setup commands for module management.

FzController It is a global supervisor for all FzZNodeManager modules. It offers a global view on whole
cluster status and it accepts commands for FAZIA DAQ setup and run control.

Fig. [f] shows the overall architecture of FAZIA DAQ. Some plugins have also been developed to interact
with different Run Control systems. These plugins profit of the ZeroMQ network layer of FzController in
order to control the data acquisition from different clients (e.g. EPICS or SOAP). This feature of FAZIA
DAQ makes it very suitable and flexible for integration and coupling with other experiments and detectors.
For example, a GANIL plugin was developed to couple FAZIA with INDRA: it is a C++ class of the DAQ
which allows the remote control of FAZIA acquisition from NARVAL system using the SOAP protocol. At
the same time, the plugin sends data to NARVAL using a TCP/IP connection.

3.7. Slow control

As illustrated in the previous sections, slow control instructions permit to control almost every aspect
of the electronics. The commands, in the form of UDP packets, can be sent by any PC in the same subnet
where the regional board is located. The RB analyzes the frame to check if the instruction is for the regional
board itself. If it is, then the board executes the command and immediately sends a reply. If not, the RB
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Figure 6: Schematic representation of the FAZIA DAQ system

forwards to all the blocks the message via the optical links. On every block, the instruction is dispatched via
the backplane to every card containing a PIC (FEEs, PS, and BC). Since the slow control frame uniquely
identifies the card to which it is intended, only that card answers and the reply is returned to regional board.
In every case, the RB transmits back the reply message to the PC that has sent the request.

When the slow control request is not for the RB, it must be converted into a standard 115.2kbit/s serial
signal which can be correctly read by the PIC devices on the PS, BC or the FEEs. In particular, in the
regional board FPGA code, a universal asynchronous receiver-transmitter (UART) device is implemented.
The UART converts the slow control frames received via the Ethernet device into a slow serial data flow
which is sent on the optical fibers to all the blocks. Of course, since the slow control bit is sent on the fiber
at a 25 MHz rate (see Sec. , the 115.2kbit/s serial data flow is oversampled. Vice versa, when the RB
receives a slow control reply from a block as a serial data flow, this flow is deserialized by the same UART
component described above.

4. Mechanical solutions

4.1. Detector holding mechanics

A rendering of the FAZIA detectors is shown in Fig. [7} where silicon pads and CsI(Tl) crystals can be
spotted. The 16 telescopes, which form a block, are arranged in a 2 x 2 matrix of quartettos. A “quartetto”
is a self-consistent sub-structure of four telescopes in a 2 x 2 configuration. In the figure, the pad precise
alignment is also shown. Indeed, each quartetto axis (perpendicular to the surface of the four Si pads) points
to the target. This configuration has been achieved through a fixed geometry and thus without degrees of
freedom. Our choice has been to build the various supports for a distance of 100 cm between the target
and the first Si layer. This value has been chosen as a compromise between detector granularity and solid
angle coverage. Moreover, 100 cm is the minimum distance from the target which guarantees a negligible
channeling contribution (see below) and a sufficient flight base for time of flight identification.

The detector supporting mechanics has been designed focusing on two main goals. The first is the
reduction of all the dead regions between quartettos and on external edges. As a matter of fact, considering
a single block, the active area is 84 % of the total front side. The second important goal is the precision
of the telescope orientation, in order to reduce the channeling effects. In fact, our silicon detectors are cut
in such a way that the particles which perpendicularly impinge on the sensors do not travel along crystal
axes [3, 6]. By means of a laser mirroring method (see Sec. applied to the reflective Si pad surfaces,
we obtained that the orientation misalignment is typically less than 1.5°; larger values have been rarely
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Figure 7: Rendering of the detectors and their support mechanics. Orientation axes of quartettos are also shown.

observed in pads with misplacements or bad gluing. Those two objectives imposed the choice of a proper
material to build silicon pad holders. We chose the 7075 aluminium alloy, also used in avionics, because it is
precisely machinable and light but, at the same time, it is robust even in thin layers. The supports for the
2 x 2 Si pad matrices (Fig. [8) were built using wire electrical discharge machining. This technique, which
softly acts on the bulk, reduces the strains so that the final piece maintains its planarity and details, needed
for a good and precise gluing of the silicon pads and the matching between different parts. We remind that
a telescope is composed of two silicon detectors followed by a CsI(Tl) crystal so, to form a quartetto, two
similar 2 x 2 silicon frames should be locked one on top of the other by means of very thin grooves and
ridges. The four CsI(T1) scintillators are fixed to a central cross-shaped support, which is again made of
7075 aluminium alloy. The strength of this alloy is particularly important for this piece, since it must hold
the four crystals (weighing 0.72kg) and all the silicon pads as a cantilever.

Figure 8: A silicon pad holder with mounted detectors is shown: the grooves and the ridges needed to lock two holders in
position could be seen. The kapton strips, used to connect the sensors to the front-end electronics, are soldered to the metal
and p-bonded to Si pads.
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The fastening between the detectors and the rest of the block is relatively simple, in order to allow an
easy replacement of the detector “nose”. In this way, when some detectors are damaged, one can replace the
whole nose in a reasonable time. Usually, the insertion of the kapton strips into the FEE female connectors
is the longest operation.

The above described design and its practical implementation are particularly delicate and many tech-
nicians and engineers, from Bologna, Florence and Naples INFN departments, contributed with their work
and expertise.

4.2. Frame for the INDRA-FAZIA campaign

Figure 9: INDRA-FAZIA mechanical drawing. It consists of the usual 47 INDRA multi detector setup, where the first five
rings have been removed to ensure the backward angular coverage from 14° to 176° and twelve FAZIA blocks, from 1.5° to
14°, divided in four triplets. The whole set-up is hold in the already existing INDRA vacuum chamber at GANIL.

The INDRA-FAZIA experimental phase at GANIL is foreseen during the period 2019-2023. It consists
of several nuclear physics experiments with different beams (e.g. Ca, Ni, Kr, Sn and Xe) at various energies
(from 25 to 80 MeV /u) on a large variety of targets. It will use the coupling between the multi detectors
INDRA and FAZIA. This set up will be fitted in the already existing INDRA vacuum chamber at GANIL.
The forward part of the 4r INDRA multi detector is going to be replaced by the new FAZIA array in order
to benefit from its better isotopic, energy and angular resolution. The first five INDRA rings (from 1.5°
to 14°) will be replaced by twelve FAZIA blocks (Fig. E[) as described previously. Those twelve blocks will
be divided in four triplets. A triplet consists of three FAZIA blocks in a “L” configuration. The blocks
are mounted inside a metallic structure and fixed by brackets. This triplet frame holds many handles,
various towing rings and also two removable arms in order to help the mounting and the handling inside the
vacuum chamber. The main chassis, holding the four triplets, is constituted by a vertical square Elcom based
structure, where the four angles have been reinforced with thick stainless steel plates. The triplets are then
fixed to each four angles of the vertical main square frame via screws on the thick plates. An intermediate
angled brace between the triplets and each angle of the main square frame fixes the geometry of the blocks,
i.e. the distance from the target and the polar angles respect to the beam axis where the detectors pointed
out. For the first experiment at GANIL this intermediate brace has been designed to ensure a one meter
distance to the target and a minimum (maximum) polar angles of 1.5° (14°). The vertical main square
frame is eventually screwed to a movable platform which uses the already existing INDRA vacuum chamber
rails, enabling the right positioning distance to the target. Two remotely controlled thick disk shields, with
different diameters (a small one protecting the angles from 0.85° to 3.1° and a big one from 0.85° to 5°), have
been designed to protect the silicon detectors during beam focalization or data taking to avoid radiation
damage [17] with stopped heavy ions.
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The whole final setup with twelve FAZIA blocks weights around 230kg (a complete single FAZIA block
weights slightly less than 15kg) and it is foreseen to be towed by a crane if necessary. The CAD design
and building of the whole support frame for the twelve blocks have been designed at the Laboratoire de
Physique Corpusculaire de Caen, LPC Caen (France).

4.8. Cooling

Since a single FAZIA block absorbs almost 300 W, a very efficient cooling solution must be adopted to
operate under vacuum. The final setup consists in a thick copper plate, on which all the cards are screwed
on. The conduction is ensured by thermal grease between each card and the copper surface. The copper
plate has been designed in order to efficiently distribute the liquid flow along the entire surface which holds
the 8 FEE cards. Solving the conflict between the internal pipes for the liquid flow and the many screw
holes needed to ensure mechanical and thermal coupling of the electronic boards has been a difficult issue.
In total, we have about 100 screws. The adopted solution has been to start from a copper slab 8 mm thick
having two main internal in-out pipes running longitudinally on the two sides of the plate. The liquid
distribution is then ensured in the copper volume through eight transversal holes, drilled in the plate and
joining the input-output main lateral pipes. These transversal holes have variable diameters along the plate
length in order to compensate for the pressure drop at the various distances from the entrance/exit tube
fittings.

Outside the scattering chamber a powerful chiller (ACW LP60) is mounted to refrigerate the water
(with 30 % alcohol or glycol) flowing through all the blocks. The temperature of the cooling liquid is kept
at about 10°C. To ensure an independent cooling for each block a so called “clarinet” device has been built
to dispatch the fluid to all the cooling circuits. It was designed at the Grand Accélérateur National d’Ions
Lourds (GANIL).

4.4. Laser angle measurement

To conclude this review on the FAZIA technological solutions, a notable mention goes to a method that
the collaboration implemented to precisely measure the polar angles ¥ and ¢ of the detectors with respect
to the beam direction. First of all, a piece of beam line beyond the scattering chamber is dismounted to
allow the mounting of a laser. This laser, aligned with the centre of beam line and the target, is fired in the
opposite direction with respect to the beam. In place of the target a mirror is then mounted in such a way
that its centre is exactly on the path of the laser. The mirror equipment is mounted in a gimbal configuration
allowing the rotation around two orthogonal axes: the inclination and declination can be controlled via two
precise stepping motors. The fine regulation of the “zero” position (when the laser bounces back in the same
direction from where it impinged on the mirror) is set once via micrometric screws. Then, by regulating the
two mirror angles (using the stepping motors) up to when the reflected laser beam impinges on the centre
of a telescope, it is easy to obtain its ¢ and ¢ angles via a reading of the encoded current position of the
motors. The centre of the telescope is determined by visual inspection with an estimated accuracy of the
order of 1 mm, corresponding to ~3’ accuracy on angle measurement. The described technique is in fact a
simplified version of a method used by the collaboration for the FIASCO experiment (see Sec 2.1 of [I8]).

5. Conclusions and future improvements

In this review paper we examined the most peculiar and innovative features of the FAZIA telescope
array from the technological point of view. To summarise, some of the most important characteristics of
FAZIA are the compactness and modularity: since FAZIA is structured in independent blocks, various
geometry configurations are possible; moreover, all the analogue chains operate under vacuum, very close to
the detectors, so that electronic noise pick-up and signal distortion along the transmission lines are greatly
reduced. Another factor that should not be neglected is the optimisation of the analogue stages done in the
last years: in fact, the pre-amplifiers were designed after many tests performed in the past with prototype
telescopes [19]; a similar consideration is valid also for the choice of the ADCs. The combination of pre-
amplifiers which have a very high dynamic range and low noise with converters that have a well balanced
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design in term of ENOB and sampling rate permits to obtain a good energy resolution in a very wide
spectrum of particle energies and charges (from Am « sources to heavy nuclei with energies of the order
of 4GeV). The clock distribution is another fundamental part of the FAZIA apparatus. Thanks to a very
complex design that uses fixed latency optical connections and many PLL devices on each electronic card,
it is possible to achieve a synchronisation among all the acquired channels within 100 ps.

Finally, other important aspects of FAZIA are its flexibility and upgradability. In fact, all the electronic
boards contain programmable devices which are steadily maintained and updated to include new features.
Indeed, one can implement new firmware solutions on the on-board FPGA after that a given algorithm has
been tested off-line using the entire sampled waveforms previously acquired. For example, in this respect
we are going to implement the pulse-shape discrimination of silicon signals directly on-board, by adding the
search of the current signal maximum on the front-end card FPGA code. Another feature which may be
added to the same code is an energy shaper on the QL1 signal, to have the high gain energy measurement
without the need to send the whole signal to the acquisition. To improve the data bandwidth, especially
in view of experiments that will use many FAZIA blocks, we are also going to implement two Ethernet
connections (instead of one as we have now) between the regional board and the acquisition system.

This work was partly supported by the Polish Ministry of Science and Higher Education under Contract
No. 778N - FAZIA /2010/0, the Polish National Science Centre under Contracts No. 2013/08/M/ST2/00257
(COPIGAL) and No. 2014/14/M/ST2/00738 (COPIN-INFN Collaboration).
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