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ABSTRACT

Strong gravitational lensing offers a wealth of astrophysical information on the background source it affects, provided the lensed
source can be reconstructed as if it was seen in the absence of lensing. In the present work, we illustrate how sparse optimisation
can address the problem. As a first step towards a full free-form-lens-modelling technique, we consider linear inversion of the lensed
source under sparse regularisation and joint deblending from the lens light profile. The method is based on morphological component
analysis, assuming a known mass model. We show with numerical experiments that representing the lens and source light using an
undecimated wavelet basis allows us to reconstruct the source and to separate it from the foreground lens at the same time. Both
the source and lens light have a non-analytic form, allowing for the flexibility needed in the inversion to represent arbitrarily small
and complex luminous structures in the lens and source. In addition, sparse regularisation avoids over-fitting the data and does not
require the use of an adaptive mesh or pixel grid. As a consequence, our reconstructed sources can be represented on a grid of very
small pixels. Sparse regularisation in the wavelet domain also allows for automated computation of the regularisation parameter,
thus minimising the impact of the arbitrary choice of initial parameters. Our inversion technique for a fixed mass distribution can be
incorporated into future lens-modelling techniques iterating over the lens mass parameters.
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1. Introduction

Strong gravitational lensing is a powerful tool to study astro-
physics and cosmology, from structures on a wide range of
scales to probing dark matter and dark energy. At cluster scale,
strong gravitational lensing allows us to map the distribution of
dark matter and to compare it with the visible mass (e.g. see
recent work in the Hubble Frontier Fields; Priewe et al. 2017;
Harvey et al. 2016; Sebesta et al. 2016; Diego et al. 2016). In
merging or interacting galaxy clusters, it is used to infer a
limit on the dark matter cross-section (e.g. Harvey et al. 2015).
At galaxy scale, strong lensing is a powerful way of study-
ing the interplay between visible and dark matter, and there-
fore also galaxy formation and evolution. The growing sample
of known galaxy-scale strong lenses includes early-type galax-
ies (SLACS; Bolton et al. 2008), spiral galaxies (SWELLS;
Treu et al. 2011), emission-line galaxies (BELLS; Bolton et al.
2012), groups of galaxies (More et al. 2012) and even lensing by
AGNs (Courbin et al. 2012). Strong lensing is very sensitive to
small substructures in the lensing galaxy and consists in a unique

? The python package corresponding to the algorithms described in
this article can be downloaded via the github platform at https://
github.com/herjy/SLIT.

way of detecting such small structures, hinting at the nature
of dark matter and the cosmological model (e.g. Vegetti et al.
2010). Finally, the measurement of the so-called time delay
between the images of strongly lensed quasars (Refsdal 1964)
allows to constrain cosmology independently of any other cos-
mological probes (for a review see Treu & Marshall 2016), with
high sensitivity to H0 and little dependence on the other cos-
mological parameters (e.g. Suyu et al. 2010, 2014; Tewes et al.
2013; Bonvin et al. 2017).

Most of these applications require reliable mass models for
the lens, which in turn requires robust methods to “unlens” the
original source, whatever the level of complexity in the shape
may be. They also require the light of the foreground lens to be
deblended from the background source either prior to the mass
modelling or together with it, in a single-step process. Different
methods exist to carry out these tasks, all with their own assump-
tions, advantages, and drawbacks. In the case of cluster-scale
lensing, the positions of multiply imaged background sources
give sufficient constraints on the mass macro-models. However,
additional information about the distortion of extended images
might allow to break certain degeneracies in the cluster lens
models while allowing us to recover the morphologies of highly
magnified sources to probe galaxy evolution at high redshift, as
recently illustrated in Cava et al. (2018).
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With the quality of modern lens observations, taken with the
HST or ground-based adaptive optics, it becomes increasingly
important to design modelling techniques, both for galaxies
and clusters, that are flexible and robust: they must simultane-
ously capture all possible observational constraints and remain
robust with respect to noise. This is particularly important to
explore the degeneracies inherent to the lensing phenomenon
(e.g. Schneider & Sluse 2013, 2014) without applying strong
priors both on the source and lens shape.

Some of the modelling techniques currently in use consider
a full analytical lens mass and light distribution (Kneib et al.
2011; Bellagamba et al. 2017; Oguri 2010). Others use a semi-
analytic approach, where the source is pixelated and regu-
larised but where the lens has an analytical representation
(Dye & Warren 2005; Warren & Dye 2003; Suyu et al. 2006;
Vegetti & Koopmans 2009) or where the lens is represented on
a pixelated grid with regularisation or assumptions on its sym-
metry (e.g. Coles et al. 2014; Nightingale et al. 2018). Further
studies in this direction involve adaptive pixel grids to represent
the source (Nightingale et al. 2018; Nightingale & Dye 2015) or
an analytic decomposition of the source on a predefined dictio-
nary as was done in Birrer et al. (2015), where the authors used
shapelets (Refregier 2003). In the following, a dictionary is a
collection of atoms (vectors) that together form a generative set
of Rn, with n being the number of samples in the data.

In the present work we address the problems of source recon-
struction and deblending as a single linear inverse problem.
By using a family of functions called starlet (or undecimated
isotropic wavelet transform Starck et al. 2005), we are able to
use sparse regularisation over the lens and source light profiles.
Sparsity with starlets has the advantage of performing model-
independent reconstructions of smooth profiles and allows for
deterministic expression of the regularisation parameter. As the
lensed source can be represented using only a limited number of
starlet coefficients, the pixel grid can be almost as fine as desired
and the reconstructed source is denoised and deconvolved from
the instrumental point spread function (PSF).

The choice of wavelets is motivated by the successful use of
this decomposition in recent years to model astronomical objects
(Ngolè Mboula et al. 2015; Garsden et al. 2015; Lanusse et al.
2016; Farrens et al. 2017; Joseph et al. 2016; Livermore et al.
2017; Pratley et al. 2018). In the present application, the sepa-
ration between lens and source light is performed through mor-
phological component analysis (Starck et al. 2005, 2015). The
method relies on the sparsity of the lens and source light pro-
files in their respective dictionaries to perform the separation. We
apply sparse regularisation to the source and lens light distribu-
tions and illustrate with numerical simulations the effectiveness
of the method at reconstructing the source and deblending lens
and source.

This paper is intended as a proof of concept to show how
convex optimisation under a sparsity prior for the source light
profile can be used as an adequate minimisation technique for
lens modelling. The scope of this paper remains limited to the
modelling of light distribution alone and to the potential of using
morphological component analysis to provide a new framework
for lens modelling. Our ultimate goal is to come up with a
full lens-modelling technique that would perform joint free-form
modelling of the light and mass density profiles. The latter being
a non-linear problem and the problem of free-form lens mod-
elling as a whole being largely underconstrained and degenerate,
this will be the subject of another paper.

The paper is organised as follows: Sect. 2 introduces the
basics of strong gravitational lensing. In Sect. 3 we describe

the problem of lens/source light profile estimation as a linear
inverse problem. In Sect. 4 we present the detail of our method
and Sect. 5 describes the testing of our method on simulated
images and the comparison with a state-of-the-art technique:
lenstronomy (Birrer & Amara 2018). Finally, Sect. 6 details
the content of the public package we produced to release our
code.

2. Source reconstruction given a known lens mass

In this section, we give the basics of the gravitational lensing
formalism we use to back-project lensed images to the source
plane.

We note θθθ the angular position on the sky of an object
seen through a gravitational lens (image plane coordinates), with
intrinsic angular position βββ (source plane coordinates). The map-
ping from source to image plane is described by the lens equa-
tion:

βββ = θθθ −ααα(θθθ), (1)

where

ααα(θθθ) =
1
π

∫
R2
κ(θθθ′)

θθθ − θθθ′

|θθθ − θθθ′|2
d2θθθ′, (2)

which is the deflection angle in the lens plane. The value κ(θ) is
the dimensionless convergence of the gravitational lens at posi-
tion θ. Convergence κ is defined as:

κ =
Σ(DLθθθ)

Σc
, (3)

where Σc is the critical surface mass density defined as

Σc =
c2

4πG
DS

DLDLS
, (4)

and Σ(DLθθθ) is the surface mass density of the lens defined as the
projected volume density of the lens on a plane perpendicular
to the line of sight. Parameters DS, DL, and DLS are the angular
diameter distances between the observer and the source, between
the observer and the lens, and between the lens and the source,
respectively.

The problem of inverting Eq. (1) from photometric observa-
tions only (meaning only θθθ is known) is a non-linear and highly
under-constrained problem with two unknowns: The position of
the source, βββ, and the convergence map of the lens. In the case
of extended sources, the goal of lens inversion is to recover the
light profile of a lensed galaxy as seen in the source plane, which
implies being able to calculate the flux at each position βββ know-
ing the flux at position θθθ.

In practice, current techniques for lens inversion rely on an
iterative process that consists in successively reconstructing the
source profile brightness and the κ map. In an effort to deve-
lope an automated, model-independent method for lens inver-
sion, we choose to decompose the problem. In this paper, we
address the problem of source light profile reconstruction given
a known convergence map, in which case the problem is lin-
ear. In Warren & Dye (2003), the authors express the mapping
between source and image surface brightness using an operator
Fκ, such that the observed surface brightness of a lensed galaxy
can be written

Y = FκS + Z, (5)
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where Y is the observed surface brightness, flattened as a vector
with length Npix, vector S is the unknown source surface bright-
ness vector in the source plane with length Nps, Fκ is a Nps×Npix
matrix where, following the formalism of Warren & Dye (2003),
element fi, j is the jth pixel in image plane of the mapping of a
source that has only its ith pixel set to one. In other words, Fκ

indicates which pixels from the source plane have to be com-
bined to predict the value of a pixel in the image plane. The
elements of Fκ are entirely determined by the mass density dis-
tribution κ. Vector Z is an additive noise map. In this work, we
consider Z as a white Gaussian noise with standard deviation σ,
but the method can easily be extended to Poisson statistics, or
more generally to noise with known root mean square.

2.1. Pixel-to-pixel mapping

As illustrated in Fig. 1 of Wayth & Webster (2006), a square
pixel in the image plane is a diamond-shaped pixel in the source
plane, with a total area depending on the magnification at the
pixel location. Although this phenomenon should strictly be
accounted for, we choose to make the approximation that each
photon hitting a pixel whether in the source or image plane hits at
the centre of the pixel. This way, we lose part of the information
provided by the distribution of photons over the whole surface
of a pixel, but importantly avoid correlating the noise when back
projecting from the image plane to the source plane. Further-
more, using a small pixel size limits this imperfect modelling and
allows to compensate for the variation in the light profile. This
inverse problem being ill-posed, it admits no unique and stable
solution, hence calling for a regularisation to solve it. Increasing
the pixel size, and therefore losing resolution can be seen as a
naive regularisation. We will show how advanced regularisation
techniques can be used efficiently.

2.2. Projection and back-projection between source and lens
planes

To compute the elements of Fκ for each of the Nps pixels in the
source plane, we associate a pixel in the image plane by shooting
a photon from the centre, β, of a source plane pixel and recording
the position(s), θ, given by Eq. (1), of the pixel(s) where the
deflected photon hits the image plane. Summarising, we record
the positions, θ, where β + α(θ) − θ = 0. The element of Fκ at
position(s) ( β, θ) is (-are in the case of a multiply imaged pixel)
set to one to indicate the mapping. Since Fκ is a sparse matrix
with only very few non-zero coefficients, we choose to only store
the positions ( β, θ) that map into one another in order to save
memory and thus computation time in the following steps.

The projection of a source light profile into a lensed light
profile in the image plane is then performed by allocating to
each image pixel the sum of the intensities of the correspond-
ing source pixels according to Fκ. Conversely, back-projection is
performed by allocating to each source pixel the average value of
all its lensed counterparts according to Fκ. This ensures conser-
vation of surface brightness between the source and lens planes.

3. Linear development of strong gravitational lens
imaging

In real imaging data of strong gravitational lenses, the problem
of finding the delensed light profile of a lensed galaxy is harder
than solving Eq. (5), which is already non-trivial. First, one has
to include the impulse response of the instrument that acquired

the image. This effect corresponds to a convolution of the images
described by FκS , by the point spread function (PSF). Letting the
linear operator H account for the convolution by a known PSF,
Eq. (5) becomes

Y = HFκS + Z, (6)

which is the problem one has to solve when dealing only with
the lensed light profile of a source, assuming that the light pro-
file from the foreground lens galaxy has been perfectly removed
prior to the analysis.

In practice, images of strongly lensed galaxies are contami-
nated by light from a foreground lens galaxy, G. Taking this into
account, Eq. (6) can then be written as

Y = H(FκS + G) + Z. (7)

When Z is a white Gaussian noise, solving Eq. (7) reduces to
finding S and G such that

||Y − H(FκS + G)||22 < ε, (8)

where ε accounts for the precision of the reconstruction and
depends on the noise level. Given that we have an Npix-sized
image and aim at finding an Npix-sized galaxy light profile and
an Nps-sized source light profile, we need to impose further con-
straints on these unknowns. Classically, the light distribution of
the lens is approximated by an analytic profile such as a Sérsic
or deVaucouleur profile.

As reconstructing the source light profile is an ill-posed prob-
lem, where unknowns largely outnumber the number of observ-
ables, several strategies have been investigated in the literature;
for example, adaptive pixel grids (Dye & Warren 2005), negen-
tropy minimisation (Warren & Dye 2003; Wayth & Webster
2006), Bayesian inference over the regularisation parameters of
the source (Suyu et al. 2006), perturbative theory (Alard 2009),
and model profile fitting (Bellagamba et al. 2017). Although
these methods have their own advantages and disadvantages,
only a few of them are able to reconstruct complex sources with-
out degrading the resolution of the output. In Birrer et al. (2015),
the authors used a family of functions to reconstruct the source
light profile with promising results. Here we propose to push
this idea further by exploiting a family of functions that is well
suited to representing galaxies, and that possesses properties of
redundancy allowing for the use of sparse regularisation.

3.1. Sparse source reconstruction in the absence of light
from the lens

We propose a new approach to solving Eq. (6). Given that galax-
ies are compact and smooth objects, their decomposition over
the starlet dictionary (Starck et al. 2007) will be sparse, meaning
that only a small number of non-zero starlet coefficients will con-
tain all the information in a galaxy image. This property allows
us to constrain the number of coefficients used in starlet space
to reconstruct galaxy profiles, therefore offering a powerful reg-
ularisation to our problem. Starlets are a class of discrete undec-
imated, isotropic wavelets, formally introduced in Starck et al.
(2007) and extensively described with regard to computation
algorithms in Starck et al. (2015).

Assuming a signal is sparse in a dictionary Φ, the solution
to an inverse problem like in Eq. (6) is the solution that uses the
least number of coefficients in the Φ dictionary while minimis-
ing the square error between the observables and the reconstruc-
tion. In a more formal way, sparsity is enforced by minimising
the `1-norm of the decomposition over Φ of a signal known to
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be sparse in this dictionary. In addition, because the mapping
of an image from lens plane to source plane does not conserve
shapes, the edges of the image in the lens plane does not match
the borders of the image in the source plane, leaving parts of the
source image unconstrained as they map into pixels outside the
field of view of the lens plane. Let us call S the set of pixels in
the source plane that have an image in the lens plane. We impose
that the coefficients of the solution outside set S be set to zero.
This allows us to write the problem of finding S as an optimisa-
tion problem of the form

argmin
αS

||Y − HFκΦαS ||
2
2 + λ||W � αS ||1, (9)

where Φ is the starlet dictionary, and αS are the starlet coeffi-
cients of S such that αS = ΦT S . The operator � is the term-by-
term multiplication operator, and W is a vector of weights that
serves the purpose of setting all coefficients outside S to zero,
while keeping the `1-norm constraint from biasing the results
(discussed further in the following paragraphs). In practice, min-
imising the `1-norm of a vector is done by soft-thresholding the
vector. This consists in decreasing the absolute value of the vec-
tor’s coefficients by a positive value λ, and by setting the coeffi-
cients smaller than λ to zero, as shown in the following equation:

STλ(x) =

{
sign(x) × (|x| − λ) if |x| > λ
0 otherwise.

(10)

The regularisation parameter λ controls the trade-off between
fitting the observed data and enforcing sparse solutions. From
the definition of Eq. (10), it appears that solutions derived with
soft-thresholding will present a bias due to the subtraction by λ.
In order to mitigate this effect, we use the reweighting scheme
from Candes et al. (2008). In order to prevent the most signifi-
cant coefficients from being truncated, we multiply the regulari-
sation parameter λ by

W =
2

1 + exp(−10(λ − α0))
, (11)

where α0 is the solution of Eq. (9) with W = 1. With this defi-
nition for W, the coefficients that are much larger than λ are less
affected by soft thresholding than others. Values of W for coeffi-
cients outside S are set to infinity, hence naturally ensuring that
the corresponding wavelet coefficients are set to zero.

This approach can be used to recover the source light pro-
file in systems involving a faint foreground lens galaxy, a large
Einstein radius, or when a reliable deblending of the lens and
source light profiles is available prior to the source reconstruc-
tion scheme presented here.

3.2. Source reconstruction and deblending of the foreground
lens light profile

In a more general case, one has to deal with the separation
between the lens and source light profiles. Although several tech-
niques allow for their separation prior to the analysis of the lens
system (e.g. Joseph et al. 2014, 2016; Brault & Gavazzi 2015),
each of these methods has limitations in the sense that they
require specific inputs (field of view or multiband images) or
do not take into account the lensed source profile when fitting
the lens, resulting in potential biases. Another approach con-
sists in fitting an analytic lens light profile while reconstructing
the lens mass density profile and the source (Birrer et al. 2015;
Tessore et al. 2016). Here, we propose a solution to reconstruct

and separate the lens and source light profiles using the fully lin-
ear framework provided by morphological component analysis
(MCA; Starck et al. 2005).

Very importantly, a galaxy is sparse in starlets in its own
plane (source or image), meaning that, given a mapping Fκ with
κ(θ) > 1 at several positions θ between source and lens plane,
a galaxy in the source plane and a galaxy in the lens plane are
both sparse in starlets. We justify and illustrate this statement
with simulations in Sect. 5 using simulated lenses.

Morphological component analysis allows for separation of
two mixed components in a signal based on the fact that each
component can be sparsely represented in its own dictionary but
not in others. In the context of lens-source separation, the explicit
dictionaries are the starlet transform of a back-projection in the
source plane on one hand, and the starlet transform for the lens
in the lens plane on the other.

We can therefore iteratively project the mixed signals in
their own respective dictionaries, impose a sparsity constraint
on each projection and therefore reconstruct the corresponding
components separately. As seen in Sect. 3.1, sparsity is imposed
by minimising the `1-norm of both decompositions. Due to the
problem of reconstructing S being ill-posed, a sparse version of
S has to be computed at each iteration, which requires subitera-
tions.

3.3. Optimisation problem

In mathematical terms, the aforementioned MCA problem boils
down to finding the model {Ŝ , Ĝ} that provides the best approx-
imation of the data set Y according to Eq. (7), while minimis-
ing the `1-norms of the starlet coefficients αS and αG, with
αG = ΦT G. This is written as

α̂S , α̂G = argmin
αS ,αG

||Y − H(FΦαS − ΦαG)||22 (12)

+λS ||WS � αS ||1 + λG ||WG � αG ||1,

where λS and λG account for the sparsity of αS and αG, respec-
tively. Similarly to Eq. (9), WS and WG are weights that play
the same role as in Eq. (11).We describe the calculation of these
values in Sect. 4.1.

Since, our main interest is to fully reconstruct the source
S , it is not necessary to compute the fully deconvolved vec-
tor G. Instead, we limit ourselves to estimating the convolved
vector GH = HG so that we extract the convolved foreground
lens galaxy GH and decrease the computational time by avoid-
ing several convolution steps of G when solving Eq. (12), which
becomes

α̂S , α̂GH = argmin
αS ,αGH

||Y − HFΦαS − ΦαGH ||
2
2 (13)

+λS ||αS ||1 + λGH ||αGH ||1.

4. Method: the SLIT algorithms

In this section, we describe the two algorithms, SLIT and
SLIT_MCA that we implemented to solve Eq. (9) (no lens light)
and Eq. (13) (full light reconstruction problem), respectively.

4.1. Source delensing: SLIT algorithm

Starting with the simpler case of solving Eq. (6), we made
use of the fast iterative soft thresholding algorithm (FISTA;
Beck & Teboulle 2009). This iterative algorithm is similar to a
forward backward (Gabay 1983) algorithm with an inertial step
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Fig. 1. Noise levels in the source plane (λS ) for three starlet scales (scale 1, 3 and 5) out of the five computed for 100 × 100 pixel images with
noise standard deviation σ = 1.

that accelerates the convergence. We show the pseudo-algorithm
for one iteration in algorithm 1. It consists in a step of gradi-
ent descent (steps 2 and 3) followed by a soft-thresholding of
the starlet coefficients of the source (step 4), which acts as a
sparse regularisation. Step 6 aims at pushing forward the solu-
tion in the direction of smaller error, which accelerates the con-
vergence. The process is repeated until convergence, as shown
in algorithm 2.

Algorithm 1 FISTA iteration
1: procedure FISTA(Y, αi,H, F, ξi, ti, λ,W)
2: R← FT HT (Y − HFΦαi)
3: γ ← ξi + µΦT R
4: αi+1 ← S Tλ�W (γ)

5: ti+1 ←
1+
√

1+4tS 2
i−1

2
6: ξi+1 ← αi + ti−1

ti+1
(αi+1 − αi)

7: return ξi+1, αi+1, ti+1
8: end procedure

In this algorithm, Y is the original image of a lensed galaxy,
ξi and γ are local variables used to carry local estimates from
one iteration to another, αi is the starlet decomposition of the
estimated source at iteration i and ti gives the size of the inertial
step. This sequence has been chosen to ensure that the cost func-
tion convergence is bounded by the Euclidean distance between
the starting point for S and a minimum of the cost function. This
is explained in more detail in Chambolle & Dossal (2015) (theo-
rem 1) and Beck & Teboulle (2009) (theorem 4.1). The gradient
step µ is chosen to be µ = (||HFΦ||2s)−1, with ||.||s being the spec-
tral norm of a matrix, defined by

||M||s = max
x,0

||Mx||2
||x||2

· (14)

The function S Tλ in algorithm 1 is the soft-thresholding operator
described by Eq. (10).

Parameter λ has to be chosen with care as it accounts for
the sparsity of the solution. In practice, λ is a threshold that
is applied to each starlet coefficient of the solution in order to
reduce its `1-norm in starlet space. In the present case, given the
presence of noise in the input data Y , it is important to choose a
threshold above the noise levels. This is done by propagating the
noise levels in image Y to the starlet coefficients αi. The starlet
transform being an undecimated multi-scale transform, coeffi-
cients αi can be ordered as a set of images, each image repre-
senting the variations in the data at different scales. Therefore,

Algorithm 2 SLIT
1: procedure SLIT(Y,H, F, λ,Niter,W)
2: ξ0, α0, t0 ← 0, 0, 1
3: for 0 < i ≤ Niter do
4: ξi+1, αi+1, ti+1 ← FIS T A(Y, αi,H, F, ξi, ti, λ,W)
5: end for
6: S ← ΦαNiter

7: W ← 2
1+exp(−10(λ−α0)) ,

8: return S ,W
9: end procedure

we have to estimate how noise levels translate from the data to
each scale of the starlet transform. In the current implementation,
the noise from image Y also has to be propagated through the HT

and FT operators as shown in step 2 of algorithm 1. Because the
convolution HT correlates the noise in the data and the back-
projection to source plane induces varying multiplicity of the
delensed pixels across the field of view, it is necessary to esti-
mate a different threshold λ at each pixel location in each scale
of the starlet transform of the source. In practice, for measure-
ments affected by noise with known covariance Σ, noise standard
deviation in the starlet domain of the source plane are given by
the square root of the diagonal elements of

ΣS = ΦT FT
κ HT ΣHFκΦ. (15)

In the case of the “a trou” (french for “with whole”,
Holschneider et al. 1989; Shensa 1992) algorithm, which relies
on filter bank convolution to perform the starlet transform, the
elements of Φ are never explicitly calculated. Instead, the noise
standard deviation at scale s and pixel p in the starlet domain of
the source plane is given by

Ξ2
s,p = ∆2

s ∗ Γ2
i, j,(i= j), (16)

where ∆s is the starlet transform of a dirac function at scale s, ∗
is the convolution operator, and Γi, j,{i= j} is the vector containing
the diagonal elements of FT

κ HT ΣHFκ.
The result is the noise level in source space at each loca-

tion and each scale of the starlet transform. By construction,
the last scale contains the coarse details in the image and is left
untouched in the thresholding process. Figure 1 shows the noise
levels in the source plane calculated from a simulation where
the surface mass density is a singular isothermal ellipsoid (SIE).
The PSF is a simulated Tiny Tim PSF (Krist et al. 2011) for
the F814W filter of the ACS/WFC instrument on the HST and
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the noise standard deviation is set to 1. The original image is
a 100 × 100 pixel image which is decomposed into six starlet
scales, that is, the maximum number of scales that we can pos-
sibly compute, given the size of the image.

4.2. Deblending and source delensing: SLIT_MCA algorithm

In real data, the source and lens light profiles are blended, that is,
the light of the lens impacts the quality of the source reconstruc-
tion. Handling the deblending and delensing simultaneously can
be done using MCA.

In classical source separation problems where two compo-
nents are to be separated, solutions are obtained through MCA
by performing a gradient step and alternatively regularising over
each component in its own dictionary. In the present case, solv-
ing Eq. (7) requires that we solve an inverse problem each time
we aim at reconstructing the quantity HFκS . This inverse prob-
lem corresponds to solving Eq. (6) for which we already pre-
sented a solution in algorithm 2.

Our MCA algorithm is therefore an iterative process that
consists in alternatively subtracting a previous estimation of GH
and S from the data:

DS = Y −GH (17)

and

DG = Y − HFκS , (18)

as detailed in algorithm 3. At each iteration, the previous sub-
tractions DS and DG are used to estimate S and GH , respec-
tively. Estimating S requires running the full SLIT algorithm
on DS until convergence. Estimating GH at a given iteration is
simply done by running one single iteration of the FISTA algo-
rithm on DG with inputs Fκ and H being identity matrices. We
found empirically that using the projections of S and GH on the
subsets of vectors with positive values (meaning that we set all
negative coefficients to zero), we could achieve faster conver-
gence towards more realistic solutions. Although this is not a
formal positivity constraint, since we do not apply positivity on
the solutions themselves, we found that in practice this leads to
galaxy profiles with less negative structures, which is not a phys-
ical feature we find in galaxy light profiles.

Estimating λG is as crucial as estimating λS but is much sim-
pler given that there is no inverse problem to solve in this case.
The threshold λG only depends on the noise level in the image.
Given that we impose sparsity in starlet space, we still have to
evaluate noise levels at each scale of the starlet transform. To
do so, we simply compute how a unitary signal in direct space
translates into starlet space and multiply it by the noise stan-
dard deviation. In other words, we take the starlet transform of a
Dirac function and compute the 2-norm of each scale of the star-
let transform. This tells us how energy is distributed into starlet
space. For a decomposition over six starlet scales, the values we
obtain for the first five scales in order of increasing scale are:
λG = [0.891, 0.200, 0.086, 0.041, 0.020]. As in the previous
section, the last scale is left untouched. The obtained values are
then multiplied by a scalar that accounts for the desired detection
level in units of noise. The scalar is often chosen to be between
3 and 5σ as seen previously. A detection at 3σ will produce very
complete but noisy reconstruction of the signal, whereas a detec-
tion at 5σ will lead to a more conservative reconstruction of the
highest-S/N features only. The obtained thresholds are applied
uniformly across each scale.

Algorithm 3 SLITMCA algorithm
1: procedure SLIT_MCA(Y,H, Fκ,Niter,Nsubiter, λS , λG)
2: S̃ ← 0
3: G̃H ← 0
4: [ξS 0, ξG0] = [0, 0]
5: [αS 0, αG0] = [0, 0]
6: [tS 0, tG0] = [1, 1]
7: for 0 < i ≤ Niter do
8: DS ← Y −GH
9: S ← S LIT (DS ,H, Fκ, λS ,Nsubiter)

10: DG ← Y − HFκS
11: ξGi, αGi, tGi ← FIS T A(DG, αGi−1, Id, Id, ξGi−1, tGi−1, λG, 1)
12: GH ← ΦTαGi
13: end for
14: return S̃ ,G
15: end procedure

5. Numerical experiments with simulations

In the following we illustrate the performances of our algorithms
with numerical experiments that mimic different observational
situations. We also apply our algorithms to a set of simulated
images and show comparisons of reconstructions with a state-
of-the-art method: lenstronomy (Birrer & Amara 2018).

5.1. Creating realistic simulated lenses

In order to make the simulations as realistic as possible, we use
galaxy light profiles extracted from deep HST/ACS images taken
in the F814W filter. The images are part of the Hubble Frontier
Fields program and the specific data we used1 were taken from
the galaxy cluster Abell 2744 (Lotz et al. 2017). We selected var-
ious patches, each containing a galaxy that we use to represent a
lens or a source. The HFF images were cleaned using starlet fil-
tering with a 5-σ threshold. Source galaxies were chosen to dis-
play visually apparent substructures with several modes, which
we aim at recovering with our lens inversion methods. The lens
light profile was chosen to present a smooth monomodal distri-
bution, as expected for a typical massive early-type galaxy, such
as for example in the SLACS samples (Bolton et al. 2008).

To generate our simulations we then lens the sources follow-
ing the recipe in Sect. 2.2, using various lens mass profiles. We
then add the lens light and convolve it with a PSF created with
the Tiny Tim software (Krist et al. 2011) for the ACS/WFC and
the F814W filter.

The images shown in this section were created from images
taken with the ACS/WFC instrument on HST. Flux units are
shown in e− and pixels in the image plane are 0.05 arcseconds
in width.

5.2. Plane-wise sparsity of galaxy light profiles

The MCA-SLIT algorithm consists in projecting the mixed image
of the lens galaxy and the lensed galaxy back and forth between
the source plane and the lens plane, and thresholding the starlet
coefficients of each projection. Our hypothesis is that the starlet
thresholding favours, in each plane, the corresponding galaxy:
source galaxy in source plane and lens galaxy in lens plane. This
assumes that a lens galaxy in the lens plane is well reconstructed
with only a few starlet coefficients, while a source galaxy pro-
jected to the lens plane is not. Conversely, it implies that a source

1 The frames were recovered from the HFF site at http://www.
stsci.edu/hst/campaigns/frontier-fields/FF-Data.
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Fig. 2. Normalised non-linear approximation
(NLA; Sect. 5.2) of galaxies projected in the
source and lens planes. The red curve illus-
trates the average NLA of galaxy images that
can be seen as source or lens galaxies, the cyan
curve shows the average NLA of the same
galaxies once projected from lens to source
plane, and the green curve shows the NLA of
the same galaxies projected to lens plane.

galaxy in the source plane is sparser in the starlet domain than a
lens galaxy projected to the source plane.

To verify this hypothesis, we selected 167 images of galaxies
from cluster MACS J0717 from the HFF survey in the F814W
filter of the ACS/WFC camera of HST. We used the HFF-
DeepSpace catalogue by Shipley et al. (2018) to select galaxies
with a semi-major axis of at least five pixels and a flag at 0 in
the F814W filter to insure that the galaxies are isolated in their
stamp. We performed the starlet decomposition of these images
along with their projections to source and lens plane using three
different mass profiles (SIE, SIS and elliptical power law) with
realistic draws of the lens parameters. For each of these starlet
decompositions we set the p% smallest coefficients to zero and
reconstructed the image in pixel space. We then computed the
error on the reconstruction as a function of p. The resulting curve
is the non-linear approximation error (NLA; see Starck et al.
2015), shown in Fig. 2. The NLA can be used as a metric for
the sparsity of a galaxy profile, in the sense that a sparse galaxy
sees its NLA decreasing rapidly with p.

In Fig. 2, we see in particular that the NLA of galaxies
(in red) decreases faster than the NLA of the lensed source (in
green). This means that keeping only a small percentage of the
highest coefficients in starlets (e.g. 10%) of the decomposition
of an image Y will reconstruct the lens galaxy well, but the same
is not true for the lensed source. When comparing the NLA of
a galaxy (red curve in Fig. 2) to that of its projection to the
source plane (cyan curve in Fig. 2), we see that the NLAs of
both profiles are very similar, making it difficult to disentangle
between them. In practice, the reconstructed source images can
be contaminated with features belonging to projections of the
lens galaxy if not converged properly. One positive aspect, how-
ever, is that since lens galaxy light profiles are being very effi-
ciently reconstructed in the lens plane, the signal from a lens
galaxy in the source plane decreases very rapidly with iterations.

5.3. Testing SLIT and SLIT_MCA with simulations

In the present work, our goal is to show the potential of MCA-
based algorithms as a simultaneous source reconstruction and
source-lens deblending technique. All our tests therefore assume

that the mass density profile of the lens is known, as well as the
PSF. Unless stated otherwise, the following images were simu-
lated with white Gaussian noise with standard deviation σ. We
define the S/N of an image I with Npix pixels as:

S/N =
1

Npixσ2

∑
Npix

I2. (19)

5.3.1. Case 1: simulation with no lens light

We first reconstruct an image of a lensed galaxy with no fore-
ground light. The simulation contains Gaussian white noise with
S/N = 50. We used 50 iterations of algorithm 2. The results are
presented in Figs. 3 and 4, illustrating the quality of the recon-
struction. In Fig. 4 in particular, we show that the central region
of the source galaxy, where the flux is larger, is reconstructed
with less than 10% error. The error increases in the outer parts
of the galaxy where the flux is smaller. In this figure, the relative
error is set to zero at locations where the flux in the source is
zero, which does not account for false detection.

In this simulation, there are four times more pixels in the
source plane image than in the lens plane, that is, in the image
plane the observable is an image of 100 × 100 pixels, while the
source is reconstructed using an area of 200 × 200 pixels.

5.3.2. Case 2: simulation with both lens and source light

We then applied algorithm 3 to the simulated images of a full
lens system. In this case we recover both the convolved lens light
profile and the source light profile (Fig 5). We enforce the spar-
sity of each solution by using enough iterations of the algorithm
to perform an efficient separation. One difficulty here is in choos-
ing the numbers of iterations and sub-iterations such that both
components converge to a sparse solution. In our experiments,
Niter = Nsubiter ensures similar quality in the reconstructions of
both components.

The results show no structure in the residuals and visually
good separation between the lens and the source as well as a
good reconstruction of the source without significant leakage
between the two. However, the residuals in the first three lines of
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Fig. 3. Application of the SLIT algorithm to a simulated lensing system in the simple case where there is no light from the lensing galaxy. Left:
simulated source is shown on the top while its lensed and noisy counterpart is shown on the bottom. Both include a PSF convolution. Middle:
source recovered with the SLIT algorithm and its lensed counterpart. We note that both are still convolved with the PSF. Right: difference with the
true source (top) and the residuals in the lens plane (bottom). The original and reconstructed images are displayed with the same colour cuts. The
residuals in the bottom right panel are shown with ±5σ cuts.

Fig. 4. Residuals of the reconstruction from SLIT relative to the true
light profile of the source.

the Figure show that the source flux was slightly overestimated at
larger scales, while the lens galaxy was slightly underestimated.
The amplitude of the phenomenon reaches no more than 10σ of
the noise level given the amplitudes displayed in the last column.

5.4. Comparison with lenstronomy

We tested our source reconstruction technique on three other
simulations with various source morphologies and lens mass
profiles, including one generated with the lenstronomy
package. We compared our reconstructions of three lensed
sources with the ones computed by S. Birrer, the author of

lenstronomy. In order to avoid favouring one method over the
other, for reconstructing sources, we tried as hard as we could to
choose representations for true sources that do not correspond to
the decomposition of either code. Sources generated with SLIT
were extracted from HFF images and convolved with a Gaussian
kernel with a full width at half maximum (FWHM) of five
pixels. This produces a smooth version of the noisy HFF images
from which we then subtract the median value of the image in
order to set the sky background to zero. All remaining negative
values in the image are set to zero. The image generated with
lenstronomy uses a source from a jpeg image of NGC 1300
from NASA, ESA. The image resolution is degraded by a fac-
tor 25 and decomposed over the shapelet dictionary (Refregier
2003) using enough coefficients (11 476) to accurately recover
the morphology of the image. Despite lenstronomy relying on
shapelets to solve the source inversion problem, the number of
coefficients that it is possible to recover in the reconstruction is
much smaller than the number of coefficients used in generating
the true source. Therefore, the basis set of the reconstruction is
different from the one used in generating the true source. The
three systems tested here were made from sources with different
morphologies and different lens profiles; Table 1. In this exercise
we test our methods on simulated images that were generated
with different procedures. This comparison therefore allows us
to show how robust these techniques are to the underlying map-
ping between source and lens plane.

In order to compare the results of both methods we show the
resulting reconstructions of the runs in Figs. 6 and 7 and we use
three metrics:

– Quality of the residuals (QoR), given by the relative standard
deviation of the residuals for a model of the source, S̃ :

QoR(S̃ ) = std
(

Y − HFS̃
σ

)
· (20)
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Fig. 5. Illustration of the SLIT_MCA algorithm with simulated data. Left: simulated ground truths. From top to bottom are shown the original
un-lensed source, its lensed version convolved with the PSF, the lensing galaxy (convolved with the PSF), and the full simulated system with
noise. Middle: output of the SLIT_MCA algorithm. Right: differences between the left and middle panels. The original and reconstructed images
are displayed with the same colour cuts. The residuals in the bottom right panel are shown with cuts set to ±5σ. White dots show the positions of
pixels crossed by critical lines in the lens plane and by caustics in the source plane.

In cases of Gaussian and Poisson mixture noise, σ =√
σ2

G + f , where σG is the standard deviation of the Gaus-
sian component and f is a 2D map of the flux in the
true noiseless model for image Y . Given that definition,

the closer the value of QoR is to one, the better the
reconstruction.

– Quality of the source reconstruction relative to the true
source, S true, estimated with the source distortion ratio (SDR,
Vincent et al. 2006). The SDR is the logarithm of the inverse
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Table 1. Description of the simulated images.

Image number Source origin Source processing Factor PSF Noise Lens model

1 NASA, ESA jpeg Shapelets 5 Gaussian P+G SPEP
2 HFF fields ?G− 4 Gaussian SNR = 10 SIE
3 HFF fields ?G− 2 Gaussian SNR = 100 SIS

Notes. Symbol ?G− stands for convolution by a Gaussian kernel and subtraction of the median (see text). Column factor stands for the resolution
factor between source and lens plane. For instance, in image 1, the source has five times more pixels on the side than the image. Gaussian PSFs
were used in all three images with a FWHM of 2 pixels, P+G stands for Gaussian poisson mixture. Gaussian noise with σ = 2 was used. The
poisson noise value at pixel i is drawn from a Gaussian distribution with σ =

√
fi, fi being the flux in pixel i.

Fig. 6. Reconstructions with Lenstronomy and SLIT in image plane. Middle panels from top to bottom: simulated images 1, 2, and 3. Left panels:
corresponding residuals after reconstruction with lenstronomy, right panels: residuals obtained with SLIT.

of the error on the source light profile, weighted by true flux
of the source. As a result, the higher the SDR, the better the
reconstruction of the source. We compute the SDR as

SDR(S̃ ) = 10 log10
||S true||

||S true − S̃ ||
· (21)

– Computation time.
The two metrics of quality and source residuals were cho-

sen to provide a measure of the quality of the reconstruction in

both source and lens planes. While the SDR of the sources is the
most informative metric with regards to the quality of the recon-
struction of the source, it is also necessary to ensure that both
methods are able to reconstruct the observables similarly well,
hence the role of metric QoR. The evaluation of these metrics
for both methods are given in Table 2.

The residuals in Fig. 6, as well as the results for QoR(S̃ ) in
Table 2, show that both codes achieve similar quality of recon-
struction. While lenstronomy leaves a little bit more signal in
the residuals, in particular in cases of smooth sources generated
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Fig. 7. Reconstructions with Lenstronomy and SLIT in the source plane. Panels from the middle row show the true sources used to generate
simulated images 1, 2 and 3, respectively. First row: source reconstruction from lenstronomy. Second row: difference between the true sources
and the sources reconstructed by lenstronomy. Last row: source reconstruction from SLIT. Penultimate row: difference between true sources
and sources reconstructed with SLIT. Panels between reconstructed and true images show the difference between the two for the corresponding
technique.
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Table 2. Comparison of reconstructions of three lensed sources by SLIT and lenstronomy.

SDR QoR T (s)

Lenstronomy SLIT Lenstronomy SLIT Lenstronomy SLIT
Image 1 8.31 6.39 1.10 1.05 ∼0.1 ∼100
Image 2 9.30 13.06 1.26 1.21 ∼0.1 ∼400
Image 3 13.69 16.09 1.24 1.20 ∼0.1 ∼2000

with SLIT, on the contrary SLIT tends to create false detections
at noise level at locations where the actual signal is zero, result-
ing in a slight over-fitting. In the case of lenstronomy, over-
fitting of outer regions with no signal is prevented by the fact
that the method relies on shapelets, which are localised around
the centre of the images provided that the number of coeffi-
cients used in the reconstruction is kept small. The downside of
that strategy is that shapelets do not accurately represent com-
panion galaxies in the source such as the one on the right side
of image 3 in Fig. 7. To circumvent this problem, one needs
to use a second set of shapelets positioned at a different loca-
tion to represent a second displaced light component. This has
deliberately not been done in this comparison. From looking
at the reconstructions of image 1 and the corresponding SDRs,
it appears that lenstronomy performs slightly better at recon-
structing images generated with high resolution and detailed fea-
tures. Despite both reconstructions showing the same level of
detail, false detections in SLIT at locations where the actual sig-
nal is zero contribute to diminishing its SDR. Also, the large
number of pixels in the source compared to the number of pix-
els in the observations (25 times more pixels in the source than
in the image) makes the problem highly under-constrained. In
lenstronomy, this is overcome by computing a small number
of shapelet coefficients and displaying them on an arbitrarily fine
grid. With SLIT, we optimise for each coefficient in the starlet
dictionary, which means more pixels in the source plane equals
more unknowns as the number of pixels increases.

Regarding computational time, while lenstronomy runs in
less than a second, a typical SLIT run such as those provided
above will last between ∼100 and ∼1000 s. For a full run of
SLIT_MCA, this number is multiplied by a factor of between five
and ten. While this is a current weakness of our algorithm, we
are confident that optimised packages for starlet transforms and
linear optimisation as well as parallel computing will allow us to
lower these numbers by at least a factor of ten.

5.5. Lens-parameter optimisation

In order to assess whether our technique holds the potential to
be used in a full lens-modelling context, we test its sensitivity to
the density slope γ. In Koopmans et al. (2006, 2009), the authors
showed that real lens galaxies have, on average, a total mass den-
sity profile with a density slope γ ∼ 2, that is, isothermal. In
Fig. 1 of Koopmans et al. (2009), the authors show that the pos-
terior probability distributions of a sample of 58 strong lenses
are maximised for a density slope between 1.5 and 2.5, which
sets the limits for the values of γ investigated here.

In our analysis, we generate a lens system (shown in Fig. 9)
with a power-law mass density profile with γ = 2. The light
profiles for the lens and source galaxies were drawn from HFF
images. The PSF is a Gaussian profile with a FWHM of 2
pixels. We create 100 realisations of this system with additive
Gaussian white noise at a S/N of 100. Each realisation is then
reconstructed with SLIT_MCA, using mass models with density

slopes, γ̃, ranging from 1.5 to 2.5. The results are shown in Fig. 8.
The true and the reconstructed profiles are shown in Appendix A.
This appendix serves to give a visual impression of how sparsity
allows to discriminate between lens mass models by discarding
unphysical solutions that have a high `1 norm in Starlets.

Figure 8 shows that the actual morphologies of S and GH are
recovered very accurately (SDR ∼ 20) for γ = 2. In a real case
study, the truth for S and GH light distributions is not known, and
therefore it is impossible to use the SDR to discriminate between
lens-mass model parameters. Instead, we have to rely on quanti-
ties derived from the observations or on properties of the recon-
structed profiles. The top panel of Fig. 8 shows the likelihood
defined as:

L(γ) = exp(−||Y − HFκ(γ̃)ΦαS − ΦαGH ||
2
2), (22)

of a lens model with slope γ̃ to be the right model. Because of the
strategy we choose for SLIT_MCA, which consists in optimising
alternatively over the source and lens light profiles, the algorithm
is very likely to estimate light profile models that minimise the
residuals in the image, even in cases where the mass model does
not correspond to the truth. Hence the relative flatness, compared
to the error bars, of the likelihood profile from Fig. 8. In particu-
lar, we observe that, for γ̃ > 2.2, we achieve a likelihood as high
or higher than the likelihood at γ = 2, despite using the wrong
lens model. This is caused by the extreme steepness of the mass
density profile, which causes SLIT_MCA to model the source as
its lensed version back in source plane. With these results, one
would think SLIT_MCA unfit to be used in a full lens modelling
framework. The strength of the algorithm lies in its potential to
find the sparsest solution to a problem of lens light modelling.
Since incorrect mass models introduce artefacts in the recon-
structions of light models, their `1-norm is significantly higher
than in the case of a reconstruction with a true model where light
profiles are smooth. The middle panel of Fig. 8 shows the cumu-
lative `1-norms of αS and αGH as an argument of the likelihood.
In this case, the metric is maximised around the true value for
γ̃. Despite the sparsest solution being found for γ̃ = 2.01, while
the true value for γ sits at 2.00, this result is still in the error bars
estimated in Koopmans et al. (2009) over a sample of 58 lenses.

6. Reproducible research

In order to allow for reproducibility of these results and also to
provide a tool that can be used by the community, we provide the
python code that was used to implement the method we describe
here. We also provide the routines used to create all plots shown
in this paper as well as a readme file that should allow users
to run the method easily on their own data. The repository is
available via the github platform2. The only required libraries
to run the code are the standard numpy, matplotlib, scipy, and
pyfits libraries. All functions and routines described in this paper

2 https://github.com/herjy/SLIT
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Fig. 8. Metrics of the reconstructions
of the system in Fig. 9 as a func-
tion of mass density slope. Top-left
panel: cumulative SDR of the source
and galaxy light profile reconstruction.
Top-right panel: average of the residu-
als as exp(−||Y − HFκ(γ̃)ΦαS −ΦαGH ||

2
2)

over 100 noise realisations. Bottom pan-
els: cumulative `1-norm of αS and αGH

as exp(−(λS ||αS ||1 + λG ||αGH ||1)). The
error bars show the standard deviation
of these metrics over 100 noise realisa-
tions. The blue line shows the true value
of γ.

were implemented by the authors. Table 3 lists the products we
make available in our public repository.

7. Conclusion

We have developed a fully linear framework to separate the lens
and source light profiles in strong lensing systems. We also are
able to reconstruct the source shape as it was prior to the lensing

effect at fixed lens mass model. As the problem is linear we were
able to apply sparsity-based optimisation techniques to solve it,
leading to two algorithms.

The first algorithm, SLIT, decomposes the source plane on
the basis of un-decimated wavelets (starlets). This allows us to
represent the source in a non-analytical way, hence providing a
sufficiently large number of degrees of freedom to capture small
structures in the data. Using a sparse regularisation allows us
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Table 3. List of products made available in this paper in the spirit of reproducible research.

Product name Type Description

Software products:
SLIT python package Includes SLIT implementation and visualisation tools.
Lens.py python code Toolbox for lensing.
Solve.py python code Python implementation of algorithm 2 and algorithm 3 and related tools.
tools.py python code Code for various functions used in the minimisation process.

Such as the starlet transform or the FISTA iteration.
Used to compute Fig. 1.

Routines:
Test_SLIT.py code (python) Routines to reproduce Fig. 3.
Test_SLIT_MCA.py code (python) Routines to reproduce Fig. 5.
Quality.py code (python) Routines to reproduce Figs. 6, 7 and Table 2.
Test_sparsity.py code (python) Routines to reproduce Fig. 2.
Results_slope_MCA.py code (python) Routines to reproduce Figs. 9, 8 and A.1.

Notes. All above material is available at the following url: https://github.com/herjy/SLIT.

Fig. 9. Light profile of a simulated lens system (lens and lensed source
light profiles) generated with a power-law mass profile with γ = 2.

to reduce the effect of noise and artefacts on the reconstruction.
SLIT applies to lensed systems that have a fixed mass profile and
where the lens light has been removed.

The second algorithm, SLIT_MCA, also applies in the case of
a fixed mass model but is able to deblend the lens light from the
source as it reconstructs it in the source plane and deconvolves
it from the instrumental PSF. The separation of lens and source
light profiles in SLIT_MCA relies on the principle of morpholog-
ical component analysis, but uses the distortion introduced by
lensing itself as a way of discriminating between lens and source
features. As is the case for SLIT, SLIT_MCA does not use any
analytical form for either the source or the lens representation.
Both algorithms account for the instrumental PSF.

We tested our algorithms with simulated images, showing
that sources can be reconstructed while separating lens and
source light profiles. We identify several advantages of our
approach:

– The lens and source light profiles are pixelated numerical
profiles, allowing a large number of degrees of freedom in
their reconstruction.

– The code implementing the algorithms is fully automated
due to a careful automated computation of the regularisation
parameter. It does not require any prior or assumption about
the light profiles of the source or the lens.

– The performances of the algorithms are robust against pixel
size in the sense that arbitrarily small pixel sizes can be used
without leading to noise amplification or artefacts. The pixel
size of both the source and lens can be an order of magnitude
smaller than the PSF without negative impact on the results.
On the contrary, adopting very small pixel sizes allows for
detailed reconstruction of the source.

– The python code is public.
Furthermore, the linear framework of the algorithms presented
here allows for the developement of a lens modelling technique
based on non-negative matrix factorisation (NMF, Lee & Seung
1999; Pentti & Unto 1994) for the estimate of Fκ. This tech-
nique could allow us to solve Eq. (7) in Fκ, G, and S simul-
taneously. Knowledge of Fκ would in turn allow us to recover
free-form solutions for the density mass profile κ. We showed
in Fig. 8 how our strategy favoured the reconstruction of the
sparsest solution, hinting at the possibility to be able to find a
model for Fκ that favours the sparsest set of lens and source
profiles. Because this problem introduces another degree of
complexity due to the number of unknowns and the increas-
ing degeneracies of the solutions, we delay this study to a later
publication.

The main limitation of the algorithm at this time is its very
high computational cost, which scales to dozens of minutes if not
an hour when estimating the light profiles of very large sources
with SLIT_MCA. Although this renders the method inefficient as
a possible minimiser in a Monte-Carlo Markov Chain sampling
strategy, we are confident that upcoming optimised packages
for linear optimisation will increase the speed of the algorithm.
Also, the motivation behind the development of this technique is
to be able to estimate free-form lens-mass models from NMF for
instance, which requires fewer evaluations of SLIT_MCA.

To our knowledge, this is the first time that an inverse prob-
lem has been used to perform component separation inside a
blind source reconstruction problem. In this sense, the present
work may extend beyond astrophysics and address a more
general class of deblending and inversion problems.
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Appendix A: Reconstructions for lens mass model
optimisation

In this appendix, we show the average reconstructed lens and
source light profiles as well as the corresponding truth profiles
for reconstructions of a lens system with different slopes for
a power law mass density profile. The profiles are shown in
Fig. A.1. The light profile of lens and source galaxies recon-
structed with incorrect mass models show features and modes

that are poorly represented by starlets and that visually do not
correspond to the shape of the galaxy light profile. This is partic-
ularly visible in the most extreme cases: for γ = 2.5, the steep-
ness of the slope leads to a mass model localised at the centre
of the image, such that the reconstructed source appears as a
lensed galaxy; for γ = 1.5 and γ = 1.8, the light profile of the
source is scattered across the source plane and the lens light pro-
file contains most of the signal from both source and galaxy light
profiles.
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Fig. A.1. Reconstructions of lens and source light profiles for various values of mass density slope of a lens generated with a mass density slope
of 2. The first two panels show the true source (left-hand side) and lens (right-hand side) light profiles used to generate the simulated images. The
other pairs of panels from left to right and from top to bottom show the source and lens reconstructions for increasing values of γ̃.
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Fig. A.1. continued.
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