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ABSTRACT

We estimate the velocity field in a large set of N-body simulations including massive neutrino particles, and measure the auto-power
spectrum of the velocity divergence field as well as the cross-power spectrum between the cold dark matter density and the velocity
divergence. We perform these measurements at four different redshifts and within four different cosmological scenarios, covering a
wide range in neutrino masses. We find that the nonlinear correction to the velocity power spectra largely depends on the degree of
nonlinear evolution with no specific dependence on the value of neutrino mass. We provide a fitting formula based on the value of
the rms of the matter fluctuations in spheres of 8 h−1 Mpc, describing the nonlinear corrections with 3% accuracy on scales below
k = 0.7 h Mpc−1.

Key words. large-scale structure of Universe – dark matter

1. Introduction

The analysis of the large-scale structure of the universe provides
crucial information on the evolution of the background matter
density and its perturbations (see, e.g., Bernardeau et al. 2002;
Bassett et al. 2010; Weinberg et al. 2013). In particular, analy-
ses of cosmological probes sensitive to different cosmic epochs
could lead to an explanation of the mysterious late-time acceler-
ation of cosmic expansion (e.g., Amendola et al. 2018). At the
same time, large-scale structure is sensitive to the details of the
standard model of particle physics, providing upper bounds on
the neutrino mass scale (see, e.g., Lesgourgues & Pastor 2006).

Measured redshifts, which are used to estimate galaxy dis-
tances, are affected by galaxy peculiar velocities generated by
the growth of cosmological matter perturbations. Their line-of-
sight component combines with the cosmological expansion,
systematically modifying the derived galaxy distances and gen-
erating what are known as redshift space distortions (RSD). This
effect turns the amplitude and isotropy of redshift-space cluster-
ing statistics into a sensitive probe of the linear growth rate of
structure f = d ln D/d ln a (Kaiser 1987).

Combining measurements of the expansion history H(z) and
the growth rate of structure f can evidence deviations from
the standard theory of gravity, that is, General Relativity. This
(Guzzo et al. 2008) has led to renewed interest in RSD over
the past decade (see e.g., Sánchez et al. 2017; Pezzotta et al.
2017 for the most recent analyses and a summary of previous
results).

Extracting the linear growth rate from RSD measurements
of biased, nonlinear tracers as galaxies however requires an
accurate modeling of redshift-space galaxy clustering. Exten-
sive work over the past decade has addressed this in the con-
text of cosmological perturbation theory, both in the Eulerian
and Lagrangian formulations, providing linear and nonlinear pre-
dictions for the redshift-space galaxy power spectrum (see, e.g.,
Kaiser 1987; Scoccimarro 2004; Matsubara 2008a,b; Taruya et al.
2009, 2010, 2013; Reid & White 2011; Sato & Matsubara 2011;
Seljak & McDonald 2011; Valageas 2011; Zhang et al. 2013;
Zheng et al. 2013; Senatore & Zaldarriaga 2014; Uhlemann
et al. 2015; Okumura et al. 2015; Perko et al. 2016; Bose &
Koyama 2016; Bianchi et al. 2016; Vlah et al. 2016; Hand et al.
2017; Hashimoto et al. 2017; Fonseca de la Bella et al. 2017).
Upadhye et al. (2016) in particular investigate RSD, taking into
account massive neutrinos and dark energy.

In the formulation of Scoccimarro (2004), and several that
followed, the large-scale effect of RSD is described in terms of
two main ingredients: the auto-power spectrum of the velocity
divergence field Pθθ, and the cross-spectrum between the veloc-
ity divergence and the matter density contrast Pδθ. Although,
perturbation theory appears to be a powerful tool to predict
these quantities in the quasi-linear regime, it presents severe
limitations when extended to smaller scales. In fact, RSD are
characterised by a peculiar coupling of large- and small-scale
clustering that represents a severe challenge to perturbative
methods. Several assumptions usually made in the perturbative
treatment, such as the irrotational nature of the velocity field,
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particularly relevant in the RSD modeling, are clearly not valid
on small scales.

An insight into the nonlinear evolution of the velocity field
is offered by numerical simulations, the standard tool for these
kind of investigations. However, while extensive literature is
dedicated to the description of the small-scale power spectrum
and the characterisation of virialized structures as dark matter
halos, the estimation of the velocity field in N-body simulations
presents peculiar challenges. This is due to the challenging esti-
mation of the velocity field in low-density regions, resulting in a
relatively limited number of studies on this specific topic (see,
e.g., Bernardeau & van de Weygaert 1996; Bernardeau et al.
1997a; Pueblas & Scoccimarro 2009; Jennings et al. 2011, 2015;
Koda et al. 2014; Zheng et al. 2015; Zhang et al. 2015; Yu et al.
2015; Hahn et al. 2015).

In particular, Jennings (2012), updating the previous results
of Jennings et al. (2011), provides a fitting formula for the non-
linear auto- and cross-power spectra of the velocity divergence,
Pθθ and Pδθ, calibrated using cosmological N-body simulations,
in terms of the nonlinear matter power spectrum Pδδ. Through a
four-parameter fit, they reach a 2% accuracy on Pθθ for z = 0 and
on scales k < 0.65 h Mpc−1; the fit is less accurate for Pδθ, and at
higher redshifts. A similar but simpler fit for Pδθ, again as a func-
tion of Pδδ is proposed by Zheng et al. (2013). It is expected to be
2% accurate for all scales (and redshift) where the adimensional
matter power spectrum ∆δδ(k) ≡ 4πk3Pδδ(k) < 1. An alterna-
tive fit of the relation of Pθθ and Pθδ with Pδδ is represented by
the simple exponential damping proposed instead by Hahn et al.
(2015), which reaches a 5% accuracy for k < 1 h Mpc−1.

Any accurate modeling of galaxy clustering aiming at per-
cent precision on the recovered cosmological parameters should
also account for a nonzero neutrino mass. There are two main
reasons for this. On one side, cosmological observations cur-
rently provide the best upper limits on the sum of neutrino
masses (Planck Collaboration XIII 2016; Palanque-Delabrouille
et al. 2015) and proper modeling is therefore required to extract
the most unbiased estimates. On the other hand, at these lev-
els of precision, neglecting the presence of this sub-dominant
component would potentially add a comparable systematic error
on any constraint derived from galaxy-clustering data (see e.g.,
Baldi et al. 2014). These are the motivations behind the signif-
icant effort spent over the past few years to model the effect of
neutrino masses on large-scale structure observables, in particu-
lar using numerical simulations (see, e.g., Ali-Haïmoud & Bird
2013; Villaescusa-Navarro et al. 2014, 2018; Castorina et al.
2015; Carbone et al. 2016; Inman et al. 2015; Emberson et al.
2017; Zennaro et al. 2017; Liu et al. 2018).

In this paper we use the Dark Energy and Massive Neutrinos
Universe (DEMNUni) set of N-body simulations (Carbone et al.
2016) to model the velocity power spectra (Pδθ and Pθθ) both
in a standard ΛCDM scenario and including a massive neutrino
component. The DEMNUni runs represent some of best simula-
tions in massive neutrino cosmologies, both in terms of volume
and mass resolution (Castorina et al. 2015). We propose an accu-
rate fitting formula involving a minimal number of free param-
eters, which we calibrate against simulations, showing that the
main dependence on cosmology can be encapsulated in a depen-
dence on the current rms clustering amplitude σ8 of the cold
matter, that is, CDM and baryons. We focus on this component,
as opposed to the total matter including neutrinos, as this appears
to provide the simplest description of halo abundance and bias
(Castorina et al. 2014).

In Sect. 2 we present our set of N-body simulations while
in Sect. 3 we describe the method used to estimate the cold

dark matter velocity field. In Sect. 4 we discuss previous results
obtained in past literature and compare them to our results, and
in Sect. 5 we summarise our findings in.

2. Simulations

The DEMNUni simulations are a set of N-body cold dark matter
simulations produced with the aim of testing multiple cosmolog-
ical probes in the presence of massive neutrinos and dark-energy
scenarios beyond the standard ΛCDM. They represent a reliable
tool for exploring the impact of neutrinos on a wide range of
dynamical scales, and have been extended to scenarios including
a dynamical dark-energy background, with different equations
of state parameters (w0, wa), in order to study their degeneracy
with the total neutrino mass at the nonlinear level. The technical
implementation and detailed features of the simulations are pre-
sented in the description paper by Carbone et al. (2016) and the
analysis of cold dark matter clustering by Castorina et al. (2015).

In this work we exploit the first set of simulations,
DEMNUni-I, describing several flat cosmological models char-
acterised by various values of the total neutrino mass,

∑
mν =

0, 0.17, 0.3, 0.53 eV, while keeping the total matter density
parameter fixed at Ωm = 0.32. This implies that the cold dark
matter relative density Ωcdm changes across the four simula-
tions in order to keep the sum Ωcdm + Ων = Ωm constant.
The neutrino density is related to the total neutrino mass as
Ων =

∑
mν/93.14/h2 eV (Lesgourgues & Pastor 2006). Fur-

ther properties shared by the four cosmologies are the density
parameter associated to the cosmological constant ΩΛ = 0.68
and to the baryon density Ωb = 0.05, the Hubble constant
H0 = 67 km s−1Mpc−1, the primordial spectral index ns = 0.96
and, most importantly, the scalar amplitude of the matter power
spectrum As = 2.1265 × 109. As a consequence, while in the
large-scale limit the power spectra of cold dark matter tend to
the same value in all cosmological models, the value of the rms
of cold dark matter perturbations on spheres of radius 8 h−1 Mpc
depends on

∑
mν. The latter is denoted as σ8,c, to distinguish it

from the rms of total matter perturbations, σ8,m.
The simulations were run on the FERMI supercomputer at

CINECA1 (5 × 106 CPU hours) using the tree particle hydrody-
namical code GADGET-3 modified to include massive neutrino
particles by Viel et al. (2010). The latter regulates the assembly
of Ncdm = 20483 cold dark matter particles and Nν = 20483

neutrino particles (when present) within a cubic periodic uni-
verse of comoving size L = 2000 h−1Mpc. The mass resolu-
tion of cold dark matter and neutrinos varies slightly over the
four simulations (values are listed in Table 1), but in all cases
it is large enough as to properly describe clustering in the non-
linear regime within the systematic error induced by neglecting
baryonic effects. Initial conditions were set at redshift zin = 99
using the Zel’dovich (1970) approximation and were evolved to
z = 0, with a softening length ε = 20 h−1 kpc. During the runs,
62 snapshots were saved for each simulation, with equal loga-
rithmic interval in the scale factor.

3. Measurements of the density and velocity
spectra

The estimation of the velocity field in cosmological N-body
simulations has been investigated by Bernardeau & van de
Weygaert (1996); Bernardeau et al. (1997b); van de Weygaert
et al. (1998); Pueblas & Scoccimarro (2009), or more recently

1 http://www.cineca.it/
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Table 1. Parameters of the four νΛCDM simulations that change among
the different realisations.

∑
mν [eV] Ωcdm σ8,mm σ8,cc

mc
p

1010

[
M�
h

]
mν

p

109

[
M�
h

]
0.00 0.2700 0.846 0.846 8.27 –
0.17 0.2659 0.803 0.813 8.16 1.05
0.30 0.2628 0.770 0.786 8.08 1.85
0.53 0.2573 0.717 0.740 7.94 2.28

with the Delaunay Tessellation Field Estimator by Romano-
Díaz & van de Weygaert (2007) and the Kriging method by
Yu et al. (2015). Here we adopt a method close to the one
proposed by Pueblas & Scoccimarro (2009), which imple-
ments the Delaunay tessellation to reconstruct the velocity
field from test particles of cold dark matter. We apply the
count-in-cell technique to average both the velocity and den-
sity fields within spheres of radius R = 3.9 h−1 Mpc. Given
the large number of particles in the simulation, we perform
the Delaunay tessellation only locally around each cell, rather
than applying it to the whole set of cold dark matter particles.
We estimate the velocity field on a grid, dividing the simula-
tion into 10243 cubes of size 1.95 h−1 Mpc, which are used to
index the particle positions.

In order to estimate the velocity within a given spheri-
cal cell, we start by considering the particles belonging to the
eight sub-cubes forming a cubical cell that contains the spher-
ical cell itself. We then count how many particles are con-
tained within the sphere; if it is greater than 200 we choose to
run the Delaunay tessellation over the cell particles inside the
sphere, otherwise we run the Delaunay tesselation inside the
cubical cell. In any case we ensure that the total volume cov-
ered by the Voronoi tetrahedra inside the spherical cell includes
at least 93% of the cell volume, otherwise we automatically
extend the radius in which we are keeping the particles to per-
form the Delaunay tesselation by a factor 3/2. We note that in
practice the spherical cell size in unchanged. Only the effec-
tive volume of the Delaunay tesselation is varied in order to
make sure that the volume fraction of tetrahedra within the
spherical cell is representative at the 7% level of the volume of
the cell.

The difficulty arising from the estimation of the velocity
field convolved with our spherical (top-hat) window function is
related to the treatment of the tetrahedra which are lying on the
boundary of each spherical cell. Our method consists in weight-
ing the average velocity of a tetrahedron by its volume if it
lies entirely within the spherical cell. Instead, for tetrahedra that
extend outside of the cell boundary, we generate a set of 100 uni-
formly distributed random points inside the considered tetrahe-
dron and assign them a velocity, linearly interpolated from those
at each node of the tetrahedron. The same random points are
also used to estimate the volume fraction of the tetrahedron lying
inside the spherical cell. In this way, a velocity can be assigned to
that specific sector of the spherical cell by averaging the veloc-
ities of the included random points. The result is then weighted
by the corresponding volume fraction. This process is described
in more detail in the following paragraphs and illustrated in
Fig. 1.

Each Voronoi tetrahedron can be described by a set of
four points x1, x2, x3 and x4 where xi = (xi, yi, zi); they are
therefore defined by the transformation matrix (see Pueblas &
Scoccimarro 2009)

Fig. 1. Tetrahedra in a spherical cell: the empty circles represent the
3D distribution of CDM particles in a cubic region of size 8 h−1 Mpc
projected in 2D. They represent the input set of points on which we per-
form the Delaunay tessellation. The gray circle represents the spherical
cell. For clarity, we only show, in dashed light blue lines, the tetrahe-
dra which have their four vertices included in a slice of 1.5 h−1 Mpc
(in the z-direction) around the center of the cell. As an example we
highlight one tetrahedron overlapping the boundary of the spherical cell
(dark blue in the bottom left-hand corner). The red and green filled cir-
cles represent the randomly distributed points over the tetrahedron, the
green ones represent those points lying inside the spherical cell and that
are then used to assign a velocity to the corresponding region of the
tetrahedron. This is repeated for all tetrahedrons of the tessellation that
overlap the boundary of the spherical cell.

Ψ =

 ∆x2 ∆x3 ∆x4
∆y2 ∆y3 ∆y4
∆z2 ∆z3 ∆z4

 , (1)

where ∆xi = xi − x1. As a result, the volume of the j-th tetra-
hedron can be computed as w j = |Ψ|/6. The matrix Ψ can also
be seen as the matrix transforming the basis of the vectors com-
posed of ∆x2, ∆x3 and ∆x4 into the cartesian basis. If the position
s is taken as the tetrahedron basis, then the corresponding coor-
dinates in the cartesian basis are obtained as x = x1 + Ψs. The
same can be applied in order to interpolate linearly the velocity
of a point located in s,

v(x) = v1 + Φs, (2)

where

Φ =

 ∆vx,2 ∆vx,3 ∆vx,4
∆vy,2 ∆vy,3 ∆vy,4
∆vz,2 ∆vz,3 ∆vz,4

 . (3)

For tetrahedra entirely contained inside the sphere one can
show that the volume average of the interpolated velocity field
inside the tetrahedron is the arithmetic mean of the four veloc-
ities taken at each vertex; V j = 1

4
∑4

i=1 ui. As mentioned above,
for tetrahedra crossing the cell boundary, we randomly popu-
late their volume with a uniform distribution of N = 100 points
(see Fig. 1) and we evaluate their corresponding velocities using
Eq. (2). The volume-averaged velocity assigned to the tetrahe-
dron can be computed as

A109, page 3 of 8
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Fig. 2. Relation between the velocity cross (left panel) and auto (right panel) spectra with the density auto-spectrum for the different redshifts and
cosmologies considered in this work. The shade of blue represents different values of the total neutrino mass, darker when the neutrino mass is
increasing. The various redshifts (z = 0, 0.5, 1, 1.5) are respectively represented with dot-dashed, long dashed, short dashed, and solid lines. The
black dotted line represents for each redshift the linear mapping (PLin

δθ = f PLin
δδ and Pδθ = f 2PLin

δδ taken in the ΛCDM limit, i.e., at small k).

V j =
1

Nin

Nin∑
i=1

v(xi), (4)

where Nin is the number of random points belonging to the
spherical cell and the fraction of its volume inside the spheri-
cal cell can be estimated as w j = Nin

N |Ψ|/6. Finally, the volume-
averaged velocity assigned to the spherical cell is obtained with
the sum

V =

∑Nt
j=1 w jV j∑Nt

j=1 w j
, (5)

where Nt is the total number of tetrahedra with at least one ver-
tex belonging to the spherical cell. We note that we checked
explicitly that in the most clustered catalogue, that is, the one
corresponding to the ΛCDM cosmology at z = 0, the number of
objects in a spherical cell is always greater than 8, thus avoiding
empty cells.

Once the velocity and density grids of 5123 regularly spaced
sampling points have been built, we can Fourier transform them
by means of a Fast Fourier Transform algorithm. Since a sim-
ple count-in-cell density interpolation can be severely affected
by aliasing when transforming to Fourier space, we employ
an interlacing technique to reduce this spurious contribution
(Hockney & Eastwood 1988; Sefusatti et al. 2016). Regarding
the shot noise correction, we neglect it because the mean number
of particles in each cell is N̄ = 268 which corresponds to a 3%
contribution to the variance at z = 1.5 and for the Mν = 0.53eV
(snapshot having the lowest variance). We then compute the
divergence of the velocity field θk by simply combining the three
velocity grids as θk = i(kxvx +kyvy +kzvz). Then the density power
spectrum Pδδ, the cross power spectrum Pδθ, and the divergence
of the velocity power spectrum Pθθ are estimated by averag-
ing over spherical shells in k-space. We note that we also aver-
age the modes, and assign the value of the angular average of
the spectra to the k-space position of the corresponding mode
average.

4. Results

Our goal is to provide accurate prescriptions to estimate the Pθθ

and Pδθ auto- and cross-spectra in the regime where the perturba-
tive approach fails in describing the velocity field and its power
spectra (Crocce et al. 2012).

The fitting functions for the velocity power spectra adopted
in Jennings et al. (2011) and Jennings (2012) describe the non-
linear velocity spectra Pθθ and Pδθ in terms of the nonlinear
matter power spectrum Pδδ assuming a cosmology-independent
relation between these quantities at redshift zero and introduc-
ing a scaling relation to extend the results at higher redshift.
However, the relations between Pθθ and Pδδ and between Pθδ

and Pδδ are not universal and depend strongly, in the first place,
on the amplitude of linear fluctuations, as measured for example
by σ8. This is particularly evident when comparing our set of
massive neutrino cosmologies where the neutrino mass directly
affects this quantity. In Fig. 2, the velocity spectra (auto and
cross) are plotted as a function of the corresponding matter den-
sity power spectrum. These relations, far from being universal,
clearly depend as much on redshift as they depend on the sum
of neutrino masses, via the amplitude suppression induced by
the latter. The cosmology-independence of the fit proposed by
Jennings et al. (2011) is perhaps justified by the fact that the dif-
ferent cosmological models considered in that paper share the
same amplitude normalisation in terms of the σ8 parameter.

We chose a different approach to fit the velocity power spec-
tra measured in the DEMNUni-I simulations. In our set of sim-
ulations, all cosmological models considered present the same
amplitude for the total-matter power spectrum in the large-scale
limit, matching current CMB constraints (Planck Collaboration
XIII 2016). However, since the presence of massive neutrinos
suppresses the growth of fluctuations below the free-streaming
scale, we obtain quite different values for σ8(z = 0) as a func-
tion of neutrino mass (see Table 1). We are thus able to test a
wider range of amplitudes and shapes of the linear power spec-
trum, since neutrinos affect both of them.
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Fig. 3. Ratio between nonlinear (measured) PNL and the linear (predicted) PLin power spectra in the ΛCDM case (
∑

mν = 0) and for the three
neutrino masses (

∑
mν = {0.17, 0.3, 0.53} eV). The density–density, density–velocity divergence, and velocity divergence–velocity divergence

spectra are represented by blue solid, red short dashed, and green long dashed lines, respectively. Each row shows the redshift evolution of these
ratios (from top to bottom panels: z = 0, 0.5, 1. and 1.5.)

Figure 3 shows the ratio of the measured power spectrum of
the density, velocity, and cross to their respective linear predic-
tions. Across all cosmological models and redshifts considered,
we notice the usual increase in small-scale power for the density
power spectrum Pδδ as well as the slower nonlinear growth for
the velocity perturbations leading to a nonlinear suppression of
Pδθ and particularly of Pθθ (see e.g., Bernardeau et al. 2002).

Following Hahn et al. (2015), we therefore choose to model
the nonlinear corrections to the velocity spectra in terms of
damping functions, in order to account for the suppression of
power characterising the velocity divergence field. In addition,
the level of such suppression will be, as observed, dependent
on cosmology. In our approach, we do not assume a univer-

sal mapping independently of the considered cosmology. The
main motivation supporting this is the empirical evidence that
the velocity spectra are damped differently for different cosmo-
logical backgrounds.

In this section we explain our general fitting formulae and
show how the chosen parameters depend on the value of the
overall matter clustering. For simplicity, we first employ fitting
functions featuring one single free parameter that accounts for
the damping of the linear prediction in the nonlinear regime (see
Fig. 3). As first approximation, one can model the velocity spec-
tra using one single damping function such as

Pδθ(k) =
{
(PHF

δδ (k)PLin
θθ (k)

} 1
2 e−

k
kδ (6)

A109, page 5 of 8
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Fig. 4. Fractional deviation of the measured velocity spectra from our best-fitting models. Different rows mark different redshifts as specified
on the left of the panels. The first and third columns show the fit of Pδθ using Eq. (6), and the fit of Pθθ using Eq. (7). The second and fourth
columns show results corresponding to Eqs. (10) and (11). The black dashed line marks the 0, while the light/dark gray bands represent the 5%/3%
deviations from the measurements. Finally, the red shaded color shows the results for various neutrino masses (darker when increasing the neutrino
mass) using the fitted shape parameters while the blue shaded lines show the results when using the fitted dependance of the shape parameters with
respect to σ8,m (see Eq. (12)).

and

Pθθ(k) = PLin
θθ (k)e−

k
kθ , (7)

where the (only) two free parameters are the typical damp-
ing scales kδ and kθ. We note that PHF

δδ (k) refers to the nonlin-
ear density-density CDM power spectrum computed from the
Halofit calibration of Takahashi et al. (2012) while PLin

θθ (k) refers
to the linear auto-spectrum of the velocity divergence which can
be computed as PLin

θθ (k) = f 2(k)PLin
δδ (k).

The fit for the velocity power spectra is carried out using
a least-squares approach, that is, we compute the likelihood of
the parameters given the measured spectra with the χ2 function
defined as

χ2 =

N∑
i=1

[
PNL

xy (ki) − Pxy(ki)
]2

σ2
i

, (8)

where N is the total number of wavenumbers considered in the
fit, PNL

xy (ki) is the measured auto- or cross-spectrum and σ2
i is

its variance at the i−th wave mode ki. We limit the fitting range
to kmax = 0.6 h Mpc−1, and since we have only one realisation
for each cosmology we neglect the shot-noise and the nonGaus-
sian contributions to the covariance between wave modes. Under
these assumptions the error can be approximated as

σi =
kF
√

2π

Pxy(ki)
ki
· (9)

We note that our choice of using a fixed power α = 1 for
the exponent, rather than having more degrees of freedom (i.e.,
exp(−(k/k∗)α)), comes from a further test we carried out, which
shows that the best-fit value of α is always close to 1 if we treat

it as a free parameter (see also Hahn et al. 2015). We note that
this is at odds with what one would expect when considering
the propagator in renormalized perturbation theory (Bernardeau
et al. 2008, 2012; Crocce et al. 2012), in which case α would be
closer to 2.

The results of the fit are shown in the first and third columns
of Fig. 4. One can see that the simple modeling provided by
Eq. (6) is able to reproduce the cross power spectrum Pδθ in
the nonlinear regime with an accuracy better than 5% up to
k = 0.65 h Mpc−1. The fit is not working as well for the auto
spectrum Pθθ (third panel) especially at low redshift. The inac-
curacy in this case can reach 7–8% in between k = 0.1 h Mpc−1

and k = 0.3 h Mpc−1. Nonetheless, this approximation could
be considered sufficient for analyses that do not require preci-
sion around the BAO scale of better than few percent. For more
general applications, we improve the accuracy of the model by
increasing the degrees of freedom of the fitting functions.

In the case of the cross-power spectrum, it is sufficient to
add only one parameter b, which we fit between k = 0.55 and
k = 0.7 h Mpc−1,

Pδθ(k) =
{
(PHF

δδ (k)PLin
θθ (k)

} 1
2 e−

k
kδ
−bk6

· (10)

For the auto-spectrum Pθθ, it turns out that two extra free param-
eters are required for a proper gain in accuracy. We therefore
adopt a polynomial fitting for the damping function, as

Pθθ(k) = PLin
θθ (k)e−k(a1+a2k+a3k2), (11)

involving three parameters, which we fit in the range 0.01 < k <
0.7 h Mpc−1. The performances of the new fitting functions are
shown in the second and fourth columns of Fig. 4. In this case,
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Fig. 5. Top panel: dependence of the fitting parameters kδ, b, kθ, a1, a2
and a3 on the total matter clustering amplitude σ8,m at each redshift, in
the corresponding simulation (symbols). Lines are showing the fit of the
dependance. Bottom panel: residual between the fitted σ8,m dependance
and the measured one.

the measurements of Pθθ are reproduced with a maximum sys-
tematic error of 3% on all scales below k = 0.7 h Mpc−1, and
for all redshifts and neutrino masses considered. We therefore
use a total of only five free parameters kδ, b, a1, a2 and a3 to
mimic, with a 3% level accuracy at k < 0.7 h Mpc−1, the nonlin-
ear effects on both the auto- and cross-spectra Pθθ and Pδθ.

Let us now focus on the sensitivity of these parameters to
cosmology and specifically to the overall amplitude of the matter
power spectrum. From our set of four simulations at four differ-
ent redshifts we are able to span a large range of possible values
of σ8, which we use as a proxy for the amount of nonlineari-
ties. Regarding neutrino cosmologies it is necessary to choose
whether we use the σ8 defined for cold dark matter only, σ8,c ,
or the one defined for the total matter, σ8,m. It has been shown
(Castorina et al. 2015) that regarding the bias or the nonlinear
effects on the density power spectrum Pδδ, what matters is the
amplitude of the cold dark matter clustering and not the total
one. We have analyzed the dependency of the fitted parameters
with respect to both amplitudes σ8,c and σ8,m and we found that
one should use the total matter σ8,m parameter in order to assess
the correct values of kδ, b, a1, a2 and a3; at least, this choice is
the one that lowers the residual dependency with respect to the
neutrino mass. Figure 5 shows that the cosmological dependance
of the fitting parameters can be mostly encapsulated into theσ8,m
parameter evaluated at the corresponding redshift. The most rel-
evant example is the good match at redshift 1.5 of the ΛCDM
simulation with the Mν = 0.53eV simulation at redshift 1; these
simulations share almost the same value of the total matter σ8,m,
while differing significantly in the power spectrum shape. For the
two cases, we obtain the same values for the fitted parameters kδ
and kθ.

On the contrary, when using the cold dark matter σ8,c
parameter (see Table 1) the residuals are increasing because of
spurious neutrino mass dependence when going from one cos-
mology to another. This effect can be explained by the fact
that if massive neutrinos have a weak effect on the dark matter

clustering in the nonlinear regime, they add, instead, a relevant
contribution to the velocity field which is felt by dark matter
particles. As a result, it seems that the preferred dependence on
the total matter σ8,m comes from the fact that nonlinearities in
the velocity field are generated by the whole matter distribution
(cold dark matter plus neutrinos). This confirms the need for run-
ning cosmological simulations including massive neutrino parti-
cles in order to generate a velocity field correctly treated in the
nonlinear regime, especially for what concerns RSD analyses.

The final step of our fitting process is to fit the dependence
of the shape parameters kδ, b, a1, a2, a3 and kθ with respect to
the total matter σ8,m. To this purpose we limit ourselves to linear
or quadratic fitting depending on the parameters, finding

a1 = −0.817 + 3.198σ8,m ,

a2 = 0.877 − 4.191σ8,m ,

a3 = −1.199 + 4.629σ8,m ,

1/kδ = −0.017 + 1.496σ2
8,m

b = 0.091 + 0.702σ2
8,m

1/kθ = −0.048 + 1.917σ2
8,m , (12)

where σ8,m refers to the linear rms of total matter fluctuations
computed at the required redshift. Therefore, the cross- and auto-
spectra Pδθ and Pθθ can be computed as follows: compute the
linear and nonlinear cold dark matter power spectrum at the
required redshift, evaluate the linear σ8,m as

σ2
8,m =

∫ +∞

0
4πk3Pm(k)Ŵ2(kR)d ln k, (13)

where R = 8h−1Mpc, Ŵ(x) ≡ 3/x3 [sin x − x cos x] and Pm is
the linear total matter power spectrum. Finally, compute the kδ,
b, kθ, a1, a2 and a3 parameters from Eq. (12) and the velocity
spectra from Eqs. (10) and (11) (or (6) and (7) depending on the
required accuracy). In order to summarize the overall accuracy
of our fitting formula, we show in Fig. 4 the comparison between
the intrinsic accuracy of the fitting formula (for the shape) in red
shade and the final accuracy obtained assuming the additional
fitted dependency on σ8,m in blue shade. One can see that the
accuracy below k = 0.8 h Mpc−1 is about 3% for the cross-power
spectrum while the auto-power spectrum reaches a similar accu-
racy below k = 0.7 h Mpc−1.

5. Summary

We set up an original algorithm in order to estimate the veloc-
ity field in cosmological N-body simulations. From those mea-
surements performed on sixteen particle distributions spanning
four different cosmological models and four redshifts, that is, a
series of 16 snapshots, we have shown that the mapping from
the nonlinear CDM density power spectrum Pδδ to the nonlinear
velocity spectra Pδθ and Pθθ cannot be considered as universal
but shows a clear dependence on the amplitude of dark matter
clustering (see Fig. 2).

Adopting a very simple modeling involving only two free
parameters, we managed to reproduce our measurements with
a precision of 3% below k = 0.6 h Mpc−1 for the cross-power
spectrum Pδθ. However, we reached only a 5% accuracy at red-
shifts higher than or equal to z = 0.5 and for k lower than
0.7 h Mpc−1. We then present an improved version of the fitting
function which involves a total of five free parameters (two for
the cross-spectrum and three for the auto-spectrum) and allows
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us to obtain an overall accuracy of 3% for wave modes lower
than 0.7 h Mpc−1.

Finally, we we showed evidence of the dependence of the
shape parameters of the proposed fitting functions on the total
matter rms fluctuations in spheres of radius 8 h−1 Mpc and pro-
posed simple fitting forms for the shape parameters with respect
to the σ8,m parameter evaluated at the considered redshift. This
preferred dependence with respect to the total matter amplitude
rather than the cold dark matter one confirms the relevance of
the neutrino perturbations on the cold dark matter velocity field
in the nonlinear regime.

In a future paper we shall generalize these results using
the second set of the DEMNUni cosmological simulations that
include dynamical dark energy, extending our study of the
dependence of the shape parameters on the rms amplitude of
clustering σ8,m.
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