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Abstract

Understanding Ebola Virus (EBOV) virulence evolution is not only timely but also raises specific questions
because it causes one of the most virulent human infections and it is capable of transmission after the
death of its host. Using a compartmental epidemiological model that captures three transmission routes
(by regular contact, via dead bodies and by sexual contact), we infer the evolutionary dynamics of case
fatality ratio (CFR) on the scale of an outbreak and on the long term. Our major finding is that the
virus’s specific life cycle imposes selection for high levels of virulence and that this pattern is robust to
parameter variations in biological ranges. In addition to shedding a new light on the ultimate causes
of EBOV’s high virulence, these results generate testable predictions and contribute to informing public
health policies. In particular, burial management stands out as the most appropriate intervention since
it decreases the R0 of the epidemics, while imposing selection for less virulent strains.

Impact Summary

The severe haemorrhagic fever caused by Ebola Virus (EBOV) usually kills more than one infected
individual out of two in the absence of treatment, which makes this pathogen one of the most virulent
known to humans. The recent outbreak in West Africa (2013-2016) revealed that the virus is able to
spread and persist for months across countries. It is often thought that virulence could be due to the
fact that the virus is adapted to its reservoir host. Given that microbes evolve rapidly, it is important
to determine whether EBOV virulence is likely to decrease as the virus adapts to its human host. To
address this problem, we developed a novel mathematical model tailored to EBOV’s life cycle, notably
by capturing its three main transmission routes (by regular contact, sexual contact and via dead bodies).
We investigated the evolutionary trends of EBOV’s virulence on different time scales (outbreak initiation,
short term and long term). Our results reveal that the virulence of EBOV might not be due to the
maladaptation of the virus, but could rather originate from its unique life cycle. These results are robust
to the parameter values chosen. From a public health perspective, burial management stands out as the
main leverage to fight the virulence of EBOV, both in the short and long terms.

Introduction
Ebola Virus (EBOV) has been a major source of fear since its discovery in 1976. Until 2013, all outbreaks
could be traced to spillover from reservoir hosts (Leroy et al., 2005) and were limited in size. This was
attributed to EBOV’s extremely high case fatality ratio (CFR), that is the ratio of infected hosts who
die from the infection, which we use here as a measure of infection virulence. The dramatic 2013-2016
epidemic in West Africa, which caused more than 28,000 infections and claimed at least 12,000 lives,
showed that the virus can persist in the human population for months, therefore raising the question:
‘How will the virulence of Ebola Virus evolve in humans?’ (Kupferschmidt, 2014).

Being an RNA virus, Ebola is prone to rapid evolution (de La Vega et al., 2015) and in vitro analyses
suggest that the virus has evolved during the outbreak towards an increased tropism for human cells
(Urbanowicz et al., 2016). It was first thought that host-parasite interactions should always evolve towards
benignity because mild strains seem to transmit over a larger period of time than strains that kill their
hosts rapidly (Méthot, 2012). Since the 1980s, evolutionary biologists have shown that parasite virulence
can be adaptive because it may correlate with transmissibility or within-host competitiveness (for a
review, see Alizon and Michalakis, 2015). The avirulence theory does remain prevalent in many fields. For
instance, some envisage a decrease in EBOV virulence due to host adaptation Kupferschmidt (2014), even
though studies suggest that the virulence of some human infectious diseases such as HIV or tuberculosis
has followed an increasing trend since their emergence (Gagneux, 2012; Herbeck et al., 2012).

Studying virulence as a potentially adaptive trait for the parasite requires encompassing the whole
epidemiological life cycle of the infectious agent (Alizon and Michalakis, 2015). In the case of Ebola Virus,
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most individuals acquire the infection after direct contact with blood, bodily secretions or tissues of other
infected humans whether alive or dead (Bausch et al., 2007). This post-mortem transmission route cannot
be neglected in Ebola Virus epidemics (Chan, 2014), although its magnitude is likely to be low compared
to direct transmission (Weitz and Dushoff, 2015). From an evolutionary standpoint, this route might
be crucial as well since the timing of life-history events can dramatically affect virulence evolution (Day,
2003). Intuitively, if the virus is still able to transmit after host death, virulence will have a smaller effect
on the parasite’s transmission potential. Moreover, there is increasing evidence that EBOV might also be
transmitted through sexual contact even long after the clinical ‘clearance’ of the infection since the virus
can persist in the semen for months (Eggo et al., 2015; Thorson et al., 2016; Uyeki et al., 2016).

Will EBOV become more virulent by adapting to humans? To address this question, we use mathe-
matical modelling to determine how case fatality ratio affects the risk of emergence, how it evolves on the
long and in the short term. To this end, we introduce an original epidemiological model that captures all
three transmission routes of the virus in human populations. We parametrize our model with data from
the well-documented 2013-2016 epidemics. We also perform sensitivity analyses on conservative biological
ranges of parameter values to verify the robustness of our conclusions.

We find that EBOV undergoes selection for higher case fatality ratios due to its life cycle that in-
cludes transmission from hosts after death. This result is robust to most parameter values within bio-
logical ranges. We also show that short-term evolutionary dynamics of virulence are more variable but
consistently depend on the duration of the incubation period. Finally, we investigate how public health
interventions may affect EBOV virulence evolution. We find a direct, but limited, effect of safe burials
that may decrease the spread of the virus, while favouring less virulent strains over more virulent ones.

Methods
For clarity, most of the technical details are shown in Supplementary materials and this section contains
verbal description of the model, Figures illustrating the life cycle and a list of parameter values.

Epidemiological model

Our original compartmental model is based on the classical Susceptible-Exposed-Infected-Recovered
(SEIR) model, which we enhanced by adding a convalescent class (C) that allows for sexual trans-
mission (Abbate et al., 2016) and an infected dead body class (D) that allows for post-mortem transmis-
sion (Legrand et al., 2007; Weitz and Dushoff, 2015). The model is deterministic and does not include
additional host heterogeneity, spatial structure or public health interventions.

We incorporated demography through a host inflow term λ and a baseline mortality rate µ. Suscep-
tible individuals (S) can become infected by regular (i.e. not sexual) contact with symptomatic infected
individuals (I) (World Health Organization Ebola Response Team, 2014), by sexual contact with con-
valescent individuals (C) (Mate et al., 2015) and by contact with the dead body of Ebola virus disease
(EVD) victims, mostly during ritual practices (D) (Chan, 2014). The rates at which these events oc-
cur are proportional to βI , βC and βD respectively. As in most models (Keeling and Rohani, 2008),
we assumed sexual transmission to be frequency-dependent. For non-sexual transmission, we assumed
density-dependent transmission following an analysis of the 2013-2016 epidemic (Leander et al., 2016),
although performed at a smaller scale than ours. The total population size of live hosts is denoted N .

Upon infection, susceptibles move to the so-called ‘exposed’ class (E), meaning they are infected but
not yet infectious. For Ebola Virus infections, this latency period is also the incubation period, i.e. the
time from the contamination to the onset of the symptoms. These symptoms arise at a rate ω.

At the end of this latency/incubation period, individuals move to the symptomatic infected compart-
ment (I). They leave this compartment at a rate γ, which we calibrated using the average time elapsed
from the onset of the symptoms to death or recovery. We hereafter refer to this as the ‘symptomatic
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period’. The probability that an infected individual survives the infection is 1−α. The case fatality ratio
(CFR), α, is our measure of virulence.

We assumed that infected individuals who survive the infection clear the virus from their bloodstream
but not from other fluids such as semen and may therefore still transmit EBOV through sexual contacts
(Deen et al., 2015). These convalescent individuals (C) completely eliminate EBOV at a rate σ. Notice
that given the severity of the symptoms (Feldmann and Geisbert, 2011) and the fact that the convales-
cence period is one order of magnitude greater than the symptomatic period, we neglected the sexual
transmission from symptomatic infected individuals (I).

Based on the current immunological data (Sobarzo et al., 2013), we assumed that full elimination
of EBOV from convalescent hosts confers lifelong immunity to recovered individuals (R), who do not
contribute to the epidemiology.

On the contrary, infected individuals who die from the disease may continue to transmit EBOV if their
burial is performed in unsafe conditions, which occurs at a probability θ. There is little data from which
to estimate this parameter. However, the proportion of EBOV-positive dead bodies has been estimated
to decline from 35% to 5% by the end of 2014 in the most populous county of Liberia (Nyenswah et al.,
2016). We therefore set the default value θ = 0.25. In the analysis, we strongly vary this parameter since
it represents an important leverage public health policies have on the epidemics. In the absence of burial
team intervention, body fluids from dead bodies remain infectious for a period ε−1 which is known to be
less than 7 days in macaques (Prescott et al., 2015).

Our model, pictured in Figure 1, consists in a set of Ordinary Differential Equations (ODEs) shown
in Supplementary Material A.

Table 1 lists the 11 model parameters. Their values were calibrated using data from the 2013-2016
epidemic in West Africa. We worked at a country level and preferentially chose estimates from the Liberia
outbreak, because with approximately 10,000 cumulative cases (World Health Organization, 2016), its
magnitude lies in between that of Sierra Leone and Guinea. Demography data from Liberia were obtained
from publicly available data from the Central Intelligence Agency (Central Intelligence Agency, 2016).
The newborn inflow was set such that the disease free equilibrium matches the country’s population size.

In Supplementary Material C, we calculate the basic reproduction number of EBOV (denoted R0),
which is the average number of secondary infections caused by a single infected individual in a fully
susceptible population (Diekmann et al., 1990). By studying the local stability of the system (S1) at the
disease free equilibrium, we found that

R0 = βI
γ
S0 + αθβD

ε
S0 + (1− α)βC

σ
, (1)

where S0 = λ/µ is the total population size before the epidemic. The three terms in R0 correspond
to each transmission route: from symptomatic individuals (R0,I := βIS0/γ), infectious bodies (R0,D :=
αθβDS0/ε), and convalescent individuals (R0,C := (1− α)βC/σ). Notice that the incubation period does
not affect R0.

Transmission-virulence trade-off and estimated values

Trade-offs are a central component of evolutionary model and, without them, predictions tend to be trivial
(e.g. viruses should evolve to maximise their transmission rates and minimise their virulence). Although
the EBOV life cycle generates constraints that may lead to non-trivial evolutionary outcomes, we do
also allow for an explicit trade-off between CFR and transmission rates. Such a relationship has been
shown in several host-parasite systems (Alizon and Michalakis, 2015). The case of HIV is particularly
well documented (Fraser et al., 2014): viruses causing infections with higher viral loads have increased
probability to be transmitted per sexual contact, while causing more virulent (shorter) infections. As
a result, there exists an optimal intermediate viral load that balances the virus benefits of transmission
with the costs of virulence, thus maximising the number of secondary infections.

4



In the case of EBOV, there is indirect evidence that viral load is positively correlated with case fatality
ratio (CFR) since survivor hosts tend to have lower viral loads than non-survivors (Towner et al., 2004;
Crowe et al., 2016). Viral load is thought to correlate with transmission (Osterholm et al., 2015) but
demonstrating a clear link is challenging (for HIV, it has required identifying sero-discordant couples in
cohorts).

We assumed an increasing relationship between transmission rates and CFR (α) such that:

βH (α) := bHα
p, (2)

where bH is a constant factor, p ≥ 0 is a parameter capturing the concavity of the trade-off curve and H
stands for any of the compartment I, D or C. The exact value of p results from within-host interactions
(Alizon and van Baalen, 2005) but one can identify four kinds of trade-offs: p > 1 corresponds to an
amplifying transmission benefit from increasing CFR, p = 1 corresponds to a linear relationship between
transmission and CFR, 0 < p < 1 corresponds to a saturating transmission benefit from increasing CFR
and p = 0 is the degenerate case without trade-off. From a biological standpoint, we could expect different
transmission routes to have different trade-off shapes (p) but, as we show here, our results are largely
independent of p.

Transmission rates being difficult to estimate (Leander et al., 2016), we indirectly infer the order
of magnitudes of bI , bC and bD by setting the R0 close to 2, that is its approximate value for the
2014 epidemic (World Health Organization Ebola Response Team, 2014). Since R0 is the sum of the
epidemiological contributions of each transmission route (see equation (1)), we added the constraint
that, according to previous studies, transmission from symptomatic individuals contributes about ten
times more than transmission from dead bodies (World Health Organization Ebola Response Team, 2014;
Weitz and Dushoff, 2015) and one hundred times more than transmission from convalescent individuals
(Abbate et al., 2016). Straightforward calculations (analogous to those done for sensitivity analysis in
Supplementary Material E) resulted in attributing the orders of magnitude shown in Table 1.

In the following, the exponent p was left undetermined, but its value was set to 0 for the estimation
of bH in the null hypothesis. This leads to R0 ≈ 1.86, which is very close to the WHO mean estimation
for the Liberia epidemic, namely 1.83 (World Health Organization Ebola Response Team, 2014).

Long term evolution

We used the adaptive dynamics framework (Geritz et al., 1998), which assumes that evolution proceeds
by rare and small phenotypic mutations occurring in a monomorphic population that has reached eco-
logical stationarity. Unless the fitness landscape exhibits a branching point (which is not the case here),
polymorphism is therefore limited to transient dimorphic phases where the ancestor (hereafter called the
‘resident’) and its mutant compete. Depending on the outcome of the competition, the system either goes
back to the previous endemic equilibrium or reaches a new monormophic equilibrium. The corresponding
dynamical system is shown in Supplementary Material A (system (S2) applied to n = 2).

Given the focus of this study, we assumed that the resident and the mutant only differ in their
CFR (and in their transmission traits if there was a transmission-virulence trade-off). We denoted the
virulence of the mutant and the resident by α′ and α respectively. α′ was assumed to be close to α. Since
the mutant is rare by definition, its emergence can be assumed not to affect the resident system. We
therefore investigated the local stability of the related endemic equilibrium. This only depended on the
local stability of the mutant sub-system (E2, I2, D2, C2) to which we applied the next-generation theorem
(Diekmann et al., 1990; Hurford et al., 2010). This eventually led (see Supplementary Material C.3) to
the mutant relative reproduction number

R
(
α′, α

)
=

βI(α′)
γ + xθβD(α′)

ε + (1−α′)βC(α′)
σÑ(α)

βI(α)
γ + αθβD(α)

ε + (1−α)βC(α)
σÑ(α)

, (3)
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where there total host population size can be approximated (see Supplementary Material B) by

Ñ (α) ≈ (1− α)S0 + α
βI(α)
γ + αθβD(α)

ε

. (4)

We then calculated the selection gradient by differentiating the relative reproduction number (equa-
tion (3)) with respect to the mutant’s trait (Otto and Day, 2007). Equating the mutant and resident trait
value we eventually found

∆ (α) = p

α
+

θbD
ε Ñ (α)− bC

σ

(1− α) bCσ +
(
bI
γ + θbD

ε α
)
Ñ (α)

. (5)

The sign of ∆ indicates the direction in which natural selection acts on the trait depending on the
resident’s trait.

Short term evolution

Viruses evolve so rapidly that evolutionary and epidemiological dynamics may overlap. The epidemio-
logical Price equation framework is designed to predict short-term evolution based on standing genetic
variation (Day and Proulx, 2004; Day and Gandon, 2006).

Practically, we assumed that the parasite population is initially diverse and consists of n different
genotypes, each genotype i being defined by a specific value for several phenotypic traits of interest: the
case mortality (αi), the rate of end of latency (ωi), the rate of end of the infectious period (γi), the rate
at which dead bodies cease to be infectious (εi), the rate at which convalescent hosts clear the infection
(σi) and the transmission rates (βD,i, βI,i and βC,i).

The dynamics of the populations of interest are described by 4n+ 1 ODEs that are shown in Supple-
mentary Material A.

After thorough calculations (in Supplementary Material F) we find that, if we neglect mutational bias,
mean traits in each compartment vary according to a system of ODEs that involves statistical covariances
and variances of traits in the different compartments. The equations involving average CFR are shown
in the Results section.

An important assumption of this Price equation approach is that covariance terms are assumed to be
constant, which implies that predictions are only valid in the short term. Given that the main limitation of
the adaptive dynamics framework relies in its assumption that epidemiological dynamics are fast compared
to evolutionary dynamics, combining the two frameworks allows us to get a broader picture.

Results

Virulence and emergence

We first consider the risk for an epidemic to occur as a function of EBOV virulence, trade-off shape and
burial management. A disease spreads in a fully susceptible population if its reproduction number (R0) is
greater than unity (Anderson and May, 1981). Using our default parameter values (Table 1), we show in
Figure 2 that the most virulent EBOV strains are almost always the most likely to emerge, independently
of the trade-off exponent p and of proportion of unsafe burials θ. To have R0 decrease with α, one needs
to have neither trade-off nor unsafe burials (θ = p ≈ 0). However, with our default parameter values this
decrease is limited.

If we focus on the lowest virulence that may lead to an epidemic (denoted αmin), we find that with
our default parameter values burial management can prevent emergence (that is bring R0 below unity
by moving vertically in Figure 2) only if the transmission-virulence trade-off is strong enough (the green,
blue and cyan curves).
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In the following, we will generally assume that EBOV is adapted enough to persist in the human
population (R0 > 1). Since outbreak originates via spillover from reservoir hosts (Leroy et al., 2000), it
is likely that the virus is maladapted in the first human infections. However, to capture these dynamics,
an evolutionary rescue formalism would be more appropriate given the importance of stochastic events
and this is outside the scope of this study (for a review, see Gandon et al., 2013).

Long-term virulence evolution

If the selection gradient in equation (5) is negative for any CFR (∆(α) < 0), then the virus population
evolves towards its lowest virulence that allows persistence (that is αmin). If the gradient is always positive
(∆(α) > 0), the CFR evolves towards 1. Intermediate levels of virulence can only be reached if there
exists α? such that ∆(α) ≥ 0 for α ≤ α?, ∆(α) ≤ 0 for α ≥ α? and R (α, α?) < 1 for any α 6= α?. We
show in Supplementary Material D.4 that this occurs only if the proportion of unsafe burials (θ) and the
trade-off parameter (p) are lower than the following boundaries

θ <
bIbCε

γσbD
and p < bC

σ
, (6)

Unless these two conditions are met, the selection gradient is always positive and EBOV is expected
to always evolve towards higher case fatality ratios (α? = 1). Rewriting the first inequality as θbDS0

ε <
bIS0
γ ×

bC
σ highlights that virulence is favoured by natural selection as soon as the post mortem transmission

component is greater than the product of the symptomatic and convalescent transmission components.
Figure 3 shows how α? is numerically affected by a change in burial management (θ) and trade-off

strength (p). Unless the proportion of safe burials is brought below 4%, and unless there is a weak
trade-off (p < 0.01), CFR will remain high. Intuitively, this double condition can be understood in the
following way. If the trade-off is negligible, the CFR is weakly linked to transmission by regular contact
and therefore selection on α only weakly depends on this component of the life cycle. As a consequence,
the value of θ governs the relative importance of the two transmission routes that matter. Post mortem
transmission always favours higher CFR, whereas the sexual transmission route can be maximised for
intermediate levels of virulence (see Supplementary Material H.)

It was not possible to find an explicit expression for the long-term equilibrium virulence (α?), but we
found it lies in the following interval (Supplementary Material D.5):

α? ∈

 p

bC
σ −

θ
bD
ε

bI
γ

+θ bD
ε

,

((
bI
γ + θ bDε

)
S0 + bC

σ

)
p

(1 + p) bCσ − θ
bD
ε S0

 . (7)

The lower bound of this interval increases with trade-off strength (p) and intensity of the post mortem
transmission route (θbD/ε). If post mortem transmission is strongly reduced, owing to a safer burial
management (θ → 0), the lower bound simplifies to pσ/bC . The long-term virulence then appears to
be a balance between trade-off strength and sexual transmission intensity, which is consistent with our
intuitive explanation of the condition for an intermediate virulence to be selected. In particular, any
decrease in the time for convalescent hosts to clear the virus (i.e. increase in σ) will increase the lower
bound for CFR.

To further assess the robustness of these results, we performed a sensitivity analysis by varying the
relative importance of each transmission route (regular contact, sexual transmission and transmission
from dead bodies), while keeping the total value of R0 constant. As shown in Figure 4, unless the values
of p are extremely low, variations in the relative transmission routes is unlikely to be sufficient to move our
default value (dotted lines) to the region where low virulences (e.g. α < 50%) are favored (green area).
To give a quantitative estimate, the relative importance of transmission via sexual contact (on the vertical
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axis) would need to be about 40 times greater than the current estimates to bring the current estimate
above the blue separatrix, which already assumes a low trade-off and a perfect burial management.

Short term evolutionary dynamics

Reaching an evolutionary equilibrium may take time (especially if strains have similar trait values) and
the transient dynamics can be non-trivial because the system is non-linear. The Price equation framework
provides a way to qualitatively address the initial trends of average trait values, by considering the initial
diversity in the virus population.

If we denote by xH the average value of trait x in compartment H and by covH (x, y) the statistical
covariance between traits x and y in compartment H (which becomes the statistical variance varH (x) if
x ≡ y), the dynamics of average virulence in the four infected compartments satisfy the following ODEs
(see Supplementary Material F for further details):

dαI
dt = −covI (α, γ) +

(
covE (α, ω) +

(
αE − αI

)
ωE
) E•
I•
, (8a)

dαE
dt = −covE (α, ω) + S

E•

∑
H∈{I,D,C}

(
covH (βH , α) +

(
αH − αE

)
βH

H
)
H•, (8b)

dαD
dt = −covD (α, ε) +

(
varI (α) + αI

(
αI − αD

))
θγ

I•
D•

, (8c)

dαC
dt = −covC (α, σ) +

(
covI (α, γ)− γvarI (α) +

(
1− αI

) (
αI − αC

)
γI
) I•
C•
, (8d)

where H• :=
n∑
i=1
Hi denotes the total size of compartment H ≡ E, I,D,C.

Focusing on the compartment on which virulence acts, namely the symptomatic individuals, indicates
that the short-term evolution of the average virulence αI is mainly governed by the correlations between
this trait and the symptomatic and latency periods. More explicitly, equation (8a) states that if the
most virulent strains induce the longest symptomatic period and/or the shortest latency periods, the
average virulence in I can be expected to increase at the beginning of the epidemic. Intuitively, newly
symptomatic individuals are more likely to have been infected with a highly virulent strain.

Equation (8a) contains a third term proportional to αE − αI , which is more difficult to apprehend.
Indeed, αE varies as well and follows a complicated ODE that involves not only the correlation with
the latency period but also correlations with the transmission rates (equation (8b)). This diversity of
components make both αE and αI difficult to predict early in the epidemics.

We therefore simulated epidemics numerically according to system (S2). We considered nine scenarios
of increasing complexity, three of which are shown in Figure 5 (see Supplementary Material G for more
details). During the first six months of an (unmanaged) epidemic, average virulence exhibits wide varia-
tions. In most scenarios (panels A and B), it tends to evolve towards the maximum of the range provided
by its initial polymorphism. Transient evolution for further virulence in an expanding epidemic have been
highlighted by previous models (Day and Proulx, 2004, e.g.) and studies (Berngruber et al., 2013) but
this effect was due to a positive correlation between virulence and transmission rates, which is here not
required (Figure 5A). Unsurprisingly, the addition of such correlation amplifies the transient increase in
virulence observed during the approximately first 300 days after the onset of the epidemic (Figure 5B).

A scenario where average virulence decreases initially is when it is positively correlated with the latency
period (Figure 5C). This occurs because less virulent strain have an advantage early in the epidemics by
reaching the infectious class earlier. More virulent strains become more frequent again when the value of
D begins to take off (Figure 5B).

A secondary result shown in these figures is that dead bodies (in brown) always carry more virulent
strains on average.
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Discussion

Virulence could be adaptive for EBOV

Ebola Virus is one of the deadliest human pathogen (Feldmann and Geisbert, 2011). The recent epidemic
in West Africa has shown that it can transmit for months among humans throughout entire countries. As
with any microbe (especially RNA viruses), it is likely exposed to fast evolution during the course of the
epidemic (Bedford and Malik, 2016). From a public health standpoint, it is important to predict Ebola
virus’ next move and the current hope is that the shift from an emerging to an endemic lifestyle could
favour less virulent strains (Kupferschmidt, 2014).

Predicting virulence evolution is usually challenging because we tend to lack details about correla-
tions between epidemiological parameters. Furthermore, even when there is data to estimate a trade-off
relationship, its exact shape can have huge quantitative and even qualitative effects on the evolutionary
dynamics of the trait (Alizon and van Baalen, 2005; Svennungsen and Kisdi, 2009). Our results stand out
because they are robust both to parameter variation in wide biological ranges (World Health Organization
Ebola Response Team, 2014, 2015) and also to the type of trade-off assumed. Importantly, the numerical
analysis of the model show that our results still hold even if there is no transmission-virulence trade-off
at all, as long as the burial management is not perfect (θ > 5%).

In addition to the strong selection on EBOV virulence due to its transmission via dead bodies, another
striking result is that decreasing the ratio of unsafe burials is triply effective. First, it decreases the spread
of the virus (i.e. its R0). Second, in the short term, it can help limit a transitory increase in virulence.
Indeed, a better burial management prevents the spread of the strains hosted by infected corpses, which
is the compartment that concentrates most of the virulent strains (as shown by Figure 5). Third, in the
long term, decreasing the proportion of unsafe burials is necessary to shift the selective pressure in favour
of less virulent strains.

Overall, EBOV is unlikely to evolve to become less virulent because that would require two conditions.
First, the proportion of unsafe burials must be brought to a very low value, which we estimate to be lower
than 4%. Second, there must be very little or no genetic relationship between EBOV case fatality ratio and
transmission rate. This latter condition is particularly frustrating because it cannot directly be addressed
by public health policies. Finally, even if these conditions are met, the level of virulence reached in the
long term may still be high, especially if sexual transmission is limited. On a more positive note, results
from the Price equation approach show that the virus may experience transitory lower levels of virulence
before reaching this maximum via a positive genetic correlation between virulence and incubation period.
This is somehow unexpected because this latter parameter does not appear in the calculations related to
long-term evolutionary or emergence.

Virulence is a shared trait

In evolutionary biology, virulence is usually defined as the decrease in host fitness due to the infection
(Read, 1994; Alizon and Michalakis, 2015; Cressler et al., 2015). Given the speed at which a pathogen
kills its host, EBOV’s virulence can neither be measured as a decrease in instantaneous fecundity (which
would be almost zero) nor as an increase of instantaneous mortality rate (which would tend towards
infinity or zero depending on the infection outcome). The case fatality ratio (CFR) therefore appears to
be a convenient measurable and epidemiologically relevant proxy for EBOV’s virulence.

We focused on the virus side but, like any infection trait, virulence is also determined by the host
and its environment. To predict how virulence will change in the future, we should also consider how
hosts may change. In the case of EBOV, it was known before the recent epidemics that some people can
become immune to the virus without exhibiting any symptoms (Leroy et al., 2000). The question remains
to know if they can also be infectious. More generally, our assumption of life-long protection could be
oversimplifying.
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Finally, to make predictions on the long term evolution, we need to factor in how the virus population
will evolve in response to the variation in the host population’s immune status. Since the immunological
status of the host population is determined by that of the virus population, this de facto qualifies as
a coevolutionary interaction. Earlier models shows that host heterogeneity in resistance and tolerance
can lead to a variety of outcomes (Miller et al., 2006; Cousineau and Alizon, 2014). Overall, introducing
realistic host heterogeneity, in particular age-dependent or sex-dependent mortality, appears like a relevant
extension of this model.

Symptomatic period and lethality

The Price equation framework allows us to study any statistical association between epidemiological traits
even if the shape of the dependency is unknown. On the contrary, the derivation of the basic reproduction
number as well as the adaptive dynamic framework require the precise expression of epidemiological
traits as functions of the focal trait. We therefore consider possible genetic variation on the infectious
period 1/γ when studying the short-term evolutionary dynamics on one hand, while assuming that 1/γ is
independent from the CFR α when investigating emergence and long-term evolution, on the other hand.
To our knowledge, clinical data allowing to model the variations of rate at which symptomatic period
ends (either due to recovery or EVD) γ in function of α is still lacking. Intuitively, the most virulent
EBOV strains should proliferate faster than average and therefore be more likely to kill their host, and
to kill it more quickly, thus reducing the symptomatic period. This would yield a positive correlation
between α and γ. However, it is also possible to envisage the opposite trend: less virulent EBOV strains
are more likely to be cleared by the immune system, and to be cleared more quickly, thus reducing the
symptomatic period as well. Such a trend would yield a negative correlation between α and γ. Therefore,
the assumption that γ is independent from α should not be seen as a pure mathematical simplification
but rather as a parsimonious modelling choice driven by the lack of relevant data.

Even in the absence of detailed data, we can further speculate on how allowing the duration of
the symptomatic phase to vary could affect our results. Indeed, clinical studies have shown that non-
survivors from EVD undergo faster disease course, associated with higher RNA copy levels (Towner et
al., 2004). Since the EVD pathogenesis in humans is primarily driven by the impairment of the immune
system (Hoenen et al., 2006; Falasca et al., 2015), which is consequently unable to stop the replication
of the virus, EBOV’s lethality can also be seen as a massive reduction in the host’s ability to recover.
Therefore, if we denote by m the EVD-induced mortality rate, by r the recovery rate and x a within-
host trait that characterizes the EVD course for a given EBOV strain (such as replication rate or host
exploitation), the end of symptomatic period rate is γ (x) = m + r (x). Since the CFR is equal to the
relative contribution of EVD-induced mortality to the rate at which the symptoms end, it follows that
α (x) = m/ (m+ r (x)) = m/γ (x). Therefore, the symptomatic period 1/γ can be replaced by α/m in
(1) and (3), which in the end increases the contribution of the regular contact transmission route to the
reproduction numbers, leading to even greater selection for higher virulence.

Spatial structure

Trait evolution is shaped by contact patterns between hosts (Lion and van Baalen, 2008). Regarding the
recent Ebola epidemic, the lack of medical personnel and infrastructure in the affected countries played an
key role in the spread of the disease as, for example, according to the World Health Organisation, in 2008
Liberia and Sierra Leone had only a density of 0.015 physicians per 1000 inhabitants, when at the same
time France had a density of 3.5 and the United States of America 2.4. This was further exacerbated by
historical, political and sociological factors (Ali et al., 2016).

It is difficult to predict how explicitly accounting for spatial structure would affect the results. Indeed,
it is generally thought that the more ‘viscous’ the population, the more virulence is counter-selected
(Boots and Sasaki, 1999). However, the life cycle of the parasite and the host demography can create
epidemiological feedbacks that alter this prediction by causing virulence to be maximised for intermediate
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levels of population structures (Lion and Boots, 2010). This is why predicting virulence evolution in a
fully spatially structured model constitutes a challenging future work.

Inputs from data

One of the underlying assumptions of our model, which could be tested is that the variation we observe
in virulence is at least partially controlled by the virus genetics. This could be done by combining virus
sequence data with infection traits (virus load or infection outcome) through a phylogenetic comparative
approach (Alizon et al., 2010) or a genome wide association study on the virus genome (Power et al.,
2017). If virus load is confirmed to be partially controlled by the virus genetics and if, as current evidence
suggests, it is correlated with virulence (Towner et al., 2004; Crowe et al., 2016), then studying variations
in virus load throughout the 2013-2016 epidemics can help us understand the evolutionary dynamics of
virulence. On that note, an experiment consisting in generating pseudovirions based on ancestral or recent
EBOV sequences suggests that some of the substitutions observed during the 2013-2016 epidemics may
confer increased tropism for human cells (Urbanowicz et al., 2016).

Another result of the short-term evolutionary dynamics analysis is that individuals who contract
EBOV from dead bodies should have a higher probability of dying than those infected by contact with
living infectious individuals. This could be tested by collecting data from individuals where the transmis-
sion route is well documented.

Finally, the remote possibility that lower virulence strains will evolve depends on the existence of a
transmission-virulence trade-off. Assessing the shape of this trade-off may be, therefore, very valuable.
Note that in the case of EBOV, it is not the exact shape that matters but rather the general trend.

Conclusion

This evolutionary epidemiology work shows that EBOV’s high virulence, whether it is about emergence,
short-term or long-term dynamics, can be explained by its particular life cycle that mixes parasitism and
parasitoidism (post mortem transmission). Unfortunately, any long term decrease in virulence is unlikely
for West African strains at any time scale, although increasing the safe burial proportion appears to be
an optimal response in both the short and long terms.
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Table 1: Parameter list, description and default values.
See the main text for further details about the calibration of the transmission constants. Note that the
sexual transmission constant is higher because it involves frequency-dependent transmission. ind stands
for individuals. When used in the main text or in the appendix, these estimated values are denoted by a
hat.
Notation Description Default value Reference or inference

λ Host inflow 2 · 102 ind.day−1 such that λ/µ ≈ 4 · 106, (Central Intel-
ligence Agency, 2016)

µ Host baseline mortality
rate

4.5 · 10−5 day−1 (Central Intelligence Agency, 2016)

bI
Regular contact transmis-
sion (from infectious hosts)
factor

10−7 ind−1.day−1

with the constrain R0,I ≈ 10 R0,D,
R0,I ≈ 102 R0,C and R0 ≈ 1.8

bC
Sexual transmission (from
convalescent hosts) factor 10−4day−1 (World Health Organization Ebola Re-

sponse Team, 2014; Weitz and Dushoff,
2015; Abbate et al., 2016)

bD
Post mortem transmission
(from dead hosts) factor 10−8 ind−1.day−1

ω Inverse of latency period 10−1 day−1 (World Health Organization Ebola Re-
sponse Team, 2014)

α Case fatality ratio 0.7 (World Health Organization Ebola Re-
sponse Team, 2014)

γ Inverse of symptomatic in-
fectious period

0.25 day−1 (Abbate et al., 2016)

θ Unsafe burial proportion 0.25 (Nyenswah et al., 2016)
ε Inverse of post mortem in-

fectious period
10−1 day−1 (Prescott et al., 2015)

σ Elimination rate of conva-
lescent hosts

10−2 day−1 (Uyeki et al., 2016; Abbate et al., 2016)
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Figure 1: Epidemiology of Ebola Virus in humans. A) Epidemiological life cycle of Ebola Virus
in humans and B) Population dynamics for default parameters. S,E, I, C,R and D are host densities
that correspond to the following compartments: susceptible, exposed (infected but not yet infectious),
symptomatic infected, convalescent, recovered (immunised) and dead bodies respectively. N is the total
living population size. Lower-case letters are rate and flow parameters, the description of which is given
in Table 1.
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Figure 2: Basic reproduction number as a function case fatality ratio (α), unsafe burial ratio
and trade-off shape.
Colors indicate five trade-off scenarios: absence (p = 0, in grey), very weak (p = 0.1, in red), concave
(p = 0.5, in green), linear (p = 1, in dark blue), and convex (p = 2, in light blue). The width of the
coloured regions corresponds to variations in the unsafe burial ratio from completely unsafe (θ = 1, dashed
upper bound) to completely safe (θ = 0, solid lower bound). The intersection between the horizontal line
and the colored areas indicates the range of αmin for each scenario. The dotted gridlines show the α and
R0 estimates from the literature. Other parameter values are in Table 1. See Supplementary Material
D.4 for more details.
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Figure 3: Evolutionary stable virulence (α?) as a function of unsafe burial ratio (θ) and trade-
off exponent (p).
The solid, dashed and dotted lines correspond to α? = 1, 0.7 and 0.3 respectively. Parameter vlaues are
shown in Table 1. See Supplementary Material D.4 for more details.
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Figure 4: Sensitivity analysis of long-term virulence evolution.
The graphic shows the sign of the selection gradient for virulence when varying the relative weight (in
orders of magnitude) of the post-mortem transmission component and the sexual transmission component
in the overall transmission of EBOV. When the basic reproduction number is set at its upper bound
(R̂0 = 2.53, dashed line), the selection gradient at the maximum virulence (α = 1) is positive below the
dashed line (red area). When the basic reproduction number is set at its lower bound (R̂0 = 1.26, plain
line), the selection gradient is also positive for a range of virulence higher than one half (α ≥ 50%) in the
orange area. It is negative for lower virulences (α < 50%) above the dashed line (green area). The unsafe
burial proportion and the trade-off exponent are low (θ = 0 and p = 0.1). See Supplementary Material E
for more details.
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Figure 5: Short-term evolution of CFR with standing genetic variation in three scenarios.
A) Without correlations between traits, B) with a positive correlation between CRF and transmission
rate and C) with a negative correlation between CRF and latency period. The CFR averaged over the
exposed individuals (αE) is depicted in cyan, over the symptomatic individuals (αI) in pink and over
the infectious dead bodies (αD) in brown. Parameter values are shown in Table 1. See Supplementary
Material G for details about the simulations.

21



Supplementary materials (SM)

Contents
A Equation systems 1

A.1 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A.2 Price equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B Stationary dynamics 2
B.1 Endemic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
B.2 Stationary total population size approximation for α 6= 1 . . . . . . . . . . . . . . . . . . . 3
B.3 Stationary total population size approximation for α = 1 . . . . . . . . . . . . . . . . . . . 4

C Reproduction number derivation 5
C.1 General reproduction number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
C.2 Basic reproduction number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
C.3 Relative reproduction number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

D Evolutionary analysis of virulence 7
D.1 Virulence effect on basic reproduction number . . . . . . . . . . . . . . . . . . . . . . . . . 7
D.2 Minimum spreadable CFR approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
D.3 Virulence effect on stationary densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
D.4 Virulence selection gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
D.5 Evolutionary attracting virulence estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

E Sensitivity analysis 11

F Application of the Price equation 13

G Numerical simulations 15

H Virulence and transmission routes 17

A Equation systems

A.1 Epidemiology

The epidemiological dynamics are governed by the following set of ODEs:

dS
dt = λ−

(
µ+ βII + βDD + βC

C

N

)
S, (S1a)

dE
dt =

(
βII + βDD + βC

C

N

)
S − ωE, (S1b)

dI
dt = ωE − γI, (S1c)
dD
dt = αθγI − εD, (S1d)
dC
dt = (1− α) γI − σC, (S1e)
dR
dt = σC − µR, (S1f)
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where N := S + E + I + C + R is the total living population size, which varies with time. Notice that
since life expectancy is several orders of magnitudes greater than the latency, the symptomatic and the
convalescent periods, mortality rate µ can be neglected when summed with ω, γ or σ.

A.2 Price equation

The dynamics of the populations of interest are described by 4n+ 1 ODEs, for all i ∈ {1, . . . , n}:

dS
dt = λ−

n∑
i=1

(βI,iIi + βD,iDi + βC,iCi + µ)S, (S2a)

dEi
dt = (βI,iIi + βD,iDi)S − ωiEi, (S2b)
dIi
dt = ωiEi − γiIi, (S2c)

dDi

dt = αiθγiIi − εiDi, (S2d)
dCi
dt = (1− αi) γiIi − σiCi. (S2e)

The total density of each compartment is denoted by a bullet index (•) and its dynamics satisfy

dS
dt = λ−

(
βI
I
I• + βD

D
D• + βC

C
C• + µ

)
S, (S3a)

dE•
dt =

(
βI
I
I• + βD

D
D•
)
S − ωEE•, (S3b)

dI•
dt = ωEE• − γII•, (S3c)

dD•
dt = θαγII• − εDD•, (S3d)
dC•
dt = γII• − αγII• − σDD•, (S3e)

where the bars indicate average values and the superscripts indicate the compartment in which the trait
is averaged. We can already notice that the CFR and the rate at which the infectious period ends are
difficult to disentangle in this system because we have second order terms (i.e. an average of the product
αiγi).

B Stationary dynamics

B.1 Endemic equilibrium

At equilibrium, all time derivatives of system (S1) cancel out. If we denote by H̃ the corresponding value
of density H at this equilibrium, we get S̃ = S0 = λ

µ and Ẽ = Ĩ = D̃ = C̃ = R̃ = 0 for the disease free
equilibrium (DFE).

The endemic equilibrium (EE), on the other hand, is found by assuming non zero values for all H̃.
We thus first get that, 

dI
dt = 0 ⇐⇒ Ĩ = ω

γ Ẽ,
dD
dt = 0 ⇐⇒ D̃ = αθγ

ε Ĩ = αθω
ε Ẽ,

dC
dt = 0 ⇐⇒ C̃ = (1−α)γ

σ Ĩ = (1−α)ω
σ Ẽ,

dR
dt = 0 ⇐⇒ R̃ = σ

µ C̃ = (1−α)ω
µ Ẽ.

(S4)
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Hence,

dE
dt = 0⇐⇒

(
βI Ĩ + βDD̃ + βC

C̃

Ñ

)
S̃ − ωẼ = 0,

⇐⇒
(
βI
ω

γ
Ẽ + βD

αθω

ε
Ẽ + βC

(1− α)ω
σÑ

Ẽ

)
S̃ − ωẼ = 0,

⇐⇒ S̃ =
(
βI
γ

+ αθβD
ε

+ (1− α)βC
σÑ

)−1
, (S5)

and

dS
dt = 0⇐⇒ λ−

(
µ+ βI Ĩ + βDD̃ + βC

C̃

Ñ

)
S̃ = 0,

⇐⇒ µ+ βI
ω

γ
Ẽ + βD

αθω

ε
Ẽ + βC

(1− α)ω
σÑ

Ẽ = λ

S̃
,

⇐⇒ ωẼ

S̃
= λ

S̃
− µ,

⇐⇒ Ẽ = λ− µS̃
ω

. (S6)

It follows that

Ñ := S̃ + Ẽ + Ĩ + C̃ + R̃ = S̃ +
(

1 + ω

γ
+ (1− α)ω

σ
+ (1− α)ω

µ

)
Ẽ,

= S̃ +
( 1
ω

+ 1
γ

+
( 1
σ

+ 1
µ

)
(1− α)

)(
λ− µS̃

)
. (S7)

By combining (S5) and (S7), we can find the exact solution for Ñ . This closed form is excessively large
and therefore not shown here. It is however possible to find a approximation of Ñ as a simple function of
the model’s parameters with some simplifications that are shown hereafter, with a particular treatment
of the α = 1 case.

B.2 Stationary total population size approximation for α 6= 1
In this subsection, we assume that α < 1 (the case where α = 1 is treated in the next subsection).

Given that life expectancy is several orders of magnitude greater than the convalescent period, i.e.
1
µ �

1
σ , we have

1
ω

+ 1
γ

+
( 1
σ

+ 1
µ

)
(1− α) ≈

( 1
ω

+ 1
γ

+ 1
µ

)
− α

µ
,

Furthermore, since life expectancy is also several orders of magnitude greater than the latency and
symptomatic period, i.e. 1

µ �
1
ω + 1

γ , and since α 6= 1, we finally have

Ñ ≈ S̃ + (1− α)
(
S0 − S̃

)
,

Ñ ≈ (1− α)S0 + αS̃. (S8)

The virulence of EBOV is usually high and its sexual transmission low compared to the two other
transmission route (Abbate et al., 2016), which is why we can approximate S̃ by its value by neglecting
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the third term in equation (S5), which leads to

S̃ ≈ γε

εβI + αγθβD
. (S9)

This then results in
Ñ ≈ (1− α)S0 + αγε

εβI + αγθβD
. (S10)

Numerical comparisons performed on positive and stable equilibria for realistic parameter sets show
that this approximation differs from the exact value by less than 10,000 individuals, which corresponds
to a relative error of less than 1%, thus validating the accuracy of this approximation.

B.3 Stationary total population size approximation for α = 1
Here we assume that α = 1 (notice that in this case the trade-off exponent p vanishes).

We then get back to equation (S5) that becomes such that

S̃ =
(
βI
γ

+ θβD
ε

)−1
= γε

εβI + γθβD
,

which shows that the exact value of S̃ coincides with its equation (S9) approximation for α = 1.
As for equation (S7), we get

Ñ =
(

1− (γ + ω)µ
γω

)
S̃ + (γ + ω)λ

γω
,

it is straightforward to show numerically (using parameters from Table 1) that, since S̃ and λ
µ = S0

are of the same order of magnitude and that, as already mentioned, life expectancy is several orders of
magnitude greater than the latency and symptomatic period, i.e. 1

µ �
1
ω + 1

γ , which is equivalent to
(γ+ω)µ
γω � 1, we have

Ñ ≈ S̃ = γε

εβI + γθβD
, (S11)

which shows the consistency of equation (S10) even for α = 1.
This approximation shows a relative error of about 10−3 with Table 1 parameters values.
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C Reproduction number derivation
The basic reproduction number, R0, and the relative reproduction number, Rm, are two epidemiological
quantifications of the invasion potential of an infectious agent in a fully susceptible population and in an
population already infected by an alternative strain, respectively. They emerge from the stability analysis
of the disease free equilibrium (DFE) and the endemic equilibrium (EE) respectively. Their threshold
value is 1.

The next-generation method (Diekmann et al., 1990; Hurford et al., 2010) is the most efficient deriva-
tion of these reproduction numbers and proceeds as follows.

C.1 General reproduction number

First, we isolate the ODEs of the infected compartments from the rest of the system (here system (S1))
to obtain 

dE
dt =

(
βII + βDD + βC

C
N

)
S − ωE,

dI
dt = ωE − γI,
dD
dt = αθγI − εD,
dC
dt = (1− α) γI − σC.

(S12)

Second, we write the Jacobian matrix J that corresponds to this sub-system (S27), by deriving each
time-derivative (dE

dt ,
dI
dt ,

dD
dt ,

dC
dt ) with respect to each infected compartment density (E, I,D,C):

J =


−βC CSN2 − ω

(
βI + βC

C
N2

)
S βDS

(
1− C

N

)
βC

S
N

ω −γ 0 0
0 αγθ −ε 0
0 (1− α) γ 0 −σ

 ,
reminding that N := S + E + I +R+ C.

Third, we arbitrarily decompose J as a sum of an ‘inflow’ matrix F and an ‘outflow’ matrix −V
provided that V is non-singular (that is V−1 exists), F and V−1 are non-negative elementwise and the
real parts of all eigenvalues of −V are negative. Here, we conveniently choose two matrices that fulfil
these requirements:

F =


0
(
βI + βC

C
N2

)
S βDS βC

S
N

0 0 0 0
0 0 0 0
0 0 0 0

 and V =


−βC CSN2 − ω 0 0 −βC CSN2

ω −γ 0 0
0 αγθ −ε 0
0 (1− α) γ 0 −σ

 .
Finally, the general reproductive number R is given by the largest modulus of all eigenvalues of the

F.V−1 matrix. Elementary calculations result in the following general result

R = ((1− α) γεβC + (εβI + αγθβD)N)ωSN
(γσβCCS + ((1− α) γβCCS (βCCS +N2γ)σ)ω) ε. (S13)

C.2 Basic reproduction number

The basic reproduction number R0 is obtained from R by setting the densities to their values at the
disease free equilibrium (DFE), namely S = N = λ

µ and C = 0, hence

R0 =
(
βI
γ

+ αθβD
ε

)
S0 + (1− α)βC

σ
, (S14)
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Any strain introduced in a fully susceptible host population spreads if and only if R0 > 1.

C.3 Relative reproduction number

As for the relative reproduction number Rm, it is obtained from R by setting the densities to their values
at an alternative strain endemic equilibrium (EE), namely S = S̃, N = Ñ and C = 0 (notice that in such
setting N = S + R + Er + Ir + Cr + E + I + C where the r index denotes compartments of individuals
infected by the previously established (‘resident’), which may not be empty at EE, making S̃ < Ñ), hence

Rm =
(
βI
γ

+ αθβD
ε

+ (1− α)βC
σÑ

)
S̃.

It follows that a rare mutant strain of CFR x that appears in a host population endemically infected
by a resident strain of CFR y spreads and persists if and only if

R (x, y) :=
(
βI (x)
γ

+ xθβD (x)
ε

+ (1− x)βC (x)
σÑ (y)

)
S̃ (y) > 1. (S15)

Moreover, it is possible to eliminate S̃ (y) using equation (S5), leading to

R (x, y) =
βI(x)
γ + xθβD(x)

ε + (1−x)βC(x)
σÑ(y)

βI(y)
γ + yθβD(y)

ε + (1−y)βC(y)
σÑ(y)

. (S16)

This formula shows in particular that, because of the two occurrences of Ñ (y), the relative repro-
duction number is not the ratio between the two basic reproduction numbers, as it is in simpler models
(Dieckmann, 2002).

We can finally apply approximation (S10) Ñ (y) ≈ (1− y)S0 + γεy
εβI(y)+γθyβD(y) to obtain a closed-form

expression for R (x, y) (not shown here).
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D Evolutionary analysis of virulence
Investigating the evolutionary trends require to consider trade-offs. From now on, we will then always
apply the transmission-virulence trade-off assumed in equation (2) and keep in mind that the βH constant
case can be retrieved if p = 0.

D.1 Virulence effect on basic reproduction number

It is worth noticing that unless p = 0, we have R0 = 0 when α = 0. Therefore not all CFR/virulence
levels are able to give rise to an epidemic and persist in the population. Indeed, R0 (α) may not be greater
than 1 for all α ∈ [0; 1]. First, let us then study how R0 is affected by α, by calculating its derivative

dR0
dα (α) = d

dα

(((
bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

)
αp
)
,

=
((

θbDS0
ε
− bC

σ

)
α+ p

((
bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

))
αp−1,

which cancels only if α = 0 or

α =
bC
σ + bIS0

γ
bC
σ −

θbDS0
ε

× p

1 + p
=: α◦,

which lies in ]0, 1[ if and only if θ < εbC
σbDS0

≈ 2.3% and p <
bC
σS0
− θbD

ε
bI
γ

+ θbD
ε

≈
θ=0

5.6 · 10−3 (numerical values are

given according to Table 1 calibration). If these conditions are not fulfilled, then dR0/dα is positive for
all CFR.

Given these conditions, the value of α◦ can be approximated by

α° ≈
θ→0

σbIS0
γbC

p.

The basic reproduction number at this value is

R0 (α°) =
((

bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

)(
σbIS0
γbC

p

)p
≈
θ→0

bIS0
γ

,

which is a maximum on ]0, 1[ (inequality d2R0
dα2 (α◦) < 0 has been checked after calculations not shown).

Besides, evaluating R0 for α = 1 leads to

R0 (1) =
(
bI
γ

+ θbD
ε

)
S0 ≥

bIS0
γ

,

the lower bound being greater than one according to Table 1 estimates, and this holds even with almost
half of the bI value and smaller values of γ.

To conclude, for any given values of p and θ, there is always a CFR interval [αmin, 1] in which any
strain can spread.

Notice also that for α = 0 and p = 0,

R0 = bIS0
γ

+ bC
σ
≥ bIS0

γ
,

and likewise this is greater than one for estimated parameters. Consequently, all CFR values can spread
in absence of trade-off.
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D.2 Minimum spreadable CFR approximation

αmin ∈ [0, 1] is the minimum CFR of EBOV required to spread, i.e. R0 (αmin) := 1. However, it is not
possible to find the exact closed form of αmin (as the equation R (x) = 1 involves irreducible terms of
both xp and x). It is nonetheless possible to analytically find a lower bound for αmin, which we denote
by α− (0 ≤ α− ≤ αmin ≤ 1). First, notice that

R0 (α) :=
(
βI
γ

+ αθβD
ε

)
S0 + (1− α)βC

σ
≤
(
βI
γ

+ θβD
ε

)
S0 + βC

σ
=: R0,+ (α) , (S17)

where R0,+ (α) is an over-estimate of R0 (α). Applying the trade-off from equation (2), we get

R0,+ (α) =
((

bI
γ

+ θbD
ε

)
S0 + bC

σ

)
αp.

Let α− be the CFR such that R0,+ (α−) = 1, that is

α− =
((

bI
γ

+ θbD
ε

)
S0 + bC

σ

)−1
p

. (S18)

From equation (S17) and as R0 and R0,+ are increasing functions of α, it follows that

R0 (α−) ≤ R0,+ (α−) = 1 = R0 (αmin) ≤ R0,+ (αmin) ,

thus α− is an analytical under-estimate of αmin.
Notice that in absence of trade-off, the closed form αmin can be easily found as

αmin =
1− bIS0

γ −
bC
σ

θbDS0
ε − bC

σ

. (S19)

D.3 Virulence effect on stationary densities

From now one, we will assume that α ∈ [αmin, 1].
We apply definition from equation (2) to equation (S9), that is

S̃ ≈ γε

(εbI + γθbDα)αp .

Its derivative with respect to α is

dS̃
dα (α) ≈ − (γθbDα+ p (εbI + γθbDα)) γεαp−1

(εbI + γθbDα)2 < 0.

Thus, it comes from equation (S8), that

dÑ
dα (α) = −S0 + S̃ (α) + α

dS̃
dα (α) .

Since S̃ (α) < S0 for α ≥ αmin (any EBOV strain that spreads decreases the number of susceptible
individuals), dÑ

dα (α) < 0, that is Ñ (α) is a decreasing function of α, we have

Ñ (α) ≥ Ñ (1) = γε

εbI + γθbD
.
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D.4 Virulence selection gradient

We can finally investigate the virulence selection gradient, ∆, by deriving the relative reproduction number
from equation (S16) with respect to the first argument (i.e. the mutant’s virulence), which leads to ∂1R,
and equalizing the mutant and resident’s virulence. After some calculations, we find that

∆ (y) := ∂1R (y, y) = p

y
+

θbD
ε Ñ (y)− bC

σ

(1− y) bCσ +
(
bI
γ + θbD

ε y
)
Ñ (y)

.

Since the CFR is bounded by 1, it is expected to evolve towards lower values if and only if ∆ (1) < 0,
that is

∆ (1) ≈ p+ θbDγ

εbI + γθbD
− bC

σ
< 0.

By investigating burial control under the most favourable trade-off, which is no trade-off (p = 0), we
find that this condition is equivalent to (for bC � σ):

θ <
bIbCε

γσbD
≈ 4%.

By investigating trade-off shape under the most favourable burial control (θ = 0), we find that the
condition is equivalent to

p <
bC
σ
≈ 10−2.

Moreover, investigating the selection gradient at the lowest spreadable CFR y = αmin, we notice that
the following lower bound

∆ (αmin) ≥
θbD
ε Ñ (1)− bC

σ

(1− αmin) bCσ +
(
bI
γ + θbD

ε αmin
)
Ñ (1)

is positive if θ > bIbCε
γσbD

. Therefore a necessary condition for having a negative selection gradient on the
lowest spreadable CFRs is θ < bIbCε

γσbD
.

D.5 Evolutionary attracting virulence estimation

Unless it is equal to the 0 or 1 boundaries (the determination of which only requires the invariant sign
of the selection gradient), the evolutionary attracting virulence α? is an intermediate CFR value in ]0, 1[
such that ∆ (α?) = 0 (singularity condition), ∂1,1R (α?, α?) < 0 (evolutionary stability condition) and
d∆
dα (α?) < 0 (convergent stability condition), according to the adaptive dynamics framework (Geritz et
al., 1998). We therefore investigate the singularity condition that provides an equation α? has to satisfy.

By writing the selection gradient under a condensed form and defining η := bI
γ , φ := bD

ε , ψ := bC
σ , we

find that

∆ (α?) = p

α?
+ θφÑ (α?)− ψ

(1− α?)ψ + (η + θφα?) Ñ (α?)
= 0,

⇐⇒ (p− (1 + p)α?)ψ + (pη + (p+ α?) θφ) Ñ (α?) = 0. (S20)

As noticed in the previous subsection, this equation has a solution only if p is small enough (for the
first term to be negative) and θ is small enough (for the second term not to be too positive). Hereafter,
and because we are seeking for an intermediate evolutionary attracting virulence, we assume that p and
θ are small enough such that this equation has a solution in ]0, 1[.
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The complexity of Ñ (α?) prevents us from having a closed-form expression of α?. However, α? can
be bounded by an underestimate α?− on the one hand, and an overestimate α?+ on the other hand.

First, notice that the left hand side of equation (S20) has the following upper bound, replacing Ñ (α?)
by its maximum S0 = λ

µ ,

(p− (1 + p)α?)ψ + (pη + (p+ α?) θφ)S0,

which cancels out only if α? is replaced by a greater value we denote by α?+ (since the first term is a
decreasing function of the CFR). This leads to

α?+ = ((η + θφ)S0 + ψ) p
(1 + p)ψ − θφS0

. (S21)

Notice that α?+ > 0 requires that ψ (1 + p) > θφS0 that is θ small.
Second and analogously, the left hand side of equation (S20) has the following lower bound, replacing

Ñ (α?) by its minimum Ñ (1) = 1
η+θφ ,

(p− (1 + p)α?)ψ + pη + (p+ α?) θφ
η + θφ

,

which cancels out only if α? is replaced by a smaller value we denote α?− (since the first term is a decreasing
function of the CFR). This leads to

α?− = (1 + ψ) p
(1 + p)ψ − θφ

η+θφ
. (S22)

Notice that α?− < 1 requires that p < ψ − θφ
η+θφ . Since b̂C

σ̂
= 10−2, the approximations 1 + ψ ≈ 1 and

1 + p ≈ 1 holds, which makes this expression even simpler:

α?− ≈
p

ψ − θφ
η+θφ

,

which in turn is positive only if θ < ψη
(1+ψ)φ ≈

ψη
φ . Therefore, the two conditions on p and θ related to the

cancellation of ∆ are retrieved.
As one can see by comparing Figure S1 with Figure 3, α?+ but moreover α?− are accurate estimates of

α?.
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Figure S1: Boundaries of the evolutionary attracting values of CFR.
Underestimate (α?− , left) and the overestimate (α?+, right) values of the evolutionary attractor α? as a
function of unsafe burial ratio θ and trade-off exponent p. The solid, the dashed and the dotted lines
correspond to α? = 1, 0.7 and 0.3 respectively. Other parameter values are default (Table 1).

E Sensitivity analysis
For the sake of both generality and graphical readability, we reduced the dimensionality of the parameter
space by defining:

η := bI
γ
, δ := bD

ε
· γ
bI
, κ := bC

σ
· γ
bI
, (S23)

where η is the average number of infectious contacts between one susceptible and one symptomatic
individual over the symptomatic individual’s symptomatic period, δ is the ratio between the equivalent of
η for dead bodies and η itself, and κ is the ratio between the equivalent of η for convalescent individuals
and η itself. Quantity η is equal to the symptomatic individual relative (that is normalised by S0)
contribution to the basic reproduction number, and is used for defining both δ and κ. Therefore, η is
a primary scaling factor that can be eliminated through any estimated value of the R0. δ and κ are
secondary scaling factors that can be studied independently.

First, the basic reproduction number can be rewritten using definitions (S23),

R0 = ((1 + αθδ)S0 + (1− α)κ) ηαp.

Therefore, any given a set of estimated epidemiological data (α̂, θ̂, Ŝ0, R̂0) can be used to scale η, while
keeping undetermined the trade-off exponent p, that is to say

η̂ = R̂0α̂
−p(

1 + α̂θ̂δ
)
Ŝ0 + (1− α̂)κ

. (S24)

Rewriting the selection gradient at α = 1 with definitions (S23),

∆ (1) ≈ p+ θδ

1 + θδ
− κη,
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and imputing estimated data with equation (S24),

∆ (1) ≈ p+ θδ

1 + θδ
− R̂0α̂

−pκ(
1 + α̂θ̂δ

)
Ŝ0 + (1− α̂)κ

,

we find that

∆ (1) < 0⇐⇒ ((1 + θδ) p+ θδ)
((

1 + α̂θ̂δ
)
Ŝ0 + (1− α̂)κ

)
< (1 + θδ) R̂0α̂

−pκ,

⇐⇒ ((1 + θδ) p+ θδ)
(

1 + α̂θ̂δ
)
Ŝ0 <

(
(1 + θδ) R̂0α̂

−p − ((1 + θδ) p+ θδ) (1− α̂)
)
κ.

Further investigation requires to study the inequality

R̂0 ≷
(
p+ θδ

1 + θδ

)
(1− α̂) α̂p.

Elementary calculus then shows that for any couple (p, α̂) ∈ R+ × [0, 1], we have the following upper
bound (

p+ θδ

1 + θδ

)
(1− α̂) α̂p ≤ (p+ 1) (1− α̂) α̂p ≤ 1,

By definition, epidemiological data originate from outbreaks for which R̂0 > 1, therefore we get the
inequality used to plot our figure

∆ (1) < 0⇐⇒ κ

Ŝ0
>

((1 + θδ) p+ θδ)
(
1 + α̂θ̂δ

)
(1 + θδ) R̂0α̂−p − ((1 + θδ) p+ θδ) (1− α̂)

, (S25)

with values α̂ = 0.7, θ̂ = 0.25, Ŝ0 = 4.44444 · 106 and R̂0 ∈ [1.26, 2.53], according to reference (World
Health Organization Ebola Response Team, 2014; Nyenswah et al., 2016; Abbate et al., 2016) respectively.
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F Application of the Price equation
Introducing a diversity of n ∈ N? non-coinfecting strains of EBOV, system (S1) becomes a set of 4n+ 1
ordinary differential equations, where for all i ∈ {1, . . . , n},

dS
dt = λ− µS −

∑n
i=1 (βI,iIi + βD,iDi + βC,iCi)S,

dEi
dt = (βI,iIi + βD,iDi + βC,iCi)S − ωiEi,

dIi
dt = ωiEi − γiIi,
dDi
dt = αiθγiIi − εiDi,

dCi
dt = (1− αi) γiIi − σiDi.

(S26)

The total population size of each class, denoted by H• :=
n∑
i=1
Hi, therefore satisfies



dS
dt = λ− µS −

(
βI
I
I• + βD

D
D• + βC

C
C•
)
S,

dE•
dt =

(
βI
I
I• + βD

D
D• + βC

C
C•
)
S − ωEE•,

dI•
dt = ωEE• − γII•,

dD•
dt = θαγII• − εDD•,

dC•
dt = γII• − αγII• − σDD•.

(S27)

By definition, an average value of a trait x in a compartment H is given by xH = ∑n
i=1 xi

Hi
H•

.
If we assume that the trait value of a strain is constant and neglect mutational variance (i.e. dxi

dt = 0),
the dynamics of any trait x in the I compartment are thus given by

dxI
dt =

n∑
i=1

( 1
I•

dIi
dt −

Ii
I2
•

dI•
dt

)
xi,

=
n∑
i=1

(
(ωiEi − γiIi)

1
I•
−
(
ωEE• − γII•

) Ii
I2
•

)
xi,

=
n∑
i=1

(
ωi
Ei
E•
− ω Ii

I•

)
xi
E•
I•
−

n∑
i=1

(
γ
Ii
I•
− γ Ii

I•

)
xi,

= E•
I•

n∑
i=1

(
ωi
Ei
E•
− ω Ei

E•
+ ω

Ei
E•
− ω Ii

I•

)
xi −

n∑
i=1

(γ − γ)xi
Ii
I•
,

dxI
dt =

(
covE (x, ω) +

(
xE − xI

)
ωE
) E•
I•
− covI (x, γ) , (S28)

where cov indicates a genetic covariance between two traits, xH is the average value of trait x in host
compartment X and xyH is the average value of the product xy in the same compartment. This illustrates
that it might be difficult to disentangle a trait of interest x with the duration of the latent period (1/ω)
if this latter trait varies for different virus genotypes.

13



Similarly, in the E compartment we have

dxE
dt =

n∑
i=1

( 1
E•

dEi
dt −

Ei
E2
•

dE•
dt

)
xi,

=
n∑
i=1

(((
βIi Ii + βDi Di + βCi Ci

)
S − ωiEi

) 1
E•

−
((

βI
I
I• + βD

D
D• + βC

C
C•

)
S − ωE•

)
Ei
E2
•

)
xi,

= S

E•

n∑
i=1

((
βIi Ii + βDi Di + βCi Ci

)
−
(
βI

I
I• + βD

D
D• + βC

C
C•

)
Ei
E•

)
xi

−
n∑
i=1

(ωi − ω)xi
Ei
E•
,

= S

E•

 ∑
H∈{I,D,C}

H•

n∑
i=1

(
βHi

Hi

H•
− βH

H Hi

H•
+ βH

H Hi

H•
− βH

H Ei
E•

)
xi

− covE (x, ω) ,

dxE
dt = S

E•

 ∑
H∈{I,D,C}

(
covH (x, βH) +

(
xH − xE

)
βH

H
)
H•

− covE (x, ω) . (S29)

If we now focus on the dead hosts, we have

dxD
dt =

n∑
i=1

( 1
D•

dDi

dt −
Di

D2
•

dD•
dt

)
xi,

=
n∑
i=1

(
(αiθγiIi − εiDi)

1
D•
−
(
θαγII• − εD•

) Di

D2
•

)
xi,

= θ
I•
D•

n∑
i=1

(
αiγi

Ii
I•
− αγI Di

D•

)
xi −

n∑
i=1

(εi − ε)xi
Di

D•
,

= θ
I•
D•

n∑
i=1

(
αiγi

Ii
I•
− αγI Ii

I•
+ αγI

Ii
I•
− αγI Di

D•

)
xi −

n∑
i=1

(εi − ε)xi
Di

D•
,

dxD
dt =

(
covI (x, αγ) +

(
xI − xD

)
αγI

)
θ
I•
D•
− covD (x, ε) . (S30)

Finally, in the convalescent hosts, we have

dxC
dt =

n∑
i=1

(dCi
dt

1
C•
− dC•

dt
Ci
C2
•

)
xi,

=
n∑
i=1

(
((1− αi) γiIi − σiCi)

1
C•
−
((
γI − αγI

)
I• − σCC•

) Di

D2
•

)
xi,

= I•
C•

n∑
i=1

(
γi
Ii
I•
− αiγi

Ii
I•
−
(
γI − αγI

) Ci
C•

)
xi −

n∑
i=1

(
σi − σC

)
xi
Ci
C•
,

= I•
C•

n∑
i=1

(
Ii
I•

(
γi − γI − αiγi + αγI

)
+ γI

Ii
I•
− γI Ci

C•
+ αγI

Ci
C•
− αγI Ii

I•

)
xi −

n∑
i=1

(
σi − σC

)
xi
Ci
C•
,

dxC
dt = I•

C•

(
covI (x, γ)− covI (x, αγ) +

(
xI − xC

)
γI −

(
xI − xC

)
αγI

)
− covC (x, σ) . (S31)
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G Numerical simulations
We explored 8 scenarios. For each, we assume that we have n = 100 EBOV strains. The standing genetic
variation for the CFR αi (i ∈ {1, . . . n}) is drawn from a Gaussian distribution with mean α̂ = 0.7 and
standard deviation ς = 0.1

We only explored positive correlations between CFR and transmissions rates, consistently with our
trade-off hypothesis. We also did not investigate correlations between CFR and post mortem elimination
rate because we assume that the period over which an unsafe buried body is still a suitable environment
for virion survival is independent from the initial number of virions. Finally, we ignored convalescent-
related variables received since this component of EBOV transmission is much smaller than the others
two.

The description of the 9 scenarios is as follows:

1. No genetic correlation between the CFR α and other traits (“all constant” panel, also shown in the
main text).

2. Addition of a negative correlation between α and the rate of end of latency period ω.

3. Addition of a positive correlation between α and the transmission rates βH (“+bH” panel) that will
be kept for the next six scenarios.

4. Addition of a positive correlation between α and the inverse of the latency period ω (“+bH+O”
panel).

5. Reversing the correlation between α and ω (“+bH-O” panel).

6. positive correlations between α and βH , α and ω and α and the inverse of the symptomatic period
γ (“+bH+O+G” panel)

7. positive correlations between α and βH and between α and γ, negative correlation between α and
ω (“+bH-O+G” panel)

8. positive correlations between α and βH and between α and ω, negative correlation between α and
γ (“+bH+O-G” panel)

9. positive correlation between α and βH , negative correlations between α and ω and between α and
γ (“+bH-O-G” panel)

Positively and negatively correlated traits were drawn according to the formulas xi =
(
%αi
α̂

+ (1− %) ξi
)
x̂

and xi =
((
− (max (α)− α̂) αi

α̂
+ max (α)−min (α)

)
%

α̂−min(α) + (1− %) ξi
)
x̂ respectively, where x̂ the es-

timated value of x ≡ βH , ω, γ according to Table 1, % = 0.5 denotes the strength of the correlation and ξi
a Gaussian random variable with mean 1 and standard deviation ς = 0.1. Initial conditions are given by
S (0) = λ

µ ≈ 4.4 · 106 ind and Hi (0) = 1 ind for all i ∈ {1, . . . , n} and all H ≡ E, I,D,C.
Results for 8 of the scenarios are shown in Figure S2 (scenario 2 is only shown in the main text for

space constraint reasons).
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Figure S2: Short-term evolution of CFR with standing genetic variation.
The CFR averaged over the exposed individuals (αE) is depicted in cyan, over the symptomatic individuals
(αI) in pink and over the infectious dead bodies (αD) in brown.
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H Virulence and transmission routes
We have showed that EBOV’ reproduction numbers can be split into three additive components that
correspond to each of the three transmission routes namely symptomatic (through regular contact with
symptomatic individuals), post mortem (through contact with unsafe buried infectious dead bodies) and
sexual (through sexual contact with convalescent individuals). According to our trade-off assumption,
the intensity of each of these components is modulated by virulence: both symptomatic and post mortem
components always increase with virulence while sexual component is maximum for an intermediate
virulence level (unless there is no trade-off, in which case the symptomatic component is constant and
the sexual component decreases with virulence), as in Figure S3.

This come from the fact that virulence increases all transmission rates and infectious bodies inflows,
while decreasing the convalescent individuals inflow. Virulence then also acts as an investment cursor
between the exclusive post mortem and sexual transmission routes. It thus appears that the cost of
virulence is strictly limited to loss in sexual transmission. Therefore, it is only if the sexual component is
the dominant route of the virus’ life cycle that this cost can really balances with the overall transmission

Figure S3: Relative variation of transmission route component intensity as a function of
virulence and trade-off shape.
Post mortem (left), symptomatic (middle), and sexual (right) transmission components as a function of
virulence and trade-off shape (p = 0 in black, 0.05 in red, 0.5 in orange, 1 in blue and 2 in green).
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