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Inferential procedures for partially observed functional data∗

David Kraus†

May 27, 2019

Abstract: In functional data analysis it is usually assumed that all functions are completely, densely or sparsely
observed on the same domain. Recent applications have brought attention to situations where each functional
variable may be observed only on a subset of the domain while no information about the function is available on the
complement. Various advanced methods for such partially observed functional data have already been developed
but, interestingly, some essential methods, such as K-sample tests of equal means or covariances and confidence
intervals for eigenvalues and eigenfunctions, are lacking. Without requiring any complete curves in the data, we
derive asymptotic distributions of estimators of the mean function, covariance operator and eigenelements and
construct hypothesis tests and confidence intervals. To overcome practical difficulties with storing large objects
in computer memory, which arise due to partial observation, we use the nonparametric bootstrap approach. The
proposed methods are investigated theoretically, in simulations and on a fragmentary functional data set from
medical research.

Key words and phrases: Bootstrap; covariance operator; functional data; K-sample test; partial observation;

principal components.

1 Introduction

Functional data analysis is an established field (Ramsay and Silverman, 2005; Ferraty and Romain, 2011;
Horváth and Kokoszka, 2012; Kokoszka and Reimherr, 2017) with well-developed methodologies for common
types of observation of random curves, i.e., full (or dense) and sparse observation regimes. Due to new
applications recent years have seen the emergence of a new type of observation of functional data, called
functional fragments or partially observed functional data. For various examples see Bugni (2012), Delaigle
and Hall (2013), Liebl (2013), Gellar et al. (2014), Goldberg et al. (2014), Kraus (2015), Delaigle and Hall
(2016), Gromenko et al. (2017), Kneip and Liebl (2017), Dawson and Müller (2018), Mojirsheibani and
Shaw (2018), Stefanucci et al. (2018), Descary and Panaretos (2019), Kraus and Stefanucci (2019) or Liebl
and Rameseder (2019).

Functional data are collections of observations of random elements of a function space, such as curves,
images, surfaces, spatio-temporal fields. We consider random functions in a separable Hilbert space. With-
out loss of generality we work with the space L2([0, 1]) of square-integrable functions on [0, 1] equipped with

inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt and norm ‖f‖ = 〈f, f〉1/2 but our results are applicable to more general

spaces. Partially observed functional data consist of realizations of random functions that are not observed
on the entire domain. Each function in the sample may be observed on a different subset of the domain
and no information is available on the function values at arguments in the complement of this subset. For
the ith functional variable Xi ∈ L2([0, 1]) there is a subset Oi ⊆ [0, 1] such that Xi(t) is observed for t ∈ Oi
and not observed for t ∈ [0, 1] \ Oi. The observation sets may be random, corresponding to data that are
missing by happenstance, or non-random for designed experiments. We assume that the observation sets are
mutually independent and independent of the curves. We refer to Liebl and Rameseder (2019) for a study
of the case of dependent missingness.

Although some advanced procedures, such as goodness-of-fit tests, regression, classification and recon-
struction methods, have been developed for functional fragments, basic methods of inference about the
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fundamental characteristics of functional variables are still missing. In particular, the asymptotic distri-
bution of estimators of the mean function and covariance operator, K-sample tests of equal means or
covariances, and confidence intervals for eigenvalues and eigenfunctions have not been studied yet in the
setting of incomplete functions. Users who wish to perform these basic tasks currently have the only option:
to omit the partially observed functions and apply existing procedures to the complete data only. This
approach is not only clearly sub-optimal due to a possibly large loss of information and resulting decay of
power and accuracy, but also hardly or totally inapplicable in situations where the data contain few or no
complete curves.

In this paper, we address this deficiency of existing methodology and develop essential methods of
inference about the mean and covariance structure of incomplete functional data. Random functions are
characterized by the mean function µ = EX and the covariance operator R : L2([0, 1])→ L2([0, 1]) defined
as

(Rf)(·) =

∫ 1

0

ρ(·, t)f(t)dt, f ∈ L2([0, 1]),

where ρ(s, t) = cov{X(s), X(t)} is the covariance function, assuming it exists. The covariance structure is
best understood via principal component analysis or eigendecomposition of R in the form

R =

∞∑
m=1

λmϕm ⊗ ϕm,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues, ϕm are the corresponding orthornormal eigenfunctions, and
(a⊗ b)f = 〈b, f〉a for a, b, f ∈ L2([0, 1]). For a theoretical background see, e.g., Bosq (2000).

We find appropriate assumptions on the observation pattern that enable us to establish the asymptotic
distribution of estimators of µ and R. We develop tests for comparing the mean functions in K populations
of functional data based on samples of fragments. Next, we propose several tests of equal covariance
operators in K samples. We also construct confidence intervals for the eigenvalues and eigenfunctions
estimated from incomplete data.

The practical implementation of methods for functional fragments is more complicated than for complete
curves. The main difficulty is that temporal averaging (e.g., in inner products for dimension reduction) is
impossible due to missing values. This leads to asymptotic distributions whose parameters follow rather
complicated formulas. More importantly, since dimension reduction is not possible, the asymptotic distri-
butions are, upon discretization, characterized by large objects (matrices or arrays) that are difficult or
even impossible to store and manipulate in computer memory. The bootstrap turns out to be a solution to
this problem. We provide specific algorithms for resampling functional fragments for mean and covariance
testing and for confidence intervals for eigenelements.

In a simulation study we investigate the performance of the proposed tests, focusing in particular on
the impact of missingness on the different tests and on the effect of the interplay between missingness and
the form of differences between groups. The study shows that the proposed methods are superior to the
currently only available approach based on omitting incomplete curves.

The proposed methodology is applied to a data set of temporal profiles of heart rate. The data consist
of several hundred curves recorded by an automatic device during several hours in the evening during the
transition from the day to night regime of heart activity. The profiles are not observed always available
on the entire domain of interest because either the device did not measure or record measurements, or the
person switched off the device. These fragmentary data were previously analyzed in Kraus (2015), where
further details can be found.

Section 2 develops methods of inference about means in one and K samples. Section 3 deals with tests
about covariance operators and with inference about principal components. Section 4 presents bootstrap
approximations. Results of the simulation study and the data example are reported in Sections 5 and
6. In the Appendix we provide a central limit theorem for non-identically distributed functional variables
needed in the asymptotic analysis of fragments, and proofs of all theorems. Additional simulation results
and further results of the data analysis.
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2 Mean inference from incomplete curves

2.1 Estimation of the mean function

In this section we focus on inference about the mean of functional data. Let us first consider estimation
of the mean function µ of a homogeneous population. Let there be n independent functional observations.
Each curve Xi, i ∈ {1, . . . , n} may be observed incompletely, with values known only for arguments in
a subset Oi ⊆ [0, 1], with no information on the complement of Oi. The observation sets may be non-
random or random. They are assumed to be mutually independent and independent of the curves and to
consist of a finite union of intervals. We denote by Oi(t) the indicator that the value of Xi(t) is observed.

The mean function µ(t) can be estimated by the cross-sectional average of available observations

µ̂(t) =
J(t)

N(t)

n∑
i=1

Oi(t)Xi(t),

where N(t) =
∑n
i=1Oi(t) is the number of available observations at time t and J(t) = 1[N(t)>0]. The

estimator is defined to be zero when N(t) = 0. In Kraus (2015, Proposition 1) it was shown that under
non-restrictive assumptions on the observation pattern the estimator µ̂ is consistent for the mean function
µ, namely, it was proven that E ‖µ̂ − µ‖2 = O(n−1) as n → ∞. We now aim to provide the asymptotic
distribution of the estimator. The result will be essential in the derivation of the limiting distribution of
the test statistics that we construct afterwards.

We denote πi(t) = EOi(t) = Pr{Oi(t) = 1} and π̄(t) = n−1
∑n
i=1 πi(t). Furthermore, we denote by

Ui(s, t) = Oi(s)Oi(t) the indicator of observing the function values at the pair of arguments s and t, and
define νi(s, t) = EUi(s, t), ν̄(s, t) = n−1

∑n
i=1 νi(s, t) and M(s, t) =

∑n
i=1 Ui(s, t). We need to introduce

conditions on the observation pattern as follows.

Condition 1.

(a) Let there be a function π(t) such that π0 = inft∈[0,1] π(t) > 0 and supt∈[0,1] |π̄(t)−π(t)| → 0 for n→∞.

(b) Let there be a function ν(s, t) such that ν̄(s, t)→ ν(s, t) for all s, t ∈ [0, 1].

(c) Let there be a value ν0 > 0 such that for each (s, t) ∈ [0, 1]2 either ν(s, t) ≥ ν0 or ν(s, t) = 0, and let
the convergence sup(s,t)∈[0,1]2 |ν̄(s, t)− ν(s, t)| → 0 for n→∞ hold.

Condition (a) guarantees the consistency of the estimator µ̂, see Kraus (2015). Condition (b) is needed for
the weak convergence of the estimator. Condition (c) is needed for consistent estimation of the covariance
operator of the limiting distribution. We emphasize that no complete curves are required since these
conditions may be satisfied even when the sample contains only fragments. We illustrate this attractive
property in the simulation study in Section 5.

When the observation indicators O1, . . . , On are identically distributed, then Condition (a) is stafisfied if
π(t) = P{Oi(t) = 1} is bounded away from zero, Condition (b) is satisfied automatically and Condition (c)
is satisfied if for each (s, t) ∈ [0, 1]2, ν(s, t) = P{Oi(s) = 1, Oi(t) = 1} is either bounded away from zero or
equal to zero. The case of non-identically distributed observation indicators may be relevant, for example,
for designed experiments in which non-random, designed observation sets may vary across subjects.

By ‖ · ‖2 below we denote the Hilbert–Schmidt norm of an operator.

Theorem 1. Assume that E(‖X1‖2) <∞. Let Conditions 1(a) and 1(b) hold. Then

n1/2{µ̂(·)− µ(·)}, N(·)1/2{µ̂(·)− µ(·)}

are asymptotically distributed as mean zero Gaussian processes with covariance operators K ′, K with
kernels

κ′(s, t) = π(s)−1π(t)−1ν(s, t)ρ(s, t), κ(s, t) = π(s)−1/2π(t)−1/2ν(s, t)ρ(s, t),

respectively.
If, moreover, Condition 1(c) is satisfied, then K ′ and K can be consistently estimated by the operators

K̂ ′ and K̂ with kernels κ̂′(s, t) = π̂(s)−1π̂(t)−1ν̂(s, t)ρ̂(s, t) and κ̂(s, t) = π̂(s)−1/2π̂(t)−1/2ν̂(s, t)ρ̂(s, t),
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respectively, i.e., E ‖K̂ ′ −K ′‖22 → 0 and E ‖K̂ −K ‖22 → 0, where π̂(t) = N(t)/n, ν̂(s, t) = M(s, t)/n,
ρ̂(s, t) is the empirical covariance based on all complete pairs of function values at s, t, and the value of the
kernels is set to 0 whenever π̂(s) or π̂(t) is 0.

The proof of this and other theorems is provided in the Appendix. Since the observable functional vari-
ables may be non-identically distributed due to possibly non-identically distributed observation indicators,
the proof uses a central limit theorem for non-identically distributed functional random variables given in
the Appendix.

Notice that the covariance kernels κ′(s, t) and κ(s, t) of the limiting distributions are zero when ν(s, t) = 0
regardless of the value of ρ(s, t). Therefore, it is not necessary to estimate ρ(s, t) at such points. This is
why Condition 1(c) does not require the function ν(s, t) to be bounded away from zero on the entire domain
[0, 1]2 which is needed for the estimation of R, as will be seen in Section 3, Condition 2(a). This means that
the theorem applies also in the context of short fragments of curves considered, e.g., by Delaigle and Hall
(2016) or Descary and Panaretos (2019), where each curve in the sample is observed on a short interval and
no completely observed curves are available.

2.2 Tests of equality of means in several populations

Let us now consider K independent samples of functional data. Let the jth sample (j ∈ {1, . . . ,K})
consist of independent curves Xj1, . . . , Xjnj

coming from the same distribution with mean µj and covariance
operator Rj . The functions may not be observed completely. It is assumed that for each function Xji its
values are available on a subset Oij . Let the observation subsets be mutually independent and independent
of the curves. Our aim is to test the null hypothesis that µ1 = · · · = µK against the general alternative that
the null does not hold. The literature on hypothesis testing for means of functional data is rich. See, for
example, Aue et al. (2009); Benko et al. (2009); Cao et al. (2012); Cuevas et al. (2004); Fogarty and Small
(2014); Horváth and Kokoszka (2012); Liebl (2019); Mas (2007); Paparoditis and Sapatinas (2016b); Pini
et al. (2018); Pini and Vantini (2016); Vsevolozhskaya et al. (2014); Zhang et al. (2010); Zhang (2013).

In the literature on complete functional samples there exist two main approaches to comparing mean
functions. One is based on the L2 distance between the means and one uses projections on finite dimensional
subspaces.

The assessment of the hypothesis will be based on the contrasts of the group means and a null es-
timate of the common mean, i.e., on the differences µ̂j − µ̂, j ∈ {1, . . . ,K}. Here we use µ̂j(t) =
Jj(t)Nj(t)

−1
∑nj

i=1Oji(t)Xji(t), j ∈ {1, . . . ,K}, with Nj(t) =
∑nj

i=1Oji(t) and Jj(t) = 1[Nj(t)>0]. The

estimator µ̂ is obtained as a weighted average of the group means in the form µ̂(t) =
∑K
j=1 ŵj(t)µ̂j(t) with

weights

ŵj(t) =
Nj(t)/r̂

2
j∑K

k=1Nk(t)/r̂2
k

,

where r̂2
j = tr R̂j is the trace of the estimated covariance operator in the jth sample (the estimators R̂j are

discussed later). The role of the scaling by r̂2
j is to account for possibly different covariance structures in the

samples. This way of combining estimated means of heteroscedastic samples is inspired by the univariate
case and its standard multivariate extensions. If the covariance structures are known to be the same in all
samples, the factors r̂2

j can be replaced by the trace of an estimator of the common covariance operator,
which leads to the estimated mean based on the pooled sample of curves.

The first test we propose is inspired by the method of Cuevas et al. (2004) who in the context of fully
observed functional data developed an ANOVA test based on the L2 norms of the contrasts of the group
means and the pooled sample mean. A two-sample version of the test using the nonparametric bootstrap
was proposed by Benko et al. (2009). Horváth et al. (2013) studied a two-sample test based on the L2 norm
in the context of functional time series. The standardized contrast processes Nj(·)1/2{µ̂j(·) − µ̂(·)}/r̂j ,
j ∈ {1, . . . ,K} can be collected into a K-dimensional vector that is a random element of the product space

{L2([0, 1])}K with inner product 〈f, g〉 =
∑K
j=1〈fj , gj〉 for f = (f1, . . . , fK)>, g = (g1, . . . , gK)>. We use its

L2 norm as the test statistic, i.e., base the test on

TL2 =

K∑
j=1

‖Nj(·)1/2{µ̂j(·)− µ̂(·)}/r̂j‖2 =

K∑
j=1

∫ 1

0

Nj(t){µ̂j(t)− µ̂(t)}2/r̂2
jdt (1)
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and reject when the value of the statistic is significantly large.
Another main approach to curve mean testing uses dimension reduction. See, e.g., Aue et al. (2009),

Horváth and Kokoszka (2012) or Horváth et al. (2013). The idea is to focus on a finite number of important
features of the infinite-dimensional data. The functional observations are projected on a finite-dimensional
subspace and multivariate ANOVA or a similar multivariate procedure is applied to the resulting vectors
of Fourier scores. This strategy is not directly applicable in the situation of incompletely observed curves
because, unlike in the fully observed case, Fourier scores of functional fragments cannot be computed by
numerical integration as inner products of the functional variable and the basis function since the functional
variable is not available on the entire domain.

Let ψ̂1, . . . , ψ̂d be some linearly independent functions in L2([0, 1]). Without loss of generality we assume
that they are orthonormal. These functions may be either deterministic or random (estimated from the
data). In the construction of our projection tests we use Fourier scores of the standardized contrast processes

with respect to the basis functions ψ̂l. We denote these scores Qjl = 〈Nj(·){µ̂j(·) − µ̂(·)}, ψ̂l〉/(r̂jn1/2
j ),

j ∈ {1, . . . ,K}, l ∈ {1, . . . , d} and collect them in the score vector Q = (Q11, . . . , Q1d, . . . , QK1, . . . , QKd)
>.

The score statistic is the quadratic form
Td = Q>V̂ −Q, (2)

where V̂ − is the Moore–Penrose pseudoinverse of the estimated (Kd)× (Kd) covariance matrix of Q whose
entry on the position with index (jl, km) is

V̂jl,km = 〈π̂1/2
j ψ̂l, V̂jk(π̂

1/2
k ψ̂m)〉 =

∫
[0,1]2

π̂j(s)
1/2ψ̂l(s)v̂jk(s, t)ψ̂m(t)π̂k(t)1/2dsdt

for j, k ∈ {1, . . . ,K}, l,m ∈ {1, . . . , d}. Here V̂jk is the covariance operator with kernel

v̂jk(s, t) =

K∑
l=1

r̂−1
j {δjl −Nj(s)

1/2ŵl(s)Nl(s)
−1/2}κ̂l(s, t){δkl −Nk(t)1/2ŵl(t)Nl(t)

−1/2}r̂−1
k , (3)

where δjk is the Kronecker delta. The test rejects for large values of Td.
Analogously to the case of one group considered in Subsection 2.1, we denote for j ∈ {1, . . . ,K},

i ∈ {1, . . . , nj} the following quantities characterizing the observation patterns in each group, πji(t) =
EOji(t) = Pr(Oji(t) = 1), π̄j(t) = n−1

j

∑nj

i=1 πji(t), Uji(s, t) = Oji(s)Oji(t), νji(s, t) = EUji(s, t),

ν̄j(s, t) = n−1
j

∑nj

i=1 νij(s, t) and Mj(s, t) =
∑nj

i=1 Uji(s, t). Under mild assumptions we obtain the asymp-
totic distribution of both test statistics.

Theorem 2. For j ∈ {1, . . . ,K} assume that nj → ∞, nj/(n1 + · · ·+ nK) → aj > 0 and E ‖Xj1‖2 < ∞.
Let the observation patterns in each group satisfy Condition 1. Then under the null hypothesis of equal
means we obtain the following results:

(i) The test statistic TL2 is asymptotically distributed as
∑∞
k=1 γkCk, where Ck are independent chi-square

distributed variables with one degree of freedom and γk can be consistently estimated by the eigenvalues
of the operator V̂ given in (3).

(ii) Assume that there exist linearly independent non-random functions ψ1, . . . , ψd such that ‖ψ̂l−ψl‖
P−→ 0

for l ∈ {1, . . . , d}. Then the test statistic Td is asymptotically chi-square distributed with (K − 1)d
degrees of freedom.

The test statistic based on the L2 norm is not distribution-free but the critical values can be obtained
straightforwardly by simulation, provided that the eigenvalues of V̂ consistently estimate γk. Similarly, the
consistency of V̂ (and hence of V̂ ) is needed for the score statistic. The consistency of V̂ is guaranteed

by Condition 1(c). It may sometimes happen that Mj(s, t) is low for some s, t, making the estimator V̂
less reliable. For this reason, and also for computational reasons, to avoid the estimation of the limiting
covariance one can use the bootstrap method, as we describe in Section 4.

In the literature on complete functional data, the most common choice of the basis functions for the pro-
jection test is derived from principal component analysis (see Horváth and Kokoszka (2012) and references
therein, or Fremdt et al. (2014)). The approach uses several leading eigenfunctions of the pooled sample
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covariance operator. The motivation for this choice is the property that the first eigenfunctions capture the
principal modes of variation, the most important features of random deviations of the functional variables
from the mean. Another approach is to use a fixed set of basis functions, such as several elements of the
Fourier basis of sines and cosines or several orthornormal Legendre polynomials.

For several reasons we prefer deterministic bases to the basis of eigenfunctions. One drawback of the
latter approach is that the principal components of variability may be only weakly related or entirely
unrelated (orthogonal) to the differences between the mean functions, resulting in a test that is weak or
inconsistent against this alternative. It may of course happen that the deterministic functions we choose
are orthogonal to the alternative too, or that the leading eigenfunctions capture the mean differences well.
However, with fixed functions it is at least possible to say before the analysis which alternatives can be
detected. With principal components it is not known beforehand which departures from the null can be
captured because the eigenfunctions are usually unknown. Moreover, their property of capturing the largest
portion of variability, which is typically the main argument for using them, is not exactly what one wishes
in mean testing. In fact, one would rather wish to maximize the signal-to-noise ratio or non-centrality,
which, for example, in the case of components with equal magnitude of means would mean to minimize
variability. In reality, the true interplay between the magnitude of components of the mean difference and
their variability is not known, and we, therefore, prefer fixed functions.

The choice of the number of basis functions is important with projection methods. For the approach
using eigenfunctions, we follow the recommendation of Horváth et al. (2013) to use the smallest number of
components needed to explain at least 85 % of the total variability. For the method using fixed functions,
in light of the above discussion of the relation of the power and variability we do not base the choice of d
on the explained variability. Instead, we can specify what shape differences we wish to detect and use the
corresponding basis functions. For example, using just d = 3 Legendre polynomials describing constant,
monotonic as well as convex or concave non-monotonic differences seems to be a good choice in many
applications.

3 Covariance inference under partial observation

3.1 Asymptotics for the estimated covariance operator and principal compo-
nents

Given a collection of independent realizations of curves X1, . . . , Xn with mean function µ and covariance
operator R observed on subsets O1, . . . , On, the covariance function ρ(s, t) can be estimated by the empirical
covariance using pairwise complete observations, that is, by

ρ̂(s, t) =
I(s, t)

M(s, t)

n∑
i=1

Ui(s, t){Xi(s)− µ̂st(s)}{Xi(t)− µ̂st(t)},

where I(s, t) = 1[M(s,t)>0] and

µ̂st(s) =
1[M(s,t)>0]

M(s, t)

n∑
i=1

Ui(s, t)Xi(s).

If M(s, t) = 0, we define ρ̂(s, t) = 0 and µ̂st(s) = 0. Under certain assumptions on the observation

pattern, the operator R̂ with kernel ρ̂(s, t) was shown to be a consistent estimator of R in Kraus (2015,
Proposition 1).

In the theorem below we give the asymptotic distribution under a set of conditions for which we de-
note Ei(s, t, u, v) = Oi(s)Oi(t)Oi(u)Oi(v), the indicator that the observation of Xi at points s, t, u, v is
available, and set θi(s, t, u, v) = Pr{Ei(s, t, u, v) = 1}, θ̄(s, t, u, v) =

∑n
i=1 θi(s, t, u, v)/n and L(s, t, u, v) =∑n

i=1Ei(s, t, u, v).

Condition 2.

(a) Let there be a function ν(s, t) such that ν0 = inf(s,t)∈[0,1]2 ν(s, t) > 0 and sup(s,t)∈[0,1]2 |ν̄(s, t)−ν(s, t)| →
0 for n→∞.

(b) Let there be a function θ(s, t, u, v) such that θ̄(s, t, u, v)→ θ(s, t, u, v) for all s, t, u, v ∈ [0, 1].
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(c) Let there be a value θ0 > 0 such that for each (s, t, u, v) ∈ [0, 1]4 either θ(s, t, u, v) ≥ θ0 or θ(s, t, u, v) = 0,
and let the convergence sup(s,t,u,v)∈[0,1]4 |θ̄(s, t, u, v)− θ(s, t, u, v)| → 0 for n→∞ hold.

Condition (a) means that there are enough observations at all pairs of arguments. The condition is

needed for the consistency of R̂, see Kraus (2015) for a proof under an essentially equivalent condition.
Condition (b) guarantees the weak convergence in the theorem below, and the additional condition (c)
guarantees that the covariance of the asymptotic distribution can be estimated. We stress that these
conditions do not require that the data contain any complete curves. They may be satisfied even in
situations, where all functional observations are fragmentary. When the observation indicators O1, . . . , On
are identically distributed, then Condition (a) is stafisfied if ν(t) = P{Oi(s) = 1, Oi(t) = 1} is bounded away
from zero, Condition (b) is satisfied automatically and Condition (c) is satisfied if for each (s, t, u, v) ∈ [0, 1]4,
θ(s, t, u, v) = P{Oi(s) = 1, Oi(t) = 1, Oi(u) = 1, Oi(v) = 1} is either bounded away from zero or equal to
zero.

Theorem 3. Assume that E(‖X1‖4) < ∞. Let Conditions 2(a) and 2(b) hold. Then n1/2(R̂ − R) and
the operator with kernel M(·, ·)1/2{ρ̂(·, ·) − ρ(·, ·)} are asymptotically distributed as mean zero Gaussian
operators whose covariance operators H′, H have kernels

η′(s, t, u, v) = ν(s, t)−1ν(u, v)−1θ(s, t, u, v){ζ(s, t, u, v)− ρ(s, t)ρ(u, v)},
η(s, t, u, v) = ν(s, t)−1/2ν(u, v)−1/2θ(s, t, u, v){ζ(s, t, u, v)− ρ(s, t)ρ(u, v)},

respectively, where ζ(s, t, u, v) = E[{X(s)− µ(s)}{X(t)− µ(t)}{X(u)− µ(u)}{X(v)− µ(v)}].
If, in addition, Condition 2(c) is satisfied, then H′ and H can be consistently estimated by the operators Ĥ′

and Ĥ with kernels η̂′(s, t, u, v) = ν̂(s, t)−1ν̂(u, v)−1θ̂(s, t, u, v){ζ̂(s, t, u, v)− ρ̂(s, t)ρ̂(u, v)} and η̂(s, t, u, v) =

ν̂(s, t)−1/2ν̂(u, v)−1/2θ̂(s, t, u, v){ζ̂(s, t, u, v)− ρ̂(s, t)ρ̂(u, v)}, respectively, i.e., E ‖Ĥ′−H′‖22 → 0 and E ‖Ĥ−
H‖22 → 0, where η̂′(s, t, u, v) and η̂(s, t, u, v) are set to 0 whenever ν̂(s, t) or ν̂(u, v) is 0, θ̂(s, t, u, v) =

L(s, t, u, v)/n and ζ̂(s, t, u, v) is the empirical fourth central moment of the functional random variable
computed using all complete quadruples of function values at arguments s, t, u, v.

The weak convergence in the theorem above is on the separable Hilbert space of Hilbert–Schmidt
operators equipped with the Hilbert–Schmidt norm ‖ · ‖2. The limiting covariance operator H is an
operator that maps a Hilbert–Schmidt operator F with kernel f(u, v) to an operator with kernel∫ 1

0

∫ 1

0
η(s, t, u, v)f(u, v)dudv, similarly for other objects in the theorem.

Next, we study the estimators λ̂m and ϕ̂m of the eigenvalues and eigenfunctions of R. The estimators
are obtained by the eigendecomposition of R̂. Their root-n consistency was established by Kraus (2015,
Proposition 2). Here we find the approximate distribution of the fluctuation of the estimators around their
true counterparts (with appropriate sign for the eigenfunctions as usual).

Theorem 4. Assume that E(‖X1‖4) <∞ and R has eigenvalues with multiplicity 1. Let Conditions 2(a)

and 2(b) hold. Denote by H ′∞ a random operator following the limiting Gaussian distribution of n1/2(R̂−
R) with mean zero and covariance H′ given in Theorem 3. Then, for n → ∞, we obtain the following
results:

(i) n1/2(λ̂m − λm) is asymptotically distributed as 〈H ′∞ϕm, ϕm〉, which is a normal variable with mean
zero and variance ∫

[0,1]4
ϕm(s)ϕm(t)η′(s, t, u, v)ϕm(u)ϕm(v)dsdtdudv.

(ii) n1/2(ϕ̂m − ŝmϕm), where ŝm = sign〈ϕ̂m, ϕm〉, is asymptotically distributed as the Gaussian random
function QmH ′∞ϕm, where

Qm =

∞∑
k=1
k 6=m

ϕk ⊗ ϕk
λm − λk

.

The limiting covariance operator of n1/2(ϕ̂m − ŝmϕm) is

∞∑
k=1
k 6=m

∞∑
l=1
l 6=m

ϕk ⊗ ϕl
(λm − λk)(λm − λl)

∫
[0,1]4

ϕk(s)ϕm(t)η′(s, t, u, v)ϕm(u)ϕl(v)dsdtdudv.
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If, additionally, Condition 2(c) is satisfied, then the limiting variance and covariance above can be consis-
tently estimated by plugging-in estimates from Theorem 3.

The theorem is proved in the Appendix with the help of perturbation theory. The theorem generalizes
the classic results of Dauxois et al. (1982) who considered completely observed functions. See Kokoszka
and Reimherr (2013) for related results for functional time series. In the case of complete Gaussian curves
Dauxois et al. (1982) showed that the limiting covariance structure of the empirical covariance operator
simplifies (see also Panaretos et al., 2010) which eventually leads to a simpler form of the limiting variance
of the empirical eigenvalue, namely to 2λ2

m. No such simplification is in general possible in the case of
incomplete curves, even if they are Gaussian. Therefore, to make inference about eigenvalues or eigen-
functions, e.g., to construct confidence intervals, one possibility is to estimate the function η′(s, t, u, v) and
use the complicated expressions above for the limiting covariance structure. In Section 4 we provide an
alternative approach based on the bootstrap which enables to avoid the possibly unstable estimation of η′

and computer memory demanding storage and manipulation with the estimate.

3.2 Testing the equality of covariance operators

We now study tests for equality of covariance operators of several populations. Let there be K independent
samples of partially observed functions with mean µj and covariance Rj in the jth sample, as described in
Subsection 2.2. We aim to test the null hypothesis that R1 = · · · = RK against the general alternative. The
general problem of hypothesis testing for covariance operators was previously studied in various contexts
by various methods. See, e.g., Benko et al. (2009); Boente et al. (2017); Cabassi et al. (2017); Fremdt
et al. (2013); Guo et al. (2018a,b); Jarušková (2013); Kashlak et al. (2018); Kraus and Panaretos (2012);
Masarotto (2019); Panaretos et al. (2010); Paparoditis and Sapatinas (2016b); Pigoli et al. (2014); Pini
et al. (2019); Zhang (2013); Zhang and Liang (2014).

Tests of the null hypothesis of equal covariance operators can be based on the differences between the
estimators R̂j and the null estimator R̂ which is the pooled covariance operator with kernel

ρ̂(s, t) =

K∑
j=1

ŵj(s, t)ρ̂j(s, t),

where

ŵj(s, t) =
Mj(s, t)∑K
k=1Mk(s, t)

.

The differences are expressed by the constrast operators with kernels Mj(·, ·)1/2{ρ̂j(·, ·)−ρ̂(·, ·)}. We propose
two types of tests measuring the importance of the contrasts: one approach is based on the Hilbert–Schmidt
norm of the contrasts and one is based on their projections on a subspace.

The first approach is inspired by methods that were previously considered in the case of fully observed
functions, e.g., by Boente et al. (2017). The importance of the contrasts is expressed by the Hilbert–Schmidt
norm. The test statistic takes the form

SHS =

K∑
j=1

‖Mj(·, ·)1/2{ρ̂j(·, ·)− ρ̂(·, ·)}‖22 =

K∑
j=1

∫
[0,1]2

Mj(s, t){ρ̂j(s, t)− ρ̂(s, t)}2dsdt (4)

(in this notation we identify kernels and the corresponding operators).
The second approach uses projections of the contrasts onto a finite-dimensional subspace of the space of

Hilbert–Schmidt operators. This type of tests was used for complete functions in various settings, e.g., by
Horváth et al. (2010), Panaretos et al. (2010), Panaretos et al. (2011), Kraus and Panaretos (2012), Fremdt
et al. (2013), and Jarušková (2013). It is natural to project on the subspace generated by the leading

eigenfunctions of R̂ because they carry information about the object of interest, the covariance operator
(unlike in the case of mean functions where we prefer to use a fixed basis for the projection test). Let

ϕ̂1, . . . , ϕ̂d be the first d eigenfunctions of R̂. Then the operators

Ûlm =

{
ϕ̂l ⊗ ϕ̂l, l = m,

(ϕ̂l ⊗ ϕ̂m + ϕ̂m ⊗ ϕ̂l)/21/2, l < m
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with kernels ûll(s, t) = ϕ̂l(s)ϕ̂l(t) and ûlm(s, t) = {ϕ̂l(s)ϕ̂m(t) + ϕ̂m(s)ϕ̂l(t)}/21/2, l < m form an orthonor-
mal basis of a d(d+ 1)/2-dimensional subspace of HS(L2([0, 1])). The Fourier coefficients of the projection
of the jth standardized contrast on this subspace are

Rjlm = 〈Mj(·, ·){ρ̂j(·, ·)− ρ̂(·, ·)}/n1/2
j , Ûlm〉 =

∫
[0,1]2

Mj(s, t){ρ̂j(s, t)− ρ̂(s, t)}ûlm(s, t)dsdt/n
1/2
j . (5)

Denote by R the Kd(d + 1)/2-dimensional score vector with components Rjlm, j ∈ {1, . . . ,K}, 1 ≤ l ≤
m ≤ d. The test statistic measures the size of the projection of the contrast operators on the subspace. It
takes the form

Sd = RŴ−R, (6)

where Ŵ− is the Moore–Penrose pseudoinverse of the estimator of the asymptotic covariance matrix whose
entry with indices (jlm, kpq) is

Ŵjlm,kpq = 〈ν̂j(·, ·)1/2ûlm(·, ·), B̂jk{ν̂k(·, ·)1/2ûpq(·, ·)}〉

=

∫
[0,1]4

ν̂j(s, t)
1/2ûlm(s, t)β̂jk(s, t, u, v)ûpq(u, v)ν̂k(u, v)1/2dsdtdudv,

(7)

j, k = 1, . . . ,K, 1 ≤ l ≤ m ≤ d, 1 ≤ p ≤ q ≤ d. The kernel of B̂jk is

β̂jk(s, t, u, v) =

K∑
l=1

{δjl −Mj(s, t)
1/2ŵl(s, t)Ml(s, t)

−1/2}η̂l(s, t, u, v)

× {δkl −Mk(u, v)1/2ŵl(u, v)Ml(u, v)−1/2}.

(8)

We now give the asymptotic distribution of the Hilbert–Schmidt and projection statistics.

Theorem 5. For j ∈ {1, . . . ,K} assume that nj → ∞, nj/(n1 + · · ·+ nK) → aj > 0, E ‖Xj1‖4 < ∞ and
all eigenvalues of Rj have multiplicity 1. Let the observation patterns in each group satisfy Condition 2.
Then under the null hypothesis of equal covariance operators we obtain the following results:

(i) The test statistic SHS is asymptotically distributed as
∑∞
k=1 δkCk, where Ck are independent chi-square

distributed variables with one degree of freedom and δk can be consistently estimated by the eigenvalues
of the operator B̂ given in (8).

(ii) The test statistic Sd is asymptotically chi-square distributed with (K−1)d(d+1)/2 degrees of freedom.

The asymptotic distribution of SHS can be approximated by simulation like in Boente et al. (2017).
Section 4 presents a practical bootstrap implementation of these tests in which it is not necessary to
compute the operator B̂.

Tests based directly on covariance operators are not the only option. As an alternative we explore the
approach of Pigoli et al. (2014) who argue that although covariance operators are contained in the Hilbert
space of Hilbert–Schmidt operators, they do not form a linear subspace, and propose other distances than
those based on the difference of covariances, such as the Procrustes distance and the square root distance.
This direction of research was further investigated by Cabassi et al. (2017) and Masarotto (2019). One of
the proposals of Pigoli et al. (2014) was to use the Hilbert–Schmidt distance between square root covariance

operators dsqrt(R1,R2) = ‖R1/2
1 − R

1/2
2 ‖2. They report good power results for a two-sample test of

equal covariances in the setting of complete functions based on this distance between estimated operators,
dsqrt(R̂1, R̂2). We extend this approach to K samples consisting of partially observed functions.

Since the data may contain incomplete functions, the empirical covariance operators R̂j used before may
have negative eigenvalues. To be able to work with empirical square root covariance operators, we need to
modify the covariance estimators to ensure they are non-negative definite. We use

R̂j+ =

nj∑
l=1

(λ̂jl)+ϕ̂jl ⊗ ϕ̂jl,
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where (λ̂jl)+ = max(λ̂jl, 0) is the positive part of the eigenvalue λ̂jl of R̂j and ϕ̂jl is the corresponding
eigenfunction. As discussed in Kraus (2015), negative eigenvalues are typically of small magnitude in
comparison with leading eigenvalues and, therefore, are negligible in practice. For a test statistic, we need
to use the distance dsqrt to define a null estimator of R and contrasts between the group estimators R̂j+

and the null estimator. The common covariance operator can be estimated by

R̂sqrt =

(∑K
j=1 njR̂

1/2
j+∑K

j=1 nj

)2

,

which is the weighted Fréchet mean of the group-specific operators, i.e., the minimizer with respect to R
of
∑K
j=1 njdsqrt(R̂j+,R)2.

The attained minimum of this objective function,

Ssqrt =

K∑
j=1

njdsqrt(R̂j+, R̂sqrt)
2 =

K∑
j=1

‖n1/2
j (R̂

1/2
j+ − R̂

1/2
sqrt)‖22, (9)

can serve as a test statistic for comparing covariance operators in K samples. The statistic summarizes
the size of the contrasts between the group and null estimators of the square root covariance operator.
Following Pigoli et al. (2014) we use resampling to approximate the null distribution of the statistic.

Notice that the contrasts between the group and null estimators in Ssqrt and SHS are weighted differently.
In SHS we weight the contrast kernels by Mj(s, t)

1/2 which in the fragmentary setting reflects the accuracy of
the estimation of the covariance kernel at each point of [0, 1]2 due to the number of observations available at
that point. In Ssqrt this would not be meaningful because the square root covariance operator is a function
of the entire covariance operator and thus the accuracy of the estimation of the square root covariance
kernel at one point depends also on the numbers of available observations at all other points. We therefore

simply weight by n
1/2
j reflecting the overall accuracy of the square root covariance estimator. Both SHS and

Ssqrt are the attained minimum of the corresponding objective functional that defines the null estimator.

4 Practical implementation and bootstrap approximations

Functional data procedures are practically implemented by discretization. Functional observations are
evaluated at q points of a grid in the domain. Functions then correspond to q-vectors (possibly with
missing values), operators on the function space correspond to (q× q)-matrices and operators on operators
correspond to four-way arrays with all dimensions q.

To make inference (tests and confidence intervals), one can use the asymptotic distributions found in the
previous section. However, the implementation of such procedures would be excessively demanding in terms
of computer memory, especially in the case of covariance inference. For example, when the evaluation grid
consists of q = 100 points, arrays such as the one corresponding to the fourth moment kernel ζ(s, t, u, v)
contain q4 = 108 entries. To compare covariances, e.g., in K = 3 samples, one would have to work with an
array with K2q4 = 9 × 108 entries whose size already approaches the memory limits of usual computers,
even if symmetry is exploited. In the case of multivariate, spatial or image data the number of evaluation
points q is typically much larger than for functions of a one-dimensional argument. Aston et al. (2017) give
an example of acoustic phonetic data with bivariate, time-frequency argument with q = 8100. In conclusion,
the size of objects representing the asymptotic covariance structure for tests or confidence intervals may be
far beyond memory limits.

Projection covariance tests for complete functions can avoid the computation, storage and manipulation
with such large arrays by computing principal scores of each function with respect to the required low
number d of eigenfunctions (Horváth et al., 2010; Panaretos et al., 2010, 2011; Fremdt et al., 2013). The
covariance matrix of the score then depends on easy-to-handle d-dimensional four-way arrays instead of large
q-dimensional four-way arrays. This dimension reduction approach is not applicable in the case of incomplete
functions because the principal scores 〈Xji − µ̂j , ϕ̂m〉 cannot be computed when Xji is available only on
a subset of its domain (they can only be predicted, see Kraus, 2015). Therefore, even the computation of
the projection test statistic (6) is difficult due the large arrays the matrix Ŵ depends on.
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The computation of the Hilbert–Schmidt statistic (4) and the square root covariance statistic (9) does
not involve large four-way arrays. However, to use the asymptotic distribution of SHS (see Theorem 5) one
needs to estimate the eigenvalues of an operator on operators. Upon discretization and vectorization, this
leads to a large eigenproblem of dimension (Kq2)× (Kq2), e.g., 30 000× 30 000 for K = 3, q = 100. Again,
dimension reduction cannot be used due to incomplete functions.

To overcome these difficulties we use the bootstrap. For completely observed functional data bootstrap
tests of equal mean functions or covariance operators were studied by Benko et al. (2009) and Paparoditis
and Sapatinas (2016b,a). In our missing data setting, all bootstrap procedures consist of appropriate
resampling of fragmentary curves, which means that each bootstrap sample is again a collection of partially
observed functions. The proposed procedures enable to completely avoid the computation of each entry of
the large four-way covariance array and the storage and decomposition of the whole array.

The implementation of the tests of equal means is described in Algorithm 1. To correctly reproduce
the limiting distribution of the group mean estimators under the null, the resampling is done separately
in each group of groupwise centred fragmentary observations. The stratification guarantees that neither
the missingness patterns nor distributional characteristics of the functions beyond the means need to be
equal in all groups. The L2 statistic is computed directly for each bootstrap sample and the observed value
is then compared with the resampled values. The direct computation of the projection test statistic from
observed or resampled data would require the estimation of the covariance functions v̂jk in (3), which may
be memory demanding and possibly unstable in regions with few complete pairs. We avoid it by estimating
the covariance matrix of the score vector from the resampled score vectors, calculating the quadratic form
statistic using the observed score vector and the bootstrap estimate of its covariance matrix, and comparing
it with its asymptotic chi-square distribution.

Algorithm 1 Bootstrap approximation for tests of equal mean functions

1: Calculate µ̂j from observed samples of fragments Xj1, . . . , Xjnj , j = 1, . . . ,K, and µ̂
2: Calculate the test statistic TL2 and the score vector Q
3: Set Xji0 = Xji − µ̂j + µ̂
4: For b = 1, . . . , B
5: For each j = 1, . . . ,K, sample with replacement from fragments Xj10, . . . , Xjnj0

to get fragments X∗j10, . . . , X
∗
jnj0

6: Calculate the statistic T
∗(b)
L2 and score vector Q∗(b) from X∗j10, . . . , X

∗
jnj0, j = 1, . . . ,K

7: Approximate the p-value of the L2-test using TL2 and T
∗(1)
L2 , . . . , T

∗(B)
L2

8: Calculate the empirical covariance matrix V̂ ∗ of Q∗(1), . . . , Q∗(B) and the statistic Td = Q>V̂ ∗−Q
9: Approximate the p-value of the projection test using Td and the χ2

(K−1)d distribution

Algorithm 2 describes the bootstrap implementation of confidence intervals for eigenelements. Resam-
pling is applied to fragments and eigenelements are computed. The resampled eigenfunction is possibly
reflected about zero so that its sign agrees with that of the observed data empirical eigenfunction. Standard
methods of construction of confidence intervals can then be used. Since we again wish to avoid the calcula-
tion of variance estimates of eigenelements (see Theorem 4), we use the normal or basic bootstrap method
(Davison and Hinkley, 1997, Chapter 5). Intervals for eigenvalues are constructed on the logarithmic scale
and untransformed. This is appropriate in general because in the case of completely observed Gaussian
curves the asymptotic variance of n1/2(λ̂m − λm) is 2λ2

m and thus the log-transformation approximately
stabilizes variance.

Bootstrap covariance testing is described in Algorithm 3. Unlike in the case of mean testing, it is
not possible to transform the data to the common null covariance structure and use stratified resampling.
Bootstrap samples are instead drawn from the pooled sample of groupwise centred fragments, similarly to
Paparoditis and Sapatinas (2016b, Subsection 2.2) for complete curves. Then, under the null hypothesis,
if characteristics of observation patterns (θj) and fourth order moments (ζj) are the same in all groups,
the pooled resampling asymptotically replicates the limiting distributions of interest. The Hilbert–Schmidt
norm and square root covariance statistics are computed directly and the significance is decided upon by
comparing the observed statistics with the resampled ones. Like in the case of mean testing, dimension
reduction is impossible due to partial observation, and thus the computation of the covariance matrix of
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Algorithm 2 Bootstrap confidence intervals for eigenvalues and eigenfunctions

1: Calculate R̂ from the observed fragmentary functional data X1, . . . , Xn

2: Calculate the eigenvalues λ̂m and eigenfunctions ϕ̂m of R̂
3: For b = 1, . . . , B
4: Sample with replacement from fragments X1, . . . , Xn to get fragments X∗1 , . . . , X

∗
n

5: Calculate R̂∗ from X∗1 , . . . , X
∗
n and its eigenvalues λ̂

∗(b)
m and eigenfunctions ϕ̂

∗(b)
m

6: Replace ϕ̂
∗(b)
m by sign〈ϕ̂∗(b)m , ϕ̂m〉ϕ̂∗(b)m

7: Based on λ̂
∗(b)
m , ϕ̂

∗(b)
m , b = 1, . . . , B, calculate bootstrap confidence intervals for λm using log-

transformation and pointwise bootstrap confidence intervals for ϕm(t)

the score vector would require to compute large four-way arrays. Instead, the boostrap is used to estimate
the covariance matrix of the score and the quadratic statistic with this matrix is used.

Algorithm 3 Bootstrap approximation for tests of equal covariance operators

1: Calculate µ̂j and R̂j from observed samples of fragments Xj1, . . . , Xjnj , j = 1, . . . ,K, and R̂

2: Perform eigendecomposition of R̂, determine d and calculate Ûlm, 1 ≤ l ≤ m ≤ d
3: Calculate the test statistics SHS and Ssqrt and the score vector R with respect to Ûjm

4: Set Xji0 = Xji − µ̂j
5: For b = 1, . . . , B
6: For each j = 1, . . . ,K, sample with replacement from the pooled collection of fragments

Xji0, j = 1, . . . ,K, i = 1, . . . , nj to get fragments X∗j10, . . . , X
∗
jnj0

7: Calculate the statistics S
∗(b)
HS and S

∗(b)
sqrt and the score vector R∗(b) with respect to Ûjm

from X∗j10, . . . , X
∗
jnj0, j = 1, . . . ,K

8: Approximate the p-value of the Hilbert–Schmidt norm test using SHS and S
∗(1)
HS , . . . , S

∗(B)
HS and the

p-value of the square root covariance test using Ssqrt and S
∗(1)
sqrt , . . . , S

∗(B)
sqrt

9: Calculate the empirical covariance matrix Ŵ ∗ of R∗(1), . . . , R∗(B) and the statistic Sd = R>Ŵ ∗−R
10: Approximate the p-value of the projection test using Sd and the χ2

(K−1)d(d+1)/2 distribution

While we do not provide formal proofs of the validity of the bootstrap approximations, these could be
obtained along the lines of the proofs in Paparoditis and Sapatinas (2016a) and Paparoditis and Sapatinas
(2016b) using our asymptotic results (Theorems 1–5). Note that in our setting the observation sets might
be non-identically distributed (e.g., in the case of designed experiments), and hence the bootstrap is applied
to possibly non-identically distributed observed fragments. Their average characteristics, however, converge
under Conditions 1 and 2. It is possible to use the bootstrap even with mildly non-identically distributed
data, as discussed in the general context by Liu (1988) who shows that if average moment characteristics
of possibly non-identically distributed variables converge, the bootstrap is still applicable.

The use of the bootstrap for the square root covariance test is based on empirical evidence from simulation
studies (Section 5 and the Supplementary Material). Its theoretical justification would require to first
establish the asymptotic distribution of the estimated square root covariance operator, which is not available
even in the case of completely observed curves (Pigoli et al., 2014).

5 Simulation results

The main goal of the study is to investigate the impact of partial observation on the performance of the
different mean and covariance tests and compare the proposed tests using complete and incomplete curves
with the simple approach using complete curves only.

We repeatedly generate three samples of curves of sizes n1 = 80, n2 = 100, n3 = 120. Curves in the jth
sample take the form

X(t) = µj(t) + λ
1/2
j0 βj0hj(t) +

20∑
k=1

λ
1/2
jk βjk21/2 cos(kπt), t ∈ [0, 1],
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where βjk, j ∈ {1, 2, 3}, k ∈ {0, . . . , 20} are mutually independent standard normal variables. Additional
simulations with t5 distributed coefficients are reported in the supplementary material. In all simulations
we use 1000 repetitions of the test procedures, each based on 500 bootstrap samples. All tests are performed
on the nominal level of 5 %. All results have been computed in R 3.4.

The tests are applied to complete trajectories, observation pattern (1), and to fragments obtained by
deleting missing periods following several random or nonrandom patterns. Observation patterns (2) and (3)
are nonrandom: under pattern (2), the period [0, 0.5] is removed from 50 % of the curves in the first sample,
50 % in the second sample and 60 % in the third sample; pattern (3) is symmetric about 0.5, i.e., the period
[0.5, 1] instead of [0, 0.5] is missing in the same subset of curves. Under patterns (4)–(7), a random missing
period is generated independently for each curve and removed from the trajectory. First, we consider

random missing periods taking the form M = [C −E,C +E] ∩ [0, 1] with C = dU
1/2
1 and E = fU2, where

U1, U2 are independent variables uniformly distributed on [0, 1] and d, f are parameters. For missingness
pattern (4) we set d = 1.4 and f = 0.2; this gives 39 % of completely observed curves and the cross-sectional
percentage of observed values decreases from 99 % at time 0 to 79 % at time 1. Pattern (5) is symmetric
about 0.5. For pattern (6) we use the same model as for (4) and set d = 1.2 and f = 0.5; this leads
to 7 % of complete curves and the cross-sectional probability of observation is 94 % at 0 and decreases to
about 45 % near 1. Pattern (7) is again obtained by reflecting pattern (6) about 0.5. Pattern (8) consists
of observation periods generated independently for each curve in the form O = [U1, U2] ∩ [0, 1], where U1,
U1 are independent variables uniformly distributed on [a,C], [C, 1 − a], respectively, a = −0.3 and C is
uniformly distributed on [0, 1]; the percentage of complete curves in this case is 16 % and the cross-sectional
observation probability at 0.5 is 77 % and decreases to 44 % towards both endpoints of the domain. Finally,
for pattern (9) curves are observed on random intervals generated as [C − 0.2, C + 0.2] ∩ [0, 1], where C is
uniformly distributed in [0, 1]. This corresponds to fragments of curves of length at most 0.4, hence the
datasets contain no complete curves, the median length of observed fragments is 0.3 and the cross-sectional
probability of observation is 0.3 in the middle of the domain and decreases towards the endpoints, where it
is 0.15.

In the study of mean tests four configurations of the mean functions are considered. Under configura-
tion A the null hypothesis is satisfied: all mean functions are zero. Under configuration B the mean functions
differ by a constant vertical shift: µ1(t) = 0, µ2(t) = 0.18, µ3(t) = −0.1. Under configuration C there are
monotonic differences between the means: µ1(t) = 0, µ2(t) = 0.35 exp(−4t), µ3(t) = −0.25 exp(−3t). Un-
der configuration D the means differ in a more complex, nonmonotonic way and they cross: µ1(t) = 0,
µ2(t) = 2t exp(−3t), µ3(t) = 0.1 − 8t2 exp(−5t). We set λj0 = 0.5, λjk = 3−k and hj(t) = 1, that is,
the covariance structure is the same in all three groups. Additional simulations with unequal covariance
structures lead to similar results and are included in the Supplementary Material. We report in the first
part of Table 1 the size and power of the L2 test based on TL2 given in (1) and of the projection test based
on Td given in (2) using d = 3 Legendre polynomials of order zero, one and two. Blank entries in the table
correspond to situations where the true rejection probability is the same as in the entry above; such situa-
tions arise when the observation pattern is obtained by reflecting the preceding pattern and the processes
{X(t) : t ∈ [0, 1]} and the time-reversed processes {X(1− t) : t ∈ [0, 1]} have the same distribution.

We see in the first part of Table 1 that under the null hypothesis, configuration A, the rejection probabil-
ity of the L2 tests is close to the nominal level. The size of the projection test seems to be somewhat above
the nominal level due to the sample size, especially under observation pattern (9), where the missingness
rate is the highest. Our simulation study of power provides raw rejection probabilities in Table 1 and size-
adjusted powers (using the method from Subsection 3.2 of Lloyd (2005)) in Table S2 in the Supplementary
Material. The possibility of size issues should be kept in mind in applications: especially in marginal cases,
users should not simply compare p-values with a single threshold but rather carefully report them.

Under scenario B the L2 test is more powerful than the projection method. The reason is that the
projection method uses in addition to the constant basis function two other terms (linear and quadratic)
that do not contribute to the detection of the constant difference between the means but on the other hand
they increase the degrees of freedom and hence decrease the power. The L2 method uses infinitely many
directions in the space of alternatives but these redundant features are downweighted by the decreasing
eigenvalues (the constant difference of means agrees with the constant leading eigenfunction which receives
the highest weight in the L2 statistic). Most partial observation patterns lead to a relatively small decrease
of power because under this scenario the mean functions differ by a constant vertical shift which is a very
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Table 1
Empirical rejection probability (in %) of the L2 test, TL2 , and projection test, Td, of equal means. A dash indicates
the same value as on the preceding row. The observation patterns (1)–(9) and mean configurations A–D are described
in the text.

Observation Mean configuration
pattern A B C D

TL2 Td TL2 Td TL2 Td TL2 Td

Tests using complete and incomplete curves (proposed approach)
(1) 5.6 6.2 69 60 49 56 52 63
(2) 5.4 6.7 59 52 28 29 38 50
(3) — — — — 50 56 44 62
(4) 4.4 6.5 66 58 51 57 51 62
(5) — — — — 44 49 50 58
(6) 5.4 7.1 58 51 50 55 42 49
(7) — — — — 28 34 37 42
(8) 5.4 5.8 55 47 34 37 42 48
(9) 5.4 7.8 37 40 20 23 26 34

Tests using complete curves only (simple approach)
(2), (3) 5.7 7.4 40 34 26 32 27 35
(4), (5) 3.6 7.4 28 27 18 26 19 28
(6), (7) 4.9 26.8 7 31 6 29 6 31
(8) 4.0 11.5 13 22 8 20 10 21

simple, global feature that is easily detected even with reduced, fragmented data. The loss of power is
largest under pattern (9), where also the reduction of observed data is considerably larger than under the
other patterns.

Both tests have comparable power under scenario C. Both tests lose power under observation pattern (2)
because a large portion of data is missing on the interval [0, 0.5], where the difference between the means
is the largest; on the other hand, the reflected pattern (3) does not lead to a loss of power because curves
are missing only in [0.5, 1], where the means do not differ much. A similar effect is seen under observation
patterns (6) and (7).

Under scenario D the projection test seems to be slightly more powerful than the L2 (even after the
size adjustment in Table S2 in the Supplementary Material) because the nonmonotonic differences between
the mean functions are well captured by both the first three Legendre polynomials and the first three
eigenfunctions but the contribution of the latter is downweighted in the L2 statistic whereas the projection
statistic treats all three components equally.

The second part of Table 1 shows for each missingness pattern and mean configuration the performance
of the tests applied to the subset of complete curves only. The complete curve approach would be the only
possibility if the tests developed in this paper were not available. Results for the pairs of patterns (2) and
(3), (4) and (5), (6) and (7) are presented on the same rows of the second part of the table because the
subsets of complete curves are the same under both patterns in each pair. Pattern (9) is omitted because
it contains no complete curves and hence inference is impossible without our methods. Under patterns (2)
(or (3)) and (4) (or (5)), the use of complete curves only, which form 46 % and 39 %, respectively, of the
whole sample, leads to a considerable loss of power in most situations. Configuration C under pattern (2) is
an exception. Here removing incomplete curves does not decrease the power because they are observed on
the subdomain [0.5, 1], where the means do not differ much. Under patterns (6) (or (7)) and (8) there are
only 7 % and 16 % complete curves, respectively. With such small sample sizes the projection test becomes
unreliable in terms of level and the L2 test loses almost all power.

Next, we study the behaviour of the tests for comparing covariance operators. Under all scenarios we
generate mean zero trajectories. Configuration A satisfies the null hypothesis with λj0 = 0.5, λjk = 3−k

and hj(t) = 1, j ∈ {1, 2, 3}. Under configuration B the same parameters are used except for the third
sample where the overall scale is larger, namely λ3,0 = 1.5 × 0.5 and λ3,k = 1.5 × 3−k. Under scenario C
the first two eigenvalues in the third sample are interchanged, i.e., λ3,0 = 3−1, λ3,1 = 0.5 and λ3,k = 3−k,
k ∈ {2, . . . , 20}, otherwise the parameters are the same as in A. Scenario D differs from A in that we set
h3(t) = 1 for t ∈ [0, 0.5] and h3(t) = 2.21/2 for t ∈ (0.5, 1]. Table 2 shows the size and power of the
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Table 2
Empirical rejection probability (in %) of the Hilbert–Schmidt norm test, SHS, projection test, Sd, and square root
covariance test, Ssqrt, of equal covariance operators. A dash indicates the same value as on the preceding row. The
observation patterns (1)–(5) and covariance configurations A–D are described in the text.

Observation Covariance configuration
pattern A B C D

SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt

Tests using complete and incomplete curves (proposed approach)
(1) 5.4 5.8 4.8 69 82 80 69 58 69 78 62 81
(2) 4.6 6.4 4.9 54 63 41 37 32 38 76 64 54
(3) — — — — — — — — — 46 30 48
(4) 5.0 5.1 5.8 64 74 72 61 53 62 72 56 73
(5) — — — — — — — — — 77 60 77

Tests using complete curves only (simple approach)
(2), (3) 4.1 7.3 4.6 32 38 41 33 28 34 45 30 47
(4), (5) 4.3 5.5 4.2 26 32 33 25 24 28 34 23 36

Hilbert–Schmidt norm test based on SHS in (4), projection test based on Sd in (6) with d selected to explain
at least 85 % of the total variability of the null covariance estimate, and square root covariance test based
on Ssqrt in (9). Like before, entries where the true rejection probability equals the one above are left blank.
We use only observation patterns (1)–(5). Under the other patterns the amount of missing information is
too large for second order inference.

Under the null hypothesis, configuration A, the first part of Table 2 shows that the rejection probability
of all tests is close to the nominal level under all missingness patterns, with the projection test being slightly
above the level in some cases.

It is interesting to notice the different impact of missingness on the power in different situations. We
report raw power in Table 2 and size-adjusted power in Table S4 in the Supplementary Material. While in
many situations the loss of power due to missingness is similar for all three tests, in some situations the
square root test appears to be more sensitive to missingness. For example under scenario B and missingness
pattern (2), the square root covariance test loses almost half of its power relative to no missingness, much
more than the other two tests. This can be explained by the fact that the square root covariance estimator
depends on the estimator of the covariance kernel at all arguments which means that uncertainty due to
missingness localized in a certain region in the domain, like under pattern (2), propagates. Similarly, under
scenario D and pattern (2) the Hilbert–Schmidt and projection tests do not lose much power and the square
root test does because the difference between the covariances is due to the differences of hj(t) for t ∈ [0.5, 1]
while missingness occurs for t ∈ [0, 0.5]. For these reasons, under the same scenario, pattern (3) leads to
a larger loss of power than pattern (2) for the Hibert–Schmidt and projection tests, whereas the loss of the
square root covariance is not much higher than under pattern (2), where it was already high.

The second part of Table 2 shows results for tests applied to the subset of complete curves only. Like
before, patterns (3) and (5) are shown on the same rows as patterns (2) and (4), respectively, because
the subsets of complete curves are the same. We observe a large decrease of power in comparison with
the power of the proposed tests in cases, where the neglected incomplete curves carry information on the
difference between covariance operators. When the difference is mostly in the frequently missing region
(e.g., configuration D, pattern (3)), removing incomplete curves affects the power much less.

These results highlight the usefulness of the proposed methods as an efficient, and often the only viable
approach to testing with incomplete functions. In no situation the proposed methods behaved worse than the
simple approach using complete curves only, and in many cases it behaved dramatically better. Additional
results for non-Gaussian curves can be found in the Supplementary Material.

6 Application to partially observed heart rate temporal profiles

We illustrate our methods on curves describing the evolution of heart rate in 427 male participants in the
period from 8 PM to 2 AM corresponding to the domain [20, 26]. The data come from the Swiss Kidney
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Fig. 1. Individual heart rate profiles and their first derivative (left panels) and the corresponding group-specific
and null estimates of the mean (right panels).

Project on Genes in Hypertension. There are three groups of persons according to their age: younger
than 40 years (164 persons), between 40 and 65 (180), and older than 65 (83). The curves and their first
derivative are plotted in Fig. 1. Although the percentage of observed values at each time or at each pair of
time points is relatively high (Fig. 2), only 58 % of the curves are complete.

Plots of the estimated mean functions in Fig. 1 indicate differences between the age groups both in
terms the temporal profiles and their first derivative. We first compare the group means of heart rate
profiles. The p-values of the L2 test and projection test using three Legendre polynomials are 0.006 and less
than 0.001, respectively, confirming the clearly visible differences. To compare the dynamics of heart rate
during the transition between day and night we test whether the means of the first derivative differ. The
L2 and projection test have nearly zero p-values, meaning that the mean heart rate profiles differ between
age groups more than by a vertical shift. The plots suggest it may be interesting to compare some pairs
of groups. E.g., while the mean profiles of the middle and oldest group significantly differ (p < 0.01 for
both tests), they appear to be approximately parallel. The difference between the derivatives is indeed
insignificant (p = 0.07 for the L2 test, p = 0.09 for the projection test).

Without the methods developed in this paper one would have to use complete curves only. There are 249
complete functions (43, 110 and 96 in the three age groups). The projection test still detects the differences
between the three groups (p = 0.008) but the L2 test loses significance (p = 0.066). When comparing the
second and third group, the projection test now fails to detect the difference (p = 0.13) and the L2 test gives
a marginally significant result (p = 0.048). This can be explained by a loss of power seen in simulations
because the removed incomplete curves are more often observed at earlier times, where also the difference
between the two mean curves is more pronounced.

Estimates of the covariance function of heart rate profiles and of their derivatives for each age group
are plotted in Fig. 3. Further plots can be found in the supplementary document. The plots suggest some
differences between the groups. The variance and covariance appears to be higher in younger participants,
especially earlier in the time interval (during the day). We assess the significance of these differences using

16



20 21 22 23 24 25 26

0.
86

0.
88

0.
90

0.
92

0.
94

Time

P
ro

po
rt

io
n 

of
 o

bs
er

ve
d 

va
lu

es

20 21 22 23 24 25 26

20
21

22
23

24
25

26

Time

T
im

e

0.80

0.85

0.90
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Table 3
p-values of the Hilbert–Schmidt norm test, SHS, the square root covariance test, Ssqrt, and the projection tests, Sd,
with d = 1, 2, 3, for comparing covariance structures of heart rate profiles and of their first derivative in three age
groups. The fraction of variance explained by the first d principal components of the null covariance estimate is
indicated in parentheses.

SHS Ssqrt S1 S2 S3

Curves 0.338 0.118 0.317 (88.2 %) 0.439 (97.3 %) 0.275 (99.1 %)
First derivative 0.226 0.114 0.322 (62.6 %) 0.131 (94.4 %) 0.094 (98.7 %)

the proposed tests. For the projection test we consider up to three principal components (plotted in the
supplementary document), which corresponds to the projection on a subspace of dimension six in the space
covariance operators. Table 3 reports the p-values. None of the tests rejects the null hypothesis on usual
significance levels. Similarly, pairwise comparisons provided no overwhelming evidence of differences. It is of
course possible that there are differences between groups that may be detected with larger samples. To gain
further insight into the structure of possible differences one can inspect the values of the standardized score

components Rjlm/Ŵ
1/2
jlm,jlm (see (5) and (7)) whose graphical representation is provided in the supplement.

Supplementary material

The supplementary document available online contains further simulation results and additional graphs for
the data application. R code is available online.
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A A central limit theorem

We provide a general central limit theorem for independent but not necessarily identically distributed ran-
dom elements of a separable Hilbert space. It is needed in the proofs, where non-identical distributions
arise due to partial observation, but is of more general interest. It extends the standard result for indepen-
dent identically distributed functional variables (Bosq, 2000, Theorem 2.7) by relaxing the assumption of
identical distributions and by considering triangular arrays. The notation ‖ · ‖∞ below means the operator
norm.

Theorem 6. Let Yni, n ∈ {1, 2, . . . }, i ∈ {1, . . . , n} be random elements of a separable Hilbert space H with
mean zero, E ‖Yni‖2 <∞ and covariance operators Cni. Let Yn1, . . . , Ynn be mutually independent for each
n ∈ {1, 2, . . . }. Denote Sn = n−1/2

∑n
i=1 Yni and Gn = n−1

∑n
i=1 Cni. Assume that

(i) ‖Gn − G ‖∞ → 0 as n→∞ for some covariance operator G ,

(ii) for all ε > 0,

n−1
n∑
i=1

E(‖Yni‖21[‖Yni‖>n1/2‖Gn‖∞ε])→ 0

as n→∞,

(iii) tr Gn → tr G as n→∞.

Then Sn converges in distribution to a Gaussian random element with mean zero and covariance operator G .

B Proofs

Proof of Theorem 1

We rewrite N1/2(µ̂ − µ) = π̂1/2n1/2(µ̂ − µ). The main task is to establish the weak convergence of the
process

n1/2(µ̂− µ) =
1

π
Sn +

(
J

π̂
− 1

π

)
Sn + n1/2(J − 1)µ, (10)

where Sn = n−1/2
∑n
i=1Oi(Xi − µ). We show that the first term on the right side of (10) converges in

distribution to a mean zero Gaussian process with covariance operator with kernel π(s)−1π(t)−1ν(s, t)ρ(s, t)
that can be consistently estimated by π̂(s)−1π̂(t)−1ν̂(s, t)ρ̂(s, t), and that the norms of the other two terms
converge in probability to 0. The proof of the weak convergence of N1/2(µ̂ − µ) then follows from the
convergence of π̂ to π, the consistency of the estimator of its covariance kernel can be shown analogously.

The weak convergence of Sn is shown with the help of Theorem 6, a central limit theorem for independent
non-identically distributed Hilbert space variables given in the Appendix. We apply the theorem with
Yni = Oi(Xi − µ). The covariance operator Gn of Sn is given by the kernel ν̄(s, t)ρ(s, t). Denote by G the
covariance operator with kernel ν(s, t)ρ(s, t). Conditions of the central limit theorem Theorem 6 can be
shown using Condition 1(b) as follows. Condition (i) of Theorem 6 is satisfied because

‖Gn − G ‖2∞ ≤ ‖Gn − G ‖22 =

∫
[0,1]2
{ν̄(s, t)− ν(s, t)}2ρ(s, t)2dsdt→ 0

as n→∞ by the dominated convergence theorem. Condition (ii) of Theorem 6 holds because

n−1
n∑
i=1

E(‖Yni‖21[‖Yni‖>n1/2‖Gn‖∞ε]) ≤ n
−1

n∑
i=1

E(‖Xi − µ‖21[‖Xi−µ‖>n1/2‖Gn‖∞ε])

= E(‖X1 − µ‖21[‖X1−µ‖>n1/2‖Gn‖∞ε]),

which converges to 0 by the dominated convergence theorem. Finally,
∫ 1

0
ν̄(t, t)ρ(t, t)dt→

∫ 1

0
ν(t, t)ρ(t, t)dt

by the dominated convergence theorem again, and thus condition (iii) of Theorem 6 is satisfied. Hence the
process Sn is asymptotically Gaussian with covariance kernel ν(s, t)ρ(s, t).
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The expectation of the squared norm of the second term on the right side of (10) can be rewritten as∫ 1

0

E

[{
J(t)

π̂(t)
− 1

π(t)

}2

Sn(t)21[π̂(t)≥π0/2]

]
dt+

∫ 1

0

E

[{
J(t)

π̂(t)
− 1

π(t)

}2

Sn(t)21[π̂(t)<π0/2]

]
dt. (11)

The first summand above is dominated by∫ 1

0

E

[
{π(t)− π̂(t)}2

π4
0/4

Sn(t)2

]
dt ≤

∫ 1

0

E

[
{π(t)− π̂(t)}2

π4
0/4

]
ρ(t, t)dt

which converges to zero by the dominated convergence theorem since E[{π(t)− π̂(t)}2] = {π(t)− π̄(t)}2 +
n−2

∑n
i=1 πi(t){1− πi(t)} → 0 for n→∞. Next, we first compute{

J(t)

π̂(t)
− 1

π(t)

}2

1[π̂(t)<π0/2] =

[
J(t)

{
π(t)− π̂(t)

π̂(t)π(t)

}2

+ {1− J(t)} 1

π(t)2

]
1[π̂(t)<π0/2]

≤ [J(t)n2/π2
0 + {1− J(t)}/π2

0 ]1[π̂(t)<π0/2] ≤ n2/π2
01[π̂(t)<π0/2].

Then the second summand in (11) is smaller than or equal to∫ 1

0

E{n2/π2
01[π̂(t)<π0/2]Sn(t)2}dt ≤

∫ 1

0

n2/π2
0 Pr{π̂(t) < π0/2}ρ(t, t)dt ≤ n2 sup

t∈[0,1]

Pr{π̂(t) < π0/2}/π2
0 tr R,

which converges to 0 because, in light of Hoeffding’s inequality and Condition 1(a), for all t ∈ [0, 1],

Pr{π̂(t) < π0/2} ≤ exp[−2n{π̄(t)− π0/2}2] ≤ exp

[
−2n

{
π0/2− sup

t∈[0,1]

|π̄(t)− π(t)|
}2]

→ 0.

This completes the proof of the convergence in probability of the norm of the second term on the right hand
side of (10) to zero. The last term in (10) can be shown to converge to zero using similar arguments based
on Hoeffding’s inequality.

We now turn to the proof of the consistency of the estimator of the covariance kernel. To show that

E

∫
[0,1]2

{
ν̂(s, t)ρ̂(s, t)

π̂(s)π̂(t)
− ν(s, t)ρ(s, t)

π(s)π(t)

}2

dsdt→ 0,

we can split the integral into the integrals over A0 = {(s, t) ∈ [0, 1]2 : ν(s, t) = 0} and A1 = {(s, t) ∈ [0, 1]2 :
ν(s, t) ≥ ν0} because Condition 1(c) implies that A0 ∪A1 = [0, 1]2. On A0 we obtain

E

∫
A0

{
ν̂(s, t)ρ̂(s, t)

π̂(s)π̂(t)

}2

{1[min(π̂(s),π̂(t))≥π0/2] + 1[min{π̂(s),π̂(t)}<π0/2]}dsdt

≤
∫
A0

E{ν̂(s, t)2}E{ρ̂(s, t)2}dsdt
(

(π0/2)−4 + n4 sup
(s,t)∈[0,1]2

Pr[min{π̂(s), π̂(t)} < π0/2]

)
.

Here the integral converges to zero by the dominated convergence theorem as the integrand can be shown to
go to 0 and the second term in the brackets asymptotically vanishes due to an exponential rate of decrease
of the supremum that can be established with the help of Hoeffding’s inequality as before, hence the whole
quantity above converges to 0. We now focus on A1. We rewrite

ν̂(s, t)ρ̂(s, t)

π̂(s)π̂(t)
− ν(s, t)ρ(s, t)

π(s)π(t)
=

ν̂(s, t)

π̂(s)π̂(t)
{ρ̂(s, t)− ρ(s, t)}+

{
ν̂(s, t)

π̂(s)π̂(t)
− ν(s, t)

π(s)π(t)

}
ρ(s, t) (12)

and show that the integral over A1 of the expectation of the square of each summand converges to zero.
For the first summand we compute∫

A1

E

([
ν̂(s, t)

π̂(s)π̂(t)
{ρ̂(s, t)− ρ(s, t)}

]2

{1[min(π̂(s),π̂(t))≥π0/2] + 1[min{π̂(s),π̂(t)}<π0/2]}
)
dsdt

≤ E

∫
A1

{ρ̂(s, t)− ρ(s, t)}2dsdt
[
(π0/2)−4 + n4 sup

(s,t)∈[0,1]2
Pr(min{π̂(s), π̂(t)} < π0/2)

]
,
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where the integral term converges to 0 by similar arguments to those in the proof of Proposition 1 in Kraus
(2015) with the help of Condition 1(c) and the second term goes to 0 by Hoeffding’s inequality again. For
the second summand on the right in (12) we can write∫

A1

E

[
I(s, t)

{
π(s)π(t)ν̂(s, t)− π̂(s)π̂(t)ν(s, t)

π̂(s)π̂(t)π(s)π(t)

}2]
ρ(s, t)2dsdt

+

∫
A1

E

[
{1− I(s, t)}

{
ν(s, t)

π(s)π(t)

}2]
ρ(s, t)2dsdt.

(13)

Like before, we split the first term in (13) into two summands by writing∫
A1

E

[
I(s, t)

{
π(s)π(t)ν̂(s, t)− π̂(s)π̂(t)ν(s, t)

π̂(s)π̂(t)π(s)π(t)

}2

{1[min(π̂(s),π̂(t))≥π0/2] + 1[min{π̂(s),π̂(t)}<π0/2]}
]
ρ(s, t)2dsdt.

The first summand is bounded by 16π−8
0

∫
A1

E[{π(s)π(t)ν̂(s, t) − π̂(s)π̂(t)ν(s, t)}2]ρ(s, t)2dsdt, which con-
verges to 0 by the dominated convergence theorem since the expectation in the integrand can be
shown to converge to 0; the second summand in the displayed expression above is dominated by
n4π−4

0 ‖R‖22 sup(s,t)∈[0,1]2 Pr(min{π̂(s), π̂(t)} < π0/2), which converges to 0 by Hoeffding’s inequality. Fi-

nally, the second term in (13) is dominated by sup(s,t)∈A1
Pr(ν̂(s, t) < ν0/2)π−4

0 ‖R‖22, which converges to 0
again by Hoeffding’s inequality.

Proof of Theorem 2

Denote Zj(·) = Nj(·)1/2{µ̂j(·) − µ̂(·)}/r̂j and Z = (Z1, . . . , ZK)>. Under the null hypothesis we can

write Z = D̂H, where H = (H1, . . . ,HK)> with Hj = N
1/2
j (µ̂j − µ) and D̂ is a bounded linear op-

erator from {L2([0, 1])}K to {L2([0, 1])}K that maps an element f to an element g whose jth compo-

nent is given by gj(t) =
∑K
l=1(D̂jlfl)(t) =

∑K
l=1 r̂

−1
j {δjl − Nj(t)

1/2ŵl(t)Jl(t)Nl(t)
−1/2}fl(t) (here δjl is

the Kronecker delta and Jl(t)Nl(t)
−1/2 is zero if Jl(t) = 1[Nl(t)>0] is zero). From Theorem 1 we see

that H converges in distribution to the random element H∞ = (H∞1 , . . . ,H∞K )> whose components
are mutually independent Gaussian processes with mean zero and covariance operators Kj , j = 1 . . . ,K

analogous to the operator K in Theorem 1. The operator D̂ converges in probability to the opera-

tor D whose elements are defined by (Djlfl)(t) = r−1
j {δjl − πj(t)

1/2a
1/2
j wl(t)πl(t)

−1/2a
−1/2
l }fl(t) with

wl(t) = alπl(t)/r
2
l /(
∑K
k=1 akπk(t)/r2

k) (the convergence is in the operator norm, i.e., ‖D̂ − D‖∞
P−→ 0).

Therefore, it follows from Slutsky’s and continuous mapping theorem that Z = D̂H converges weakly to
Z∞ = DH∞. This is a K-dimensional mean zero Gaussian random process with cross-covariance operator
between Z∞j and Z∞k equal to Vjk =

∑K
l=1 DjlKlD∗kl, j = 1, . . . ,K, k = 1, . . . ,K. These can be consis-

tently estimated by plugging-in the estimators D̂jl and K̂l. The kernel of the estimator V̂jk takes the form

v̂jk(s, t) =
∑K
l=1 r̂

−1
j {δjl −Nj(s)1/2ŵl(s)Nl(s)

−1/2}κ̂l(s, t){δkl −Nk(t)1/2ŵl(t)Nl(t)
−1/2}r̂−1

k .

For (i), the continuous mapping theorem gives that the statistic TL2 = ‖Z‖2 converges weakly to
the random variable ‖Z∞‖2. The process Z∞ is a Gaussian random element of the separable Hilbert
space {L2([0, 1])}K . Therefore, it can be expanded in a Karhunen–Loève series with Gaussian coefficients.
Consequently, the distribution of its squared norm is that of the series given in the theorem. The consistency
of V̂ implies the consistency of the estimated eigenvalues.

To prove (ii), notice that the components of the score vector satisfy Qjl = 〈π̂1/2
j Zj , ψ̂l〉. The con-

tinuous mapping theorem and Slutsky’s theorem in conjunction with the convergence of ψ̂l imply that
Q is asymptotically distributed as a Gaussian vector with mean zero and covariance matrix with entries

Vjl,km = 〈π1/2
j ψl,Vjk(π

1/2
k ψm)〉. The consistency of V̂jl,km follows from the consistency of V̂jk and π̂j

and convergence of ψ̂l. The process (π̂
1/2
1 Z1, . . . , π̂

1/2
K ZK) lies in a (K − 1)-dimensional subspace of the

K-dimensional product space {L2([0, 1])}K and the same holds for its limit. Therefore, the score vector
lies in a (K − 1)d-dimensional subspace of RKd, leading to (K − 1)d degrees of freedom of the chi-square
distribution.
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Proof of Theorem 3

The kernel of n1/2(R̂ −R) is

n1/2{ρ̂(s, t)− ρ(s, t)} = n1/2{ρ̂(s, t)− ρ̌(s, t)}+
1

ν(s, t)
σ(s, t) +

{
I(s, t)

ν̂(s, t)
− 1

ν(s, t)

}
σ(s, t)

+ n1/2{I(s, t)− 1}ρ(s, t),

(14)

where ρ̌ is defined like ρ̂ with the true mean in place of the estimated mean and σ(s, t) =
n−1/2

∑n
i=1 Ui(s, t)[{Xi(s) − µ(s)}{Xi(t) − µ(t)} − ρ(s, t)]. Let us focus on the second summand on the

right side of (14). All the other terms are negligible in the appropriate sense as we explain later. The
kernel σ(s, t) corresponds to the operator Sn = n−1/2

∑n
i=1 Yni, where Yni are the integral operators with

kernels yni(s, t) = Ui(s, t)[{Xi(s) − µ(s)}{Xi(t) − µ(t)} − ρ(s, t)]. We will apply Theorem 6 to Yni, which
is a triangular array of row-wise independent non-identically distributed zero-mean random elements of the
separable Hilbert space of the Hilbert–Schmidt operators on L2([0, 1]). The covariance operator of Yni is
the Hilbert–Schmidt operator Cni on Hilbert–Schmidt operators given by

〈A1,CniA2〉 = cov(〈Yni,A2〉, 〈Yni,A1〉) =

∫
[0,1]4

α1(s, t) cov{yni(s, t), yni(u, v)}α2(u, v)dsdtdudv,

where A1, A2 are Hilbert–Schmidt operators with kernels α1, α2, respectively. The kernel of Cni is
cni(s, t, u, v) = cov{yni(s, t), yni(u, v)} = θi(s, t, u, v){ζ(s, t, u, v) − ρ(s, t)ρ(u, v)}. The covariance opera-
tor of Sn is Gn = n−1

∑n
i=1 Cni with kernel θ̄(s, t, u, v){ζ(s, t, u, v) − ρ(s, t)ρ(u, v)}. Like in the proof

of Theorem 1, one can use the dominated convergence theorem to show that ‖Gn − G‖2 → 0, where G
has kernel θ(s, t, u, v){ζ(s, t, u, v) − ρ(s, t)ρ(u, v)}. Thus condition (i) of Theorem 6 is verified. Condi-
tion (ii) can be verified like in the proof of Theorem 1. Next, condition (iii) is satisfied because trGn =∫

[0,1]2
θ̄(s, t, s, t){ζ(s, t, s, t) − ρ(s, t)2}dsdt converges to trG =

∫
[0,1]2

θ(s, t, s, t){ζ(s, t, s, t) − ρ(s, t)2}dsdt.
Therefore, Sn is asymptotically distributed as a Gaussian random operator with mean zero and covariance
operator G and, consequently, by the continuous mapping theorem the second term on the right-hand side of
(14) weakly converges to the mean zero Gaussian operator with covariance operator H′ given in Theorem 3.

The operators corresponding to the first and fourth summand on the right side in (14) were shown to
converge to zero in the proof of Proposition 1 in Kraus (2015) in the sense that the expectation of their
squared Hilbert–Schmidt norm converges to zero. Also, the Hilbert–Schmidt norm of the third term on the
right in (14) converge to zero in mean square which can be shown by arguments analogous to those used
for the second term on the right in (10) in the proof of Theorem 1. Therefore, in view of Slutsky’s lemma
these terms are negligible for the weak convergence.

The weak convergence of the operator with kernelM(s, t)1/2{ρ̂(s, t)−ρ(s, t)} follows from the convergence
of ν̂(s, t) to ν(s, t). The consistency of the estimators of H′ and H can be proved along the lines of the proof
for K ′ and K in Theorem 1.

Proof of Theorem 4

The proof uses perturbation theory in which R̂ is regarded as a perturbed version of R, i.e., R̂ = R +
(R̂ −R). Recall that the perturbation satisfies E ‖R̂ −R‖22 = O(n−1) (Kraus, 2015, Proposition 1), and,

therefore, ‖R̂ −R‖∞ = OP (n−1/2).

Similarly to the proof of Theorem 3.1 in Cupidon et al. (2007), we rewrite n1/2(λ̂m − λm) = n1/2(λ̂m −
λm)1Ωn

+ n1/2(λ̂m − λm)1ΩC
n
, where Ωn = {ω : ‖R̂ − R‖∞ < εn} for a numerical sequence εn satisfying

n−1/2 � εn � n−1/4. Since Pr(Ωn) → 1 as n → ∞, the term n1/2(λ̂m − λm)1ΩC
n

converges to 0 in

probability. For ‖R̂ −R‖∞ sufficiently small, i.e., on Ωn for n large enough, we have by Corollary 3.4 of

Gilliam et al. (2009) that n1/2(λ̂m−λm)1Ωn = n1/2〈(R̂−R)ϕm, ϕm〉1Ωn +n1/2O(‖R̂−R‖2∞)1Ωn . Here the
last term converges to 0 in probability because εn � n−1/4 and the first term on the right side converges in
distribution to the limit given in part (i) of the theorem. Hence the result follows from Slutsky’s theorem.
The expression for the limiting variance is obtained by rewriting var〈H ′∞ϕm, ϕm〉 = var〈H ′∞, ϕm⊗ϕm〉 =
〈ϕm ⊗ ϕm,H′(ϕm ⊗ ϕm)〉.
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Next, we can write n1/2(ŝmϕ̂m − ϕm) = n1/2(ŝmϕ̂m − ϕm)1Ωn + n1/2(ŝmϕ̂m − ϕm)1ΩC
n
. For n suffi-

ciently large, Corollary 3.3 of Gilliam et al. (2009) gives n1/2(ŝmϕ̂m−ϕm)1Ωn
= n1/2Qm(R̂ −R)ϕm1Ωn

+

n1/2O(‖R̂ −R‖2∞)1Ωn
. The first term on the right converges in distribution to the limiting distribution as

claimed in part (ii) and the other terms converge in probability to 0. The limiting covariance operator is ob-
tained by inspecting the cross-covariance operator for each pair of summands in the series QmH ′∞ϕm. The
cross-covariance between (ϕk⊗ϕk)H ′∞ϕm = 〈ϕk,H ′∞ϕm〉ϕk and (ϕl⊗ϕl)H ′∞ϕm = 〈ϕl,H ′∞ϕm〉ϕl is

cov(〈ϕk,H ′∞ϕm〉, 〈ϕl,H ′∞ϕm〉)(ϕk ⊗ ϕl) = cov{〈(ϕm ⊗ ϕk),H ′∞〉, 〈(ϕm ⊗ ϕl),H ′∞〉}(ϕk ⊗ ϕl)
= 〈(ϕm ⊗ ϕk),H′(ϕm ⊗ ϕl)〉(ϕk ⊗ ϕl).

The inner product in the last expression above equals the integral in part (ii) of the theorem.

Proof of Theorem 5

Let D̂ be the linear operator on the product space HS(L2([0, 1]))K that maps F = (F1, . . . ,FK)>, where
Fj are Hilbert–Schmidt operators on L2([0, 1]) with kernels fj(s, t), to G = (G1, . . . ,GK)> where Gj has

kernel gj(s, t) =
∑K
l=1{δjl − Mj(s, t)

1/2ŵl(s, t)Il(s, t)Ml(s, t)
−1/2}fl(s, t). The mapping D̂ is a random

linear operator on HS(L2([0, 1]))K that acts by pointwise multiplication and linear combination of integral

kernels; D̂ itself is not an integral operator but it is bounded because the functions in the braces above
are bounded. It converges in probability to the non-random bounded linear operator D that maps F to

G with Gj with kernel
∑K
l=1{δjl − νj(s, t)1/2a

1/2
j wl(s, t)νl(s, t)

−1/2a
−1/2
l }fl(s, t). The convergence is in the

sense of the operator norm on linear operators on HS(L2([0, 1]))K , that is, ‖D̂−D‖∞
P−→ 0, where ‖D‖∞ =

sup{‖DF‖2/‖F‖2 : F ∈ HS(L2([0, 1]))K} with ‖ · ‖2 being the Hilbert–Schmidt norm on HS(L2([0, 1]))K .
Now consider the standardized contrasts Z = (Z1, . . . ,ZK)> with kernels zj(s, t) =

Mj(s, t)
1/2{ρ̂j(s, t) − ρ̂(s, t)}. They are obtained as Z = D̂H , where H = (H1, . . . ,HK)> with Hj

with kernel hj(s, t) = Mj(s, t)
1/2{ρ̂(s, t) − ρ(s, t)}. Under the null hypothesis Theorem 3 yields that H

converges in distribution to H ∞, a vector of K independent mean zero Gaussian random operators with
covariance operators Hj . Therefore, Z = D̂H converges in distribution to Z ∞ = DH ∞ by Slutsky’s and
continuous mapping theorem.

The covariance operator B of Z ∞ is given by the cross-covariance operators Bjk between the compo-

nents Zj and Zk whose estimator B̂jk has kernel

β̂jk(s, t, u, v) =

K∑
l=1

{δjl−Mj(s, t)
1/2ŵl(s, t)Ml(s, t)

−1/2}η̂l(s, t, u, v){δkl−Mk(u, v)1/2ŵl(u, v)Ml(u, v)−1/2}.

The test statistic SHS = ‖Z ‖22 is asymptotically distributed as ‖Z ∞‖22. The random variable Z ∞

is a Gaussian element of the separable Hilbert space HS(L2([0, 1]))K , therefore it can be expanded in
a Karhunen–Loève series with independent Gaussian coefficients. Therefore, its squared norm is distributed
as the series of independent chi-square variables weighted by the eigenvalues of the covariance operator and
part (i) of the theorem follows.

The components of the score vector satisfy Rjlm = 〈ν̂j(·, ·)1/2zj(·, ·), Ûlm〉. Due to the consistency

of the estimated eigenfunctions (Kraus, 2015, Proposition 2), the operator Ûlm (up to the sign ambi-
guity for l 6= m) converges to Ulm defined by the true eigenfunctions, with kernel ulm(s, t). There-
fore, the score vector weakly converges to the mean zero Gaussian vector with components R∞jlm =

〈νj(·, ·)1/2z∞j (·, ·),Ulm〉 = 〈z∞j (·, ·), νj(·, ·)1/2ulm(·, ·)〉 whose covariance matrix has entries Wjlm,kpq =

〈νj(·, ·)1/2ulm(·, ·),Bjk{νk(·, ·)1/2upq(·, ·)}〉, j, k ∈ {1, . . . ,K}, 1 ≤ l ≤ m ≤ d, 1 ≤ p ≤ q ≤ d. The
vector of operators with kernels νj(s, t)

1/2z∞j (s, t) lies in a hyperplane in HS(L2([0, 1]))K , thus the matrix

W has rank (K−1)d(d+1)/2. The consistency of Ŵ follows from the convergence of all quantities involved.
Hence the limiting distribution is the chi-square distribution as claimed in part (ii).

Proof of Theorem 6

First, we prove the convergence in distribution of one-dimensional projections using Lindeberg’s central limit
theorem. It follows from assumption (i) that for f ∈ H such that G f 6= 0, var〈Sn, f〉 = 〈f,Gnf〉 → 〈f,G f〉
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as n→∞. To verify Lindeberg’s condition, we compute

n−1
n∑
i=1

E(〈Yni, f〉21[|〈Yni,f〉|>n1/2〈f,Gnf〉1/2ε]) ≤ n
−1

n∑
i=1

E(‖Yni‖2‖f‖21[‖Yni‖>n1/2〈f,Gnf〉1/2‖f‖−1ε]).

Now in light of assumption (i), there is a positive constant c such that for sufficiently
large n, 〈f,Gnf〉1/2/‖Gn‖∞ > c, and the above expression is further dominated by
n−1

∑n
i=1 E(‖Yni‖2‖f‖21[‖Yni‖>n1/2‖Gn‖∞c‖f‖−1ε]), which converges to 0 by assumption (ii). Hence

one-dimensional projections converge, and due to Theorem 2.3 of Bosq (2000), all finite-dimensional
projections converge.

To complete the proof, let us prove the tightness of the sequence Sn, n = 1, 2, . . . The idea of the proof
is similar to that of Bosq (2000, Theorem 2.7) but in the present situation the variables Yn1, . . . , Ynn are
possibly non-identically distributed. Let vj and δj , j = 1, 2, . . . be the eigenfunctions and eigenvalues of the
limiting operator G . Consider a sequence lk, k = 1, 2, . . . such that lk →∞ for k →∞. For ε > 0, let Nk,
k = 1, 2, . . . be an increasing sequence of integers such that

∑∞
k=1 lkr

2
Nk

< ε, where r2
N =

∑∞
j=N δj . Define

Bk = {x ∈ H :
∑∞
j=Nk

〈x, vj〉2 ≤ l−1
k }. It follows from assumptions (i) and (iii) that

Pr(Sn ∈ BC
k ) = P

( ∞∑
j=Nk

〈Sn, vj〉2 > l−1
k

)
≤ lk E

( ∞∑
j=Nk

〈Sn, vj〉2
)

= lk E

(
‖Sn‖2 −

Nk−1∑
j=1

〈Sn, vj〉2
)

= lk

(
tr Gn −

Nk−1∑
j=1

〈vj ,Gnvj〉

)
→ lk

(
tr G −

Nk−1∑
j=1

〈vj ,G vj〉

)
= lk

∞∑
j=Nk

〈vj ,G vj〉 = lkr
2
Nk
.

Consider the compact set Kε = ∩∞k=1Bk and compute

lim sup
n→∞

Pr(Sn ∈ KC
ε ) ≤ lim sup

n→∞

∞∑
k=1

Pr(Sn ∈ BC
k ) ≤

∞∑
k=1

lim sup
n→∞

Pr(Sn ∈ BC
k ) ≤

∞∑
k=1

lkr
2
Nk

< ε,

where the second inequality is due to Fatou’s lemma. This proves the tightness.
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