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 who then derived, under some conditions, the asymptotic distribution of √ n Λn -Λ , as n → +∞. In this paper, we obtain, under specified conditions, the almost sure convergence of Λn to Λ, as n → +∞.

Introduction

Given a univariate response variable Y , we consider the regression model:

Y = F (β T 1 X, ..., β T N X, ε), (1) 
by Zhu and Fang [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF]; in this work an estimator Λ n of Λ based on kernel method is proposed and the limiting distribution of √ n Λ n -Λ , as n → +∞, is derived under some conditions. Since this result just implies weak consistency of Λ n , that is the convergence in probability of Λ n to Λ as n → +∞, it is natural to wonder if one could obtain strong consistency for Λ n .

In this paper, we tackle this problem and we prove, under some conditions, the almost sure convergence of Λ n to Λ, as n → +∞. The paper is organized as follows: Section 2 is devoted to the presentation of the used estimator, that is the estimator given in [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF]. In Section 3, the assumptions needed for our results are given, and the main theorems that establish the aforementioned consistency are given. Then, the proofs of all lemmas and theorems are postponed in Section 4.

Preliminaries and notations

Letting f be the density of Y , we suppose that, for all y ∈ R, we have f (y) > 0; then, for any j = 1, • • • , d, we consider R j (y) = E(X j |Y = y) = g j (y) f (y) where g j (y) = R zf (X j ,Y ) (z, y)dz, f (X j ,Y ) being the density of the pair (X j , Y ). Then, we consider the random vector

R(Y ) = R 1 (Y ), ..., R d (Y ) T = E(X 1 |Y ), ..., E(X d |Y ) T = E X|Y
and its covariance matrix Λ = Cov E (X|Y ) which is of great importance since the EDR space is obtained from its spectral analysis (e.g. [START_REF] Li | Sliced Inverse Regression for Dimension Reduction[END_REF]). It cannot be computed in practice since it depends on the distribution of (X, Y ) which is generally unknown; that is why approaches for its estimation have been investigated by several authors. Li [START_REF] Li | Sliced Inverse Regression for Dimension Reduction[END_REF] considered an estimation method based on slicing the range of Y , so introducing sliced inverse regression, whereas Zhu and Fang [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] introduced a kernel estimator. More precisely, considering an i.i.d. sample (Y i , X i ) i=1,...n of the pair (Y, X) of random variables connected according to model [START_REF] Aragon | Sliced Inverse Regression (SIR) : an appraisal of small sample alternatives to slicing[END_REF] and putting

X i = (X i1 , • • • , X id ) T ,
we define kernel estimates of f and the g j 's by:

f n (y) = 1 n n i=1 1 h n K y -Y i h n , g j,n (y) = 1 n n i=1 X ij 1 h n K y -Y i h n ,
where h n is a bandwidth and K(•) is a kernel function. In order to avoid small values in the denominator, [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] proposed to consider

f bn (y) = max f (y), b n and f bn (y) = max f n (y), b n ,
where (b n ) n∈N * is a sequence of positive real numbers that satisfies the property: lim n→+∞ (b n ) = 0. Then, the R bn,j 's defined by R bn,j (y) = g j (y) f bn (y) are estimated by R bn,j (y) = g j,n (y)

f bn (y)
and putting

R bn (y) = R bn,1 (y), ..., R bn,d (y) 
T , we take as estimator of Λ the random matrix:

Λ n = 1 n n i=1 R bn (Y i ) R bn (Y i ) T .
This estimator was considered in [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] who then proved that √ n Λ n -Λ converges in distribution, as n → +∞, to a normal distribution. This result implies that Λ n converges in probability, as n → +∞, to Λ, that is weak consistency of the estimator. In the following section, we establish, under specified conditions, the almost sure convergence of Λ n to Λ as n → +∞.

Assumptions and main results

In this section, we present our assumptions, then we give the main results that establish almost sure convergence of Λ n to Λ as n → +∞.

Assumption 1. The random variable X is bounded, i.e. there exists G > 0 such that

X d ≤ G, where • d is the usual Euclidean norm of R d .
Assumption 2. The random variable Y has a bounded density f . Assumption 3. The g j 's and f are 3-times differentiable and their third derivatives satisfy the following condition: there exists a neighborhood of the origin, say U , and a constant c > 0 such that, for any u ∈ U ,

f (3) (y + u) -f (3) (u) ≤ c|u| and g (3) j (y + u) -g (3) 
j (u) ≤ c|u|,

for j = 1, • • • , d.
Assumption 4. For any pair (k, ) such that 1 ≤ k, ≤ d, and any u ∈ U ,

|R k (y + u)R (y + u) -R k (y)R (y)| ≤ c|u|.
Assumption 5. There exists an integer r > 6 such that, for any j ∈ {1, • • • , d}, the function g j belongs to the set

Σ (r, L, α) = g ∈ D r / ∀ (x, y) , g (r) (x) -g (r) (y) ≤ L |x -y| α ,
where α ∈]0, 1], L > 0 and β := r + α satisfies β > 7, and D r denotes the space of r-times differentiable functions.

Assumption 6. (i) The kernel K is continuous and its support is the interval

[-1, 1]; (ii) K is symmetric about 0; (iii) The kernel K is bounded, that is: sup u∈R |K(u)| = D < +∞. (iv) The kernel K is of order r, that is u k K(u)du = 0 for k ∈ {1, 2, • • • , r} ; (v) |K(u)| du < +∞ and |u| β |K(u)| du < +∞. Assumption 7. When n is large enough h n ∼ n -c1 and b n ∼ n -c2
where c 1 and c 2 are numbers satisfying c 1 > 0, 0 < c 2 < 1/10 and 1/8

+ c 2 /4 < c 1 < 1/4 -c 2 . Assumption 8. The eigenvalues λ 1 , • • • , λ d of Λ verify: λ 1 > • • • > λ d > 0.
The assumptions 3, 4, 6-(i), 6-(ii) and 7 was introduced in [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] and are necessary here to use some results of this paper. Assumption 2 concerns the density of Y and is classical since it is satisfied for the usual probability distributions. The assumptions 5, 6-(iv) and 6-(v) are classical assumptions of nonparametric statistics literature (see, e.g., [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]). Assumption 6-(iii) is satisfied, for instance, by the gaussian kernel.

Remark 1. For overcoming technical difficulties due to small values in the denominator, [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] introduced the modified version f bn = max( f n , b n ) of the kernel estimate f n of the density f . But this approach does not guarantee that we get a good estimator of f . Indeed, if we take b n = n -1/11 , then b n is still larger than 1/2 for very large values of n (for example n = 2000). So, every value of f n could be cut off and, therefore, f bn would have a constant value. This is an undesirable property that makes f bn a bad estimator of the density. To overcome this problem, we can take b n = min(a, n -c2 ), where a is a fixed strictly positive number. When a is sufficiently small f bn is near from f n and is, therefore, a good estimate of f . Indeed, it is easy to check that sup

x∈R | f bn (x) -f n (x)| ≤ a. Finally, by taking b n = min(a, n -c2
), we obtain a good estimate of the density and we still have b n ∼ n -c2 as required in Assumption 7.

For a symmetric (d×d) matrix A = (a k, ) 1≤k, ≤d , we denote by V ech(A) the d(d+1)/2dimensional vector

(a 11 , • • • , a d1 , a 22 , a 32 , • • • , a d2 , a 33 , a 43 , • • • , a d3 , • • • , a dd ) T . For a vector V = (v 1 , v 2 , • • • , v m ) ∈ R m , we denote V ∞ = max 1≤i≤m |v i |.
Now, we give results which establish strong consistency for Λ n as estimator of Λ.

Theorem 1. Under the assumptions 1, 6 and 7 we have

V ech Λ n -E Λ n ∞ = O a.s. log n n ν with ν = 1/2 -2(c 1 + c 2 ). Putting Λ = (λ k, ) 1≤k, ≤d and Λ n = λ (n) k, 1≤k, ≤d ,
we have:

Theorem 2. Under the assumptions 1 to 7, we have for any 1 ≤ k, ≤ d:

lim n→+∞ E λ (n) k, = λ k, .
The following theorem is our main result; it results from Theorems 1 and 2.

Theorem 3. Under the assumptions 1 to 7, Λ n converges almost surely to Λ, as n → +∞.

As a consequence of this theorem, we can deduce strong consistency for estimators of the β k 's. Since the covariance matrix of X is assumed to be equal to the d × d identity matrix

I d , then β k (for k = 1, • • • , N
) is an eigenvector of Λ associated with the k-th largest eigenvalue λ k (see [START_REF] Li | Sliced Inverse Regression for Dimension Reduction[END_REF]). We consider the empirical covariance matrix

Σ n = 1 n n i=1 X i -X n X i -X n T where X n = 1 n i=1 X i ,
and we denote by η k an eigenvector of Λ n associated with the k-th largest eigenvalue λ k . Clearly, from strong law of large numbers, Σ n converges almost surely to I d as n → +∞; then Σ n is also invertible for large values of n, and we can take as estimator of β k the vector

β k = Σ -1/2 n η k .
Then, we have:

Corollary 1. Under the assumptions 1 to 8, for any k ∈ {1, • • • , N }, β k converges almost surely to β k , as n → +∞.

Proofs

Preliminary results

First, we recall below a lemma given in [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] (see p. 1058) and which will be useful for proving other results.

Lemma 1. Under the assumptions 1, 3, 4 and 7, we have almost surely:

sup y∈R f n (y) -f (y) = O h 4 n + n -1/2 h -1 n log n ,
as n → +∞.

Lemma 2. Under assumptions 1, 2, 3, 4 and 7, we have for any j ∈ {1, • • • , d}:

E g 2 j (Y ) < +∞.
Proof. According to [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] (see p. 1059), we have:

sup y∈R |E ( g j,n (y)) -g j (y)| = O(h 4 n ).
Then, there exists

M 1 > 0 such that sup y∈R |E ( g j,n (y)) -g j (y)| ≤ M 1 for any n ∈ N * .
On the other hand,

|E ( g j,n (y))| ≤ Gh -1 n E K y -Y 1 h n = Gh -1 n K y -t h n f (t) dt = G |K(u)| f (h n y -u) du ≤ G f ∞ |K(u)| du,
where f ∞ = sup t∈R f (t). Therefore, for any y ∈ R,

|g j (y)| ≤ |E ( g j,n (y)) -g j (y)| + |E ( g j,n (y))| ≤ M 1 + G f ∞ |K(u)| du.
This shows that g j (Y ) is a bounded real random variable and, therefore, E g 2 j (Y ) < +∞.

Lemma 3. Under the assumptions 5 and 6, we have for any y ∈ R and any j ∈ {1, • • • , d}:

g j (y -uh n )K(u)du -g j (y) ≤ C h β n ,
where C > 0.

Proof. By a Taylor expansion, we have:

g j (y -uh n ) = g j (y) + r-1 k=1 g (k) (y) k! (-1) k u k h k n + (-1) r u r h r n r! g (r) j (y -θuh n ),
where θ ∈]0, 1[. Thus,

g j (y -uh n )K(u)du = g j (y)K(u)du + r-1 k=1 g (k) (y) k! (-1) k u k h k n u k K(u)du + (-1) r h r n r! g (r) j (y -θuh n )u r K(u)du, = g j (y) + (-1) r h r n r! g (r) j (y -θuh n )u r K(u)du.
Furthermore, since

g (r) j (y)u r K(u)du = g (r) j (y) u r K(u)du = 0,
it follows:

g j (y -uh n )K(u)du -g j (y) = (-1) r h r n r! g (r) j (y -θuh n )u r K(u)du -g (r) j (y)u r K(u)du = (-1) r h r n r! g (r) j (y -θuh n ) -g (r) j (y) u r K(u)du.
Thus, under Assumption 5,

g j (y -uh n )K(u)du -g j (y) ≤ h r n r! g (r) j (y -θuh n ) -g (r) j (y) |u| r |K(u)| du ≤ h r n r! L θ α |u| α h α n |u| r |K(u)| du ≤ h r+α n L r! |u| r+α |K(u)| du ≤ h β n L r! |u| β |K(u)| du,
what gives the required inequality with

C = L r! |u| β |K(u)| du. Lemma 4. Considering E j,n = f (y) g j (y -uh n )K(u)du 2 dy and E j = f (y)g 2 j (y)dy = E g 2 j (Y ) ,
then, under the assumptions 1 to 7, we have :

|E j,n -E j | ≤ C 2 h 2β n +2C h β n E |g j (Y )| .
Proof. Using the equality a 2 -b 2 = (a -b) 2 + 2b (a -b), we obtain :

E j,n -E j = f (y) g j (y -uh n )K(u)du 2 -g j (y) 2 dy = f (y) g j (y -uh n )K(u)du -g j (y) 2 + 2 g j (y) g j (y -uh n )K(u)du -g j (y) dy.
Thus

|E j,n -E j | ≤ f (y) g j (y -uh n )K(u)du -g j (y) 2 + 2 |g j (y)| g j (y -uh n )K(u)du -g j (y) dy.
Then, from Lemma 3, it follows

|E j,n -E j | ≤ f (y) C 2 h 2β n + 2 |g j (y)| C h β n dy = C 2 h 2β n f (y)dy + 2 Ch β n |g j (y)| f (y)dy = C 2 h 2β n + 2 Ch β n E (|g j (Y )|) .
Lemma 5. Putting δ n = nh n 1 -1 n E j,n -E j , we have under the assumptions 1 to 7, lim n→+∞ δ n = 0.

Proof. First,

|E j,n | ≤ |E j,n -E j | + |E j | ≤ C 2 h 2β n + 2C h β n E |g j (Y )| + E g 2 j (Y ) .
Therefore,

|δ n | = nh n (E j,n -E j ) - 1 n E j,n ≤ nh n |E j,n -E j | + 1 n |E j,n | ≤ nh β+1 n C 2 h β n + 2CE |g j (Y )| + 1 n E g 2 j (Y ) + C 2 h 2β n + 2C h β n E |g j (Y )| .
Clearly,

lim n→+∞ 1 n E g 2 j (Y ) + C 2 h 2β n + 2C h β n E |g j (Y )| = 0.
On the other hand, since h n ∼ n -c1 , it follows that nh β+1 n ∼ n 1-(β+1)c1 . Further, from β > 7 we deduce that 1 β+1 < 1 8 < c 1 , that is 1-(β+1)c 1 < 0. Thus lim n→+∞ nh β+1 n = 0 and, therefore,

lim n→+∞ nh β+1 n C 2 h β n + 2C E |g j (Y )| = 0.
Finally, lim n→+∞ δ n = 0. Lemma 6. Under the assumptions 1 to 7, we have:

E ( g j,n (Y ) -g j (Y )) 2 = O 1 n h n .
Proof. Considering the random variable W i,j,n = X ij K Y -Yi hn , we have:

E g j,n (Y ) 2 = 1 nh 2 n E W 2 1,j,n + 1 h 2 n 1 - 1 n E (W 1,j,n W 2,j,n ) . (2) 
Clearly,

E W 2 1,j,n = h n J n , where J n = 1 hn K 2 u hn V (y -u)f (u)dudy with V (y) = z 2 f (X,Y ) (z, y
) dz, and from Theorem 2.1.1 in [START_REF] Rao | Nonparametric Functional Estimation[END_REF] it is known that lim n→∞ J n = J := V (y)K 2 (u)f (u)du dy. Furthermore,

E (W 1,j,n W 2,j,n ) = K u h n g j (y -u)du K v h n g j (y -v)dv f (y)dy = f (y) K u h n g j (y -u)du 2 dy.
Putting t = u hn , we obtain

E (W 1,j,n W 2,j,n ) = h 2 n f (y) K(t)g j (y -th n )dt 2 dy = h 2 n E j,n .
On the other hand E g j (Y ) 2 = E j . Then, we deduce from ( 2) that

E g j,n (Y ) 2 -E g j (Y ) 2 = 1 nh 2 n h n J n + 1 h 2 n 1 - 1 n h 2 n E j,n -E j = 1 nh n (J n + δ n ) .
On the other hand, it is easy to check that

E [ g j,n (Y ) -g j (Y )] 2 = E g j,n (Y ) 2 -E g j (Y ) 2 -2 E g j,n (Y ) g j (Y ) -E g j (Y ) 2 = 1 nh n (J n + δ n ) -2∆ j,n ,
where ∆ j,n = E g j,n (Y ) g j (Y ) -E g j (Y ) 2 . We have:

E g j,n (Y )g j (Y ) = E g j (Y ) 1 nh n n i=1 X ij K Y -Y i h n = 1 h n E g j (Y )X 1j K Y -Y 1 h n = 1 h n (3) z g j (y)K y -u h n f (X j ,Y 1 ,Y ) (z, u, y) dz du dy = 1 h n (3) z g j (y)K y -u h n f (X j ,Y 1 ) (z, u)f Y (y) dz du dy = 1 h n g j (y)f (y) K y -u h n zf (X j ,Y 1 ) (z, u) du dy = 1 h n g j (y)f (y) K y -u h n g j (u) du dy.
Putting t = y-u hn , we obtain

E g j (Y ) g j,n (Y ) = g j (y)f (y) g j (y -th n )K(t) dt dy.
Hence ∆ j,n = g j (y)f (y) g j (y -th n )K(t)dt dy -g 2 j (y)f (y); = g j (y)f (y) g j (y -th n )K(t)dt -g j (y) dy and

|∆ j,n | ≤ |g j (y)| f (y) g j (y -th n )K(t)dt -g j (y) dy ≤ Ch β n |g j (y)| f (y)dy = Ch β n E (|g j (Y )|) ,
the second inequality coming from Lemma 3. Then, we have:

E [ g j,n (Y ) -g j (Y )] 2 ≤ 1 nh n |J n + δ n | + 2 |∆ j,n | ≤ 1 nh n |J n + δ n | + 2 Cnh β+1 n E (|g j (Y )|) .
Moreover, nh β+1 n ∼ n 1-(β+1) c 1 and, since β + 1 > 8 and 1 8 < c 1 we have the inequality 1 -(β + 1)c 1 < 0 which implies lim n→∞ nh β+1 n = 0. Consequently,

lim n→+∞ |J n + δ n | + 2 Cnh β+1 n E (|g j (Y )|) = |J| ,
from what we deduce that E ( g j,n (Y ) -g j (Y )) 2 = O 1 nhn .

Lemma 7. Under the assumptions 1, 2, 3, 4 and 7, we have:

lim n→+∞ E   g j,n (Y ) -g j (Y ) f bn (Y ) f bn (Y ) 2   = 0.
Proof. We have:

E   g j,n (Y ) -g j (Y ) f bn (Y ) f bn (Y ) 2   = E   g j,n (Y ) -g j (Y ) + g j (Y ) 1 - f bn (Y ) f bn (Y ) 2   ≤ 2E g j,n (Y ) -g j (Y ) 2 + 2E g 2 j (Y ) 1 - f bn (Y ) f bn (Y ) 2 . ( 3 
)
Equation 4.4 in [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] and Lemma 1 allow to obtain, almost surely, the inequality

sup y∈R | f bn (y) -f bn (y)| ≤ sup y∈R | f n (y) -f (y)| ≤ M 2 h 4 n + n -1/2 h -1 n log n ,
where M 2 is a positive constant. Therefore, almost surely,

1 - f bn (Y ) f bn (Y ) 2 = f bn (Y ) -f bn (Y ) f bn (Y ) 2 ≤ M 2 b -1 n h 4 n + n -1/2 h -1 n log n 2 ,
and, consequently,

E g 2 j (Y ) 1 - f bn (Y ) f bn (Y ) 2 ≤ M 2 b -1 n h 4 n + n -1/2 h -1 n log n 2 E g 2 j (Y ) . (4) Clearly, b -1 n h 4 n ∼ n c2-4c1 and b -1 n n -1/2 h -1 n ∼ n c1+c2-1/2
as n → +∞. Since, under assumption 4, we have c 2 -4c 1 < 0 and

c 1 + c 2 -1/2 < 0, it follows that lim n→+∞ b -1 n h 4 n + n -1/2 h -1 n log n = 0.
Then, from ( 4), ( 3) and Lemma 6, we deduce the required result.

Proof of Theorem 1

Since the class of functions

H n = h (k,l) : y -→ h k,l (y) = 1 n g k,n (y) g l,n (y) f 2 bn (y) , 1 ≤ k, l ≤ d ,
is finite, we deduce from Lemma 3 in [START_REF] Giné | Law of iterated logarithm for censored data[END_REF] that it is a Vapnik-Červonenkis (VC) class of functions with respect to the envelope

h = max {|h k,l | : h k,l ∈ H n , 1 ≤ k, l ≤ d} .
The related covering number N H n , • L 2 (P ) , ε h L 2 (P ) satisfies, for all ε ∈]0, 1[ and for all probability measures P on (S, S),

N H n , • L 2 (P ) , ε h L 2 (P ) ≤ A ε ν ,
where A and ν are postive constant named the VC characteristics of H n . Assumptions 1 and 6 imply h

≤ D 2 G 2 nh 2 n b 2 n
, then we obtain, for all h ∈ H n ,

E (h(Y )) ≤ D 2 G 2 h 2 n nb 2 n and E h 2 (Y ) ≤ D 4 G 4 h 4 n n 2 b 4 n . Taking µ n = D 2 G 2 nb 2 n h 2 n and σ 2 n = D 4 G 4 h 4 n n 2 b 4 n
, we can apply Talagrand's inequality (see [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF] and Proposition 2.2 in [START_REF] Giné | On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals[END_REF]): there exist positive constants K 1 and K 2 , depending only on A and ν, such that for all t K 1 µ n log Aµn σ + √ nσ log Aµn σn ,

P sup h∈Hn n i=1 h (Y i ) -E h (Y ) > t ≤ K 2 exp      - 1 K 2 t µ n log   1 + tµ n K 2 √ nσ n + µ n log Aµn σn 2         , that is, P sup 1≤k,l≤d 1 n n i=1 g k,n (Y i ) g l,n (Y i ) f 2 bn (Y i ) -E g k,n (Y ) g l,n (Y ) f 2 bn (Y ) > t ≤ K 2 exp - 1 K 2 tnb 2 n h 2 n D 2 G 2 log 1 + th 2 n b 2 n K 2 D 2 G 2 1 + √ log A 2 . (5) 
Since

h n ∼ n -c1 and b n ∼ n -c2 , we have lim n→∞ hn n -c 1 = B 1 and lim n→∞ bn n -c 2 = B 2
, where B 1 > 0 and B 2 > 0. Thus for ε such as 0 < ε < min (1, B 1 , B 2 ) and n is large enough, we have

B 1 -ε < h n n -c1 < B 1 + ε and B 2 -ε < b n n -c2 < B 2 + ε, that is n -c1 (B 1 -ε) < h n < n -c1 (B 1 + ε) and n -c2 (B 2 -ε) < b n < n -c2 (B 2 + ε) .
Then, putting δ = (B 1 -ε) 2 (B 2 -ε) 2 , we deduce from (5) that

P sup 1≤k,l≤d 1 n n i=1 g k,n (Y i ) g l,n (Y i ) f 2 bn (Y i ) -E g k,n (Y ) g l,n (Y ) f 2 bn (Y ) > t (6) 
≤ K 2 exp - 1 K 2 δ t D 2 G 2 n 1-2(c1+c2) × log 1 + δ t K 2 D 2 G 2 1 + √ log A 2 n -2(c1+c2)
Let us put

t n = log n n 1/2-2 (c1+c2) 
; Assumption 7 implies 0 < c 1 + c 2 < 1/4 and, consequently, that α = 1/2 -2(c 1 + c 2 ) is strictly positive. Then, lim n→+∞ (log n) α = +∞ and, therefore, putting

U = K 1 G D √ log A we have for n large enough (log n) α 2U = U (1 + 1) U 1 + log A n = U √ n + √ log A √ n , that is log n n 1 2 -2(c1+c2) K 1 D 2 G 2 nb 2 n h 2 n × log A √ n + log A what means that t n K 1 µ n log Aµ n σ n + √ nσ log Aµ n σ n .
Then, (6) can be applied to t n and we obtain

P sup 1≤k,l≤d 1 n n i=1 g k,n (Y i ) g l,n (Y i ) f 2 bn (Y i ) -E g k,n (Y ) g l,n (Y ) f 2 bn (Y ) > t n ≤ v n where v n = K 2 exp - 1 K 2 δ √ n(log n) α D 2 G 2 log 1 + δ (log n) α K 2 D 2 G 2 √ n 1 + √ log A 2 .
Clearly, v n ∼ w n as n → +∞, where

w n = K 2 exp - δ 2 (log n) 2α K 2 2 D 4 G 4 1 + √ log A 2 ,
and since +∞ n=1 w n < +∞, we deduce that +∞ n=1 v n < +∞. Then from the above inequality it follows that

+∞ n=1 P sup 1≤k,l≤d 1 n n i=1 g k,n (Y i ) g l,n (Y i ) f 2 bn (Y i ) -E g k,n (Y ) g l,n (Y ) f 2 bn (Y ) > t n < +∞,
and the required result is obtained from Borel Cantelli's lemma.

Proof of Theorem 2

Let us consider R bn,j (y) = g j (y) f bn (y) , I

kl (y) = g k (y)g l (y) f 2 bn (y) = R bn,k (y)R bn,l (y), I (1) 
kl (y) = g k (y) g l,n (y) + g l (y) g k,n (y)

f 2 bn (y) = R bn,k (y) g l,n (y) f bn (y) + R bn,l (y) g k,n (y) f bn (y) , and 
I (3) kl (y) = 2R bn,k (y)R bn,l (y) 
f bn (y) f bn (y) .

Denoting by λ (n)

k,l the element at the k-th row and the l-th column of the matrix Λ n , it is known from [START_REF] Zhu | Asymptotics for kernel estimate of sliced inverse regression[END_REF] (see pp. 1059-1060) that

λ (n) k,l = 1 n n i=1 g k,n (Y i ) g l,n (Y i ) f 2 bn (Y i ) = 1 n n i=1 I (1) 
kl

(Y i ) + I (2) 
kl (Y i ) -I

kl (Y i )

-A n + B n + C n -D n , (7) 
where

A n = 1 n n i=1 g k (Y i ) g l,n (Y i ) -g l (Y i ) + g l (Y i ) g k,n (Y i ) -g k (Y i ) f 2 bn (Y i ) -f 2 bn (Y i ) f 2 bn (Y i ) f 2 bn (Y i ) , B n = 1 n n i=1 ( g k,n (Y i ) -g k (Y i )) ( g l,n (Y i ) -g l (Y i )) f 2 bn (Y i ) , C n = 1 n n i=1 R (bn,k) (Y i ) R (bn,l) (Y i ) f 2 bn (Y i ) -f 2 bn (Y i ) 2 f 2 bn (Y i ) f 2 bn (Y i )
, and

D n = 1 n n i=1 f 2 bn (Y i ) -f 2 bn (Y i ) 2 R bn,k (Y i ) R bn,l (Y i ) f 2 bn (Y i )
.

First, we will obtain the rates of convergence of the sequences

E (A n ), E (B n ), E (C n ) and E (D n ) to 0 as n → +∞. Clearly, E (A n ) = E A (k,l) n + E A (l,k) n
, where

A (k,l) n = g k (Y ) g l,n (Y ) -g l (Y ) f 2 bn (Y ) -f 2 bn (Y ) f 2 bn (Y ) f 2 bn (Y )
.

Further,

E A (k,l) n ≤ 1 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f 2 bn (Y ) -f 2 bn (Y ) ≤ 1 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) -f bn (Y ) 2 + 2f bn (Y ) f bn (Y ) -f bn (Y ) ≤ 1 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) -f bn (Y ) 2 + 2 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) f bn (Y ) -f bn (Y ) ≤ 1 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f n (Y ) -f (Y ) 2 (8) 
+ 2 b 4 n E g k (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) f n (Y ) -f (Y ) .
Putting α n = h 4 n + n -1/2 h -1 n log n and using Lemma 1, Cauchy-Schwartz inequality and Lemma 6, we obtain

E g k (Y ) g l,n (Y ) -g l (Y ) f 2 bn (Y ) -f 2 bn (Y ) ≤ α 2 n E g l,n (Y ) -g l (Y ) 2 E g 2 k (Y ) ≤ M 3 α 2 n λ 1/2 n E g 2 k (Y ) ,
where λ n = n -1 h -1 n and M 3 is a positive constant. On the other hand, since for n large enough

f bn (Y ) ≤ f ∞ , it follows E g k (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) f n (Y ) -f (Y ) ≤ α n f ∞ E g l,n (Y ) -g l (Y ) 2 E g 2 k (Y ) ≤ M 3 α n λ 1/2 n f ∞ E g 2 k (Y ) .
Therefore, from (8) we deduce that

|E (A n )| = O b -4 n α n λ 1/2 n = O (β n ) (9) 
where

β n = b -4 n α n λ 1/2 n . In addition, E (B n ) = E f -2 bn (Y ) ( g k,n (Y ) -g k (Y )) ( g l,n (Y ) -g l (Y )) ≤ b -2 n E ( g k,n (Y ) -g k (Y )) 2 E ( g l,n (Y ) -g l (Y )) 2 ≤ M 2 3 b -2 n λ n ; thus |E (B n )| = O b n -2 λ n . (10) 
Next, we have

|E (C n )| ≤ b -4 n E |R k (Y ) R l (Y )| f 2 bn (Y ) -f 2 bn (Y ) 2 ≤ b -4 n E |R k (Y ) R l (Y )| f bn (Y ) -f bn (Y ) 4 + 4 b -4 n E |R k (Y ) R l (Y )| f bn (Y ) f bn (Y ) -f bn (Y ) 3 + 4 b -4 n E |R k (Y ) R l (Y )| f 2 bn (Y ) f bn (Y ) -f bn (Y ) 2 ≤ b -4 n α 4 n + 4 f ∞ α 3 n + 4 f 2 ∞ α 2 n E (|R k (Y ) R l (Y )|) . Thus |E (C n )| = O b -4 n α 2 n . (11) 
Similarly, we have

|E (D n )| ≤ b -2 n E f 2 bn (Y ) -f 2 bn (Y ) 2 R (bn,k) (Y ) R (bn,l) (Y ) = b -2 n E |R k (Y ) R l (Y )| f bn (Y ) -f bn (Y ) 4 + 4 b -2 n E |R k (Y ) R l (Y )| f bn (Y ) f bn (Y ) -f bn (Y ) 3 + 4 b -2 n E |R k (Y ) R l (Y )| f 2 bn (Y ) f bn (Y ) -f bn (Y ) 2 ≤ b -2 n α 4 n + 4 f ∞ α 3 n + 4 f 2 ∞ α 2 n E (|R k (Y ) R l (Y )|) , what implies |E (D n )| = O α 2 n b -2 n . (12) 
From Eq. ( 9) to Eq. ( 12), we obtain

|E (-A n + B n + C n -D n )| = O n -(1-4c1-2c2) log n .
Then, from Eq.( 7) we deduce that E λ 

kl (Y ) = E g k (Y )g l (Y ) f 2 (Y ) = E R k (Y )R l (Y ) = λ k,l . (16) 
Then from Eqs. ( 13), ( 15) and ( 16), it follows

lim n→+∞ E λ (n) k,l
= λ k,l .

Proof of Corollary 1

From Lemma 1 in [START_REF] Ferré | Functional sliced inverse regression analysis[END_REF] (see p. 485) we have, for any k ∈ {1, • • • , N }, the inequality

η k -β k d ≤ a k Λ n -Λ ∞ ,
where a 1 = 2 √ 2/(λ 1 -λ 2 ), a j = 2 √ 2/ min(λ j-1 -λ j , λ j -λ j+1 ) for j ≥ 2, and • ∞ is the matrix norm defined by A ∞ = sup x∈R d -{0} Ax d / x d . Then, from Theorem 3 we deduce that η k converges almost surely to β k as n → +∞. Since Σ n converges almost surely to I d as n → +∞, it follows that β k converges almost surely to β k as n → +∞.

  |∆ n | = O n -(1-4c1-2c2) log n . On the other hand, bn,k (Y ) g l,n (Y )f bn (Y ) -R bn,k (Y )R bn,l (Y ) f bn (Y ) f bn (Y ) + E R bn,l (Y ) g k,n (Y ) f bn (Y ) -R bn,k (Y )R bn,l (Y ) f bn (Y ) f bn (Y )(14)andE R bn,k (Y ) g l,n (Y ) f bn (Y ) -R bn,k (Y )R bn,l (Y ) f bn (Y ) f bn (Y ) = E R bn,k (Y ) f bn (Y ) g l,n (Y ) -R bn,l (Y ) f bn (Y ) = E R bn,k (Y ) f bn (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) f bn (Y ) ≤ E R k (Y ) f (Y ) g l,n (Y ) -g l (Y ) f bn (Y ) f bn (Y ) .Then, using Cauchy-Schwarz inequality and Lemma 7 we obtainlim n→+∞ E R bn,k (Y ) g l,n (Y ) f bn (Y ) -R bn,k (Y )R bn,l (Y ) f bn (Y ) f bn (Y ) = 0.Since, from similar arguments, we also obtainlim n→+∞ E R bn,l (Y ) g k,n (Y ) f bn (Y ) -R bn,k (Y )R bn,l (Y ) f bn (Y ) f bn (Y ) ≤ gk(Y )gl(Y ) f 2 (Y ) = |R k (Y )R l (Y )|,we can apply the dominated convergence theorem that gives: lim n→+∞ E I (1)