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Abstract Commonly, when developing an algorithm it is
necessary to define a certain number of variables that con-
trol its behavior. Optimal parameters result in better perfor-
mance that could translate into profits for companies, stand
out among similar applications or better ranking on algo-
rithm competitions. However, it is not a simple task to find
the combination of parameters that provides the best results.
Manual tuning could be a stressful and difficult task even
for expert users. In this paper we present, evaluate and com-
pare several tools in the literature for hyper-parameter opti-
mization. We focus on 4 tools that have been selected due
to their number of citations, code availability and impact on
literature: MCMC, SMAC, TPE and Spearmint. We analyze
these tools in the context of Multi Object Tracking (MOT)
that have not been well studied in the literature. MOT it-
self has been well-studied topic with multiple parameters to
be tuned. We evaluate these tools using public benchmarks
such as PETS09 or ETH and using the publicly available
source code provided by the authors. We analyze the impact
of these tools in terms of stability, performance, and usabil-
ity, among others. Our results show how the use of these
tools change the performance of the application and how
this would affect the results of real ranked competitions. Our
goal is (1) to encourage the reader to use these tools and (2)
to provide a guide that helps to choose the most pertinent
tool.
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1 Introduction

Multiple Object Tracking (MOT) has several applications
that includes surveillance, human-machine interaction, robotics
and activity recognition, among others. This is still a hot
topic for research due to the existence of many challenges
such as occlusion, identity switches or lack precision [41,
25]. MOT community has developed several approaches that
challenge some of these issues by proposing different strate-
gies. At the same time, they have created metrics to evalu-
ate the proposal performance, which are known as CLEAR-
MOT [4]. These metrics are relevant because they allow
comparing different proposals in a fairly and quantitative
way. One particular community named MOTChallenge [22]
provides not only the tools to evaluate but also to keep track
of the performance of MOT algorithms using the CLEAR-
MOT metrics. Here, the state-of-the-art methods are ranked
with respect to their performance. In general, the results are
so close that even a small improvement of 2 percent can
lead to win or lose 10 positions in the ranking. However,
the precision of the results depends on the selection of the
meta-parameters in the proposals [26]. Therefore, the rank-
ing could change by selecting only other parameters. Thus,
it is difficult to know if a low performance depends on the
proposal itself or on an inadequate selection of parameters.
Our evaluations show that one parameter configuration tun-
ing can give 50 ID switches while another gives 40, which
means a reduction of 20 percent. Commonly the tuning is
done manually or, sometimes, the parameters are set based
on heuristics or assumptions. Hand tuning is feasible when
the number of parameters is small. Otherwise, this could be
difficult because of time consumption and requirement of
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expert skills. In either case, there is a possibility of selection
bias from the user. Numerical methods are an option to find
the best values automatically, performing a furtive search in
the (discretized) space of the parameters. However, this re-
quires a high computational cost.

Additionally, the estimation is easy when the proposal
is deterministic because it provides the same results every
time a sequence is analyzed with the same parameters. How-
ever, this is not always the case, for example stochastic ap-
proaches, like those based on particle filtering, that give a
different result in each evaluation. Therefore, they require
analyzing several times the same parameters only to decide
if those are good enough. From all of these, the main issues
that make the tuning a hard task are: (1) performance impact,
(2) computational time of tuning, (3) performance stability,
(4) handling of tools and (5) robustness of the tools.

Hyper Parameter Tuning (HPT) could be seen as an op-
timization process. Here, the goal is to find the set of pa-
rameters that maximize (or minimize) a cost function, i.e.
the CLEAR-MOT metrics that evaluate a tracking proposal.
There are multiple studies on the influence of the (online/
offline) free parameters [3,8,37]. Among all of them, we
select the most relevant optimization methods, in terms of
number of citations and code availability. Our contribution
consists of making an overview (as possible) evaluation of
these tools under a MOT context, showing its relevance in
this field. MOT approaches could be classified as determin-
istic or stochastic. The latter is more difficult to tune given
its nature of producing a different result in each execution of
the same parameters [17]. Therefore, we evaluate HPT tools
in this challenging context. Our analysis is based on classic
tracking using the Particle Filter (PF). The PF-based propos-
als commonly involve several parameters [1] and some of
them could be correlated. Our study shows the existence of
correlation between the parameters and how this affects the
search of the optimal parameters. Within the literature, there
exist many optimization schemes [33,6,30], which can be
roughly classified as local and global optimization [29]. The
latter focuses on finding the minimum (or maximum) over
the whole parameter space instead of only in the local space.
Global optimization [16] could be divided into three groups:
Deterministic, Stochastic and Metaheuristic. The first group
requires the derivate of the cost function meanwhile the third
group is built up based on a heuristic [40,6]. In our applica-
tive context, the stochastic nature of PF makes impossible
to infer any information of the cost function. Thus, the use
of deterministic methods is not suitable and the selection of
a heuristic could not work for all the cases. In this paper,
our goal is to give an insight of known hyper-parameter op-
timization tools for multiple object tracking methods. This
allows the reader to select the most appropriate tool. Those
tools are open source or easy to implement, making them
accessible to everyone. We dedicate our study at tracking

applications, more precisely at multiple pedestrian tracking,
but the results can be applied to other vision modality. We
evaluate the performance and provide a statistical analysis of
each tool in terms of performance (CLEAR-MOT), stability,
robustness and convergence speed among others. To the best
of our knowledge, no similar studies have been proposed
in the visual tracking community even though optimization
tools are essential for fine-tuning [32]. This paper provides
a substantial improvement to a previously published con-
ference paper [27]. Here, we evaluate a monocular MOT
framework more generic than the multi-camera scheme of
[27]. The analysis is broader, with more tools, considering
more aspect than the original such as:

– Tool computational time,
– Results repeatability,
– Approach convergence,
– Size of training set,
– Sensitivity to the initial point,
– Evaluation using a combination of metrics and
– Comparison with the state of the art.

The main objective of this work is to provide the reader with
an analysis, as detailed as possible, of several optimization
tools of hyper parameters. Highlighting the strong features,
the weak points to consider and other aspects of interest that
can motivate the reader to select the most pertinent tool,
mainly in this context of tracking. The analysis focuses on
8 important points that make the tools efficient and practical
to use: (1) Convergence speed, (2) Stability, (3) Accuracy,
(4) Computational time, (5) Robustness of starting point, (6)
training size and (7) number of particles, and (8) Documen-
tation.

The paper is organized as follows: Section 2 gives the
details of the selected optimization methods and the descrip-
tion of the corresponding tools. The details of our MOT sys-
tem and the set of parameters to be optimized are described
in section 3. The discussion of the results is presented in
section 4. Finally, section 5 describes the conclusion of our
analysis.

2 Hyper-optimization methods

At first, one can think that the use of an optimization algo-
rithm could be unnecessary, hard to understand or incorpo-
rate to each different methods. Our work focuses on ana-
lyzing various tools and showing how we can adjust them
to the MOT context. There are several strategies for hyper-
parameter optimization in the literature [3,8,20]. We focus
on stochastic approaches based on Bayesian optimization.
This methodology allows to estimate the global maximum
(or minimum) of noisy black-box functions by developing
statistical models. It has proven to be a powerful solution in
various areas such as machine learning [24,35], robotics [23,
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10], deep learning [13], combinatorial optimization [38,19],
among others. Our goal is to study how its use affects the
result of a stochastic MOT framework. The particle filter-
based MOT frameworks can be seen as this type of func-
tions because CLEAR-MOT metrics acts as a mapping from
tracking results (obtained from the hyper-parameters) to the
objective loss function. The stochastic nature of PF could
be seen as a noise included in the final output. Stochastic
optimization collects information from the observation and
builds a model as close as possible to the unknown function
[32]. Most of the methods begin with a general model of the
function, given a priori. Then, the model is updated accord-
ing to the observations obtained from the evaluation of the
hyper parameters. This process is iterative and the method
carefully chooses the next parameters to evaluate. An in-
telligent algorithm should have a good trade off between
the exploration of the hyper-parameter space and exploita-
tion of the cost function, i.e. high values when evaluating
the cost function. If this is the case, the algorithm will con-
verge faster, requiring fewer function evaluations and there-
fore less computational time.

In the literature, there exists several proposals with this
goal but only a few provide an open source code. We priv-
ilege those approaches with available code. Nevertheless,
in the literature there are methods, easy to implement, that
could help to find the optimal parameters. To know if a clas-
sical method is enough to find reliable parameters, we start
our study with a simple stochastic optimization algorithm as
a baseline.

2.1 Bayesian optimization

At the beginning, it may seem that using a sophisticated op-
timization algorithm is unnecessary, difficult to understand
or use in a particular method. Perhaps a basic method is suf-
ficient to find reliable parameters. To know if this is the case,
we begin our study by analyzing a classical stochastic opti-
mization algorithm as a reference.

2.1.1 Markov Chain Monte Carlo optimization

Generally, classical methods are model-free, with a large
theoretical background [28]. Those are relatively simple and
easy to implement. Since we consider our function as a black
box, we need a strategy that does not rely neither in the
gradient nor heuristics. Thus, we employ stochastic opti-
mization based on Markov Chain Monte Carlo and use this
method as a baseline to compare (in terms of performance
and easiness of use) against more robust techniques. The
Markov Chain Monte Carlo (MCMC) is a set of stochastic
methods based on a sampling procedure. It is widely used
in the literature, most commonly to determine numerical ap-
proximations. In our case, this is the optimal value of the

loss function. They do not require prior information of the
function, such as the gradient. We can find several MCMC
proposals in the literature but we focus on the Metropolis-
Hastings (MH) algorithm [7]. MH approximates a distri-
bution from which direct sampling is difficult or impossi-
ble (i.e. the loss function) by drawing samples from a prior
known probabilistic distribution. It has a good performance
to estimate high dimensional distributions.

Let f(λ) be the function that evaluates the hyper param-
eters λ. Initially, we choose an arbitrary initial set λ0 and
a probability density g(·) from which we can easily drawn
new samples given the previous sample. In our case, we de-
fine g(λt) as a Gaussian distribution centered at the previ-
ous λt with a fixed variance. At each iteration, we drawn
a candidate sample λ∗ ∼ g(λt) which is used to calculate
the acceptance ratio α = f(λ∗)/f(λt). We accept the new
candidate λt+1 = λ∗ if it improves the function value (i.e.
α > 1). If not, we accept it with certain probability given by
uniform distribution. The details of the algorithm are avail-
able in [7].

2.1.2 Spearmint

Previous section describes how MCMC approximates the
distribution of the cost functions using sequential samples.
Moreover, if we have enough samples, we can assume, fol-
lowing the central limit theorem, that those induce a mul-
tivariate Gaussian distribution. This assumption about the
distribution of the function is known as the Gaussian pro-
cess [32]. Some optimization proposals are based on this
idea and one in particular is the work of Snoek et al. [35]
called Spearmint, which gives and analyzes practical con-
siderations to improve this Bayesian optimization algorithm.
Spearmint is well known in the community, having over
1000 citation and additional websites dedicated to explain
the tool developed by the author12. The objective of Spearmint
[35] is to capture the dependence between the hyper param-
eters λ and the cost function f . This is achieved with the
use of a probability distribution p(f | λ), which is mod-
eled with the Gaussian process. However, instead of find-
ing the maximum likelihood, the proposal marginalizes the
model using slice sampling. This idea allows running many
evaluations in parallel each one with a different marginal.
This capability of parallelization makes possible to reduce
the computational time of some expensive methods such as
Deep Learning [36]. Several approaches based on a Gaus-
sian process exploit this mechanism of parallelization [18].
The paper proposes others practical considerations such as
the use of a Matérn 5/2 kernel instead of squared exponen-

1 http://fastml.com/tuning-hyperparams-automatically-with-
spearmint/

2 http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-
learning/hyperparameter-o/spearmint-bayesian/
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tial kernel. The later is typically used on Gaussian process
regressions but this is unrealistically smooth for several op-
timization problems. Also, the approach introduces the Ex-
pected Improvement (EI) per cost acquisition function that
samples not only good parameters but also parameters fast
to evaluate.

2.2 Structure-based Bayesian optimization methods

Some methods try to describe the manifold of the hyper-
parameter space through the use of models, generally fol-
lowing an iterative optimization strategy. In each iteration
the methods evaluate a hypothesis of the parameters and up-
date the model. After a given number of iterations, these
methods propose a final candidate, according to their own
methodology, that provides the best performance. This group
of methods is called Sequential Model-Based Optimization
(SMBO) [19]. These algorithms are recurrently used when
the black box cost function is computationally expensive.
We evaluate two state-of-the-art methods, which are selected
based on their popularity (high number of citations), avail-
ability of source code and their good performance.

Sequential Model-based Algorithm Configuration

One instantiation of SMBO is the Sequential Model-based
Algorithm Configuration [19] (SMAC). It is an optimization
method based on machine learning with over 600 citations.
The tool is under support including the new version 3, which
is still in development. This iterative approach considers all
the collected information when proposing a new candidate,
leading to better parameter estimations. Here, SMAC mod-
els the posteriori p(f | λ) as a Gaussian distribution us-
ing random forests (RF) to estimate the empirical mean and
variance, one for each tree. This RF-based model improves
the performance in discrete optimization, adapts easily to
the data and can handle noisy functions with parameters of
high dimensionality. SMAC gathers initial data to construct
the random forest. Firstly, the set of proposal parameters
are sampled from a uniform distribution in a given finite
range. scoundly, the samples are divided according to one
randomly selected parameter of λ, which later are used to
build the regression trees. This division process is repeated
until it reaches a minimum number of samples per branch.
The configurations are evaluated using a “expected improve-
ment (EI)” criterion and the most promising are selected.
Finally, the best configuration, the one with the highest EI
score, is compared against the previous one. The new pro-
posal is accepted if it improves the cost function value. If
that is the case, the corresponding tree is used in the next
iteration.

Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator [2] (TPE) is a well-
known model-based method with over 500 citations. Mean-
while SMAC and Spearmint model p(f | λ) explicitly, i.e.
the estimation of the cost function value given the param-
eters, TPE factors it. Thus, it models the probability of the
parameters given that they improve p(λ | f ≥ f∗) or worsen
p(λ | f < f∗) the evaluation of the loss function according
to a fixed quantile of the losses observed so far. These two
probabilities are modeled with tree-structured Parzen esti-
mators.

In practice, TPE draws, in each iteration, new samples of
the parameters and decides which set will try the next itera-
tion. TPE draws samples of λ uniformly in the configuration
space, therefore it does not require initial guesses or training
sets. Then, the samples are evaluated according to cost func-
tion f . The approach splits the samples in two groups based
on their score. The first group has all samples that improve
the current score estimation f∗ meanwhile the second con-
tains the remaining. Then, both groups are used to model the
likelihood probability: a model g(λ) = p(λ | f ≥ f∗) for
the first group with greater values and l(λ)p(λ | f < f∗)

for the second group with lower values. The models use a
1-D Parzen estimator to measure the density of the groups
through a hierarchical structure. The goal is to create new
candidates that are most likely to be in the first group. Thus,
new samples of g(λ) are drawn at each iteration. The one
with the highest improvement is then used in the next iter-
ation. TPE defines the Expected Improvement are the ratio
between models, EI(x) = l(x)

g(x) .

2.3 Associated tools

MCMC is a robust method to estimate the parameter distri-
bution. The implementation is simple and does not require
a strong background. Therefore, we create an implementa-
tion in C++ using the classic Metropolis-Hastings algorithm
[7]. It receives the same input as the others tools such as
the limits of the configuration space, number of iterations,
initial point and the black box cost function. The configura-
tion space is fixed in the same way as the other tools, where
new samples follows a Markov chain, being drawn with a
Gaussian distribution with mean in the previous state and a
fixed variance. Here, the number of iterations plays an im-
portant role in the final results. A small number could lead to
an underestimation of the parameter distribution but a large
number could generate an over-fitting problem.

Spearmint tool [35] was created by members of the Har-
vard Intelligent Probabilistic Systems Group. The open source
code 3 requires installing both Python and MongoDB [11].

3 https://github.com/HIPS/Spearmint
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The later is a database software that keeps the collected in-
formation of Spearmint. MongoDB allows different applica-
tions (or threads of the same application) to access the same
set of data simultaneously. This allows the communication
of many runs of the tools, making parallel optimization pos-
sible. Also, it can be used to track the process from the last
evaluated iteration, which is useful since it allows to con-
tinue the optimization or analyze the results in case there
is a problem with the evaluation of the function. Spearmint
documentation is very limited, with only a short explanation
of how to set up a simple experiment. The included exam-
ples give a better idea of the different tool parameters avail-
able. It requires defining two files: a parameter file, which
set the configuration space limits, and a Python file, which
launch the black box function. Additional parameters such
as number of iterations are passed as terminal arguments.

SMAC [19] is a publicly available tool for configuration
parameter optimization. It has been developed for several
years. The stable release SMAC v2 has been published in
2015 and v3 is in development. It is based on Java 4, mak-
ing it easy to install and to run on Windows and Unix en-
vironment. The authors set documentation such as a quick
installation guide, an environment setup and a detailed man-
ual describing the tool, which includes a good description
of the output. The framework is easy to use, requiring the
definition of a scenario file (in Python) and a parameter file.
The first has the information to launch the black box func-
tion, the path to the parameter file and optimization options,
e.g. the number of iterations. The parameter file describes
the configuration space limits, initial point and data type.

TPE [2] is an optimization tool and it forms part of the
Hyperopt library5 and Optunity library 6. The later is sup-
ported for different languages such as Python, MATLAB,
Octave, R, Julia, and Java. However, Optunity is based on
Python, which should have been install beforehand. Hyper-
opt implements TPE algorithm for Python and can be run
either serially or in parallel via MongoDB. Both libraries
provide simple documentation and small examples of their
use. The configuration is simpler than SMAC, limiting it to
the call of a minimization function. The function receives as
parameters the objective function, number of iterations and
the limits of the configuration space.

3 Study case

The performance of some frameworks depends on the se-
lection of parameters but finding the optimal configuration
could be a hard task even for expert users. Fortunately, the
optimal values can be calculated using optimization meth-

4 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.10.03/quickstart.html
5 http://hyperopt.github.io/hyperopt/
6 http://optunity.readthedocs.io/

ods. There are several proposals in the literature with this
goal but only few provide tools (and support) of their meth-
ods. In this paper, we evaluate the performance of differ-
ent hyper-parameter optimization tools. The analysis of the
aforementioned tools can be done over any methodology
that can be formulated as a cost function. Nevertheless, the
relevance of the optimization is more evident with complex
methods (such as stochastic) with several parameters. Some
Multiple Object Tracking (MOT) methods fit well in this
description [21]. MOT is highly studied in the literature be-
cause it can be applied in different areas such as security,
human-robot interaction, among other. In this context, the
goal is to detect and to track pedestrians/people, which could
be difficult due to the number of existing issues. To over-
come these issues, several methods have been developed
and those are usually grouped as deterministic or stochas-
tic [39,34]. The optimal parameters of stochastic methods
are more challenging to find because the same set of param-
eters will give different results in each evaluation. In par-
allel, the tracking community has created a set of metrics,
e.g. CLEAR-MOT [4], to measure the method performance.
The metrics allow modeling the tracking system as a cost
function. From these highlights, we aim to lead our study
in the scope of pedestrians tracking in outdoor environment.
Therefore, we have several parameters to optimize with re-
spect to the accuracy measure defined in CLEAR-MOT [4].
The rest of this section gives a description of the tracking
system used in our evaluation.

MOTChallenge provides the results of several tracking
methods where hundreds of those are based on tracking-
by-detection. Thus, we follow a decentralized particle fil-
ter strategy in the vein of [9]. Therefore, we implement a
tracking-by-detection framework where each target state is
estimated by a PF in image plane. We define the state as
X = {x, y, u, v} where (x, y) are the 2D image position and
(u, v) are the corresponding velocity components. We use
the pre-computed detections named ACFINRIA, which are
provided by MOTChallenge [22]. The detections are gener-
ated with the Aggregate Channel Features pedestrian detec-
tor [12], which is trained with the sequences of the INRIA
pedestrian training dataset. We always have the same de-
tections for all the experiment, limiting the variability of the
algorithm to only the tracker. Thus, the detector is not a vital
part of this work because it is not considered in the tunning
process.

Each detection is associated to one tracker but only if
the distance between them is smaller than a threshold dH .
We perform the association with the Hungarian algorithm
[9,31,5]. Fixing a value to dH , in the image plane, is not
that simple because its value depends on the image size,
the frame-rate and how far the camera is from the targets.
Moreover, small values can omit correct associations mean-
while high values could lead to a wrong association. So, we



6 Francisco Madrigal et al.

have to tune dH in such a way that it generalizes the dis-
tance for all cases. We create a new tracker for any detec-
tion that has been not associated to an existing tracker. We
use color information to model the pedestrian appearance
with a histogram per target. Then, each tracker contains a
reference histogram Hr, which defines individual appear-
ance, and we build a histogram for any incoming detection
Hd. The observation model of the particle filter measures
both histograms using the Bhattacharyya distance. The ref-
erence histogram is updated as the weighted sum of both:
Hr = hur ∗ Hr + (1 − Hd), where 0 < hur < 1 is the
histogram updating rate. If the target appearance does not
change much over the scene, i.e. constant lighting, we can
put hur close to 1 or reducing it otherwise. If the value is
too small, we risk adding spurious information in the model,
which reduce tracking performance. Finding the optimized
value is essential to obtain good results.

The motion model of the PF consists of a random walk
model. Therefore, the state is updated as follows: Xt =

X(t−1) + ηt where ηt = {η1t , η2t , η3t , η4t } is an independent
Gaussian noise for each parameter (η∗t ∼ N(0, rwn∗)). The
random walk noise rwn∗ allows the tracker to move at dif-
ferent directions with different speed. However, the correct
setting depends on the behavior of pedestrians. Small val-
ues are good to track slow pedestrians while higher values
allow fast targets to be followed. Normally, the sequences
have both cases (slow and fast pedestrians) and finding the
optimal noise parameters is a hard task.

Our implementation of the particle filter follows the Se-
quential Importance Resampling scheme, applying a resam-
pling step in each iteration. The number of particles np plays
an important role. In many cases, a large number of particles
could improve the state estimation but this also increment
the computational cost. Sometimes a small number is ade-
quate for simple scenarios. Therefore, we need to find the
number of particles with the best accuracy/computational
cost ratio. Finally, this implementation of a basic tracking-
by-detection framework has 7 parameters to tune: associa-
tion distance dH , histogram updating ratio hur, four ran-
dom walk noise variables rwn∗ and the number of particles
np. Those components are put together in a vector:

λ = {dH, hur, rwn1, rwn2, rwn3, rwn4, np}, (1)

which is parameter set used in the optimization process.
These are the parameters that a MOT system commonly uses
but more parameters can be included (i.e. detector thresh-
old) without drastically affecting the performance of the op-
timization tools.

4 Evaluation of the tools

Initially, we describe the data and metrics used to perform
the evaluations as well as the methodology. Finally, we present

Fig. 1: Examples of sequence S2L1 from PETS 2009
dataset [15]. Left-to-right: views from cameras 1,2,5,6 at
frame 49.

Fig. 2: Examples of sequence Sunny Day from ETH [14].

the results and we discuss them in both quantitative and
qualitative aspects.

4.1 Dataset description

For all the evaluations of the presented tools, we use two se-
quences extracted from well-known public datasets: PETS
2009 [15] and ETH [14]. All of these datasets are challeng-
ing benchmarks to evaluate the performance of any tracking
framework. The PETS2009 dataset has several sequences
aimed to a specific goal that goes from single pedestrian
tracking to flow estimation. The density of crowdedness varies
from sparse to highly dense. We focus on the set S2L1 (see
Fig. 1) that consists of 8 synchronized sequences observ-
ing a common outdoor scene. Each video has 795 frames
recorded at 7 fps with a resolution of 640x480 pixels. It is
a structured scene with three portions of road surrounded
by grass. The sequence has a medium density level, with
19 pedestrians, and is oriented to single target tracking with
challenging situations, such as clutter occlusions. Among
all the sequences, we work with the view 2. We focus on
this sequence because it has been overexploited in the liter-
ature. The results have almost reached the ceiling showing
small improvement between proposals. Our work is aimed to
show how the ranking of the same tracking framework can
change with the use of better parameters. The ETH dataset
consists of 8 sequences captured by a stereo pair of cam-
eras mounted to a stroller. The camera has a resolution of
640x480 pixels with a frame-rate of 13-14 fps. Each video
shows a different place of a busy street. We can see how the
camera moves around on the street from a low point of view.
These are challenging sequences mainly due to camera po-
sition increases the number of total occlusions. We evaluate
the tools using the Sunny Day sequence, see Fig. 2. Both
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sequences represent classic scenarios in pedestrian tracking,
the first being a static camera located at the distance, with
the purpose of surveillance, and the other a mobile camera,
with the purpose of interacting with the environment. There-
fore, our study analyzes the tools with this kind of videos,
which are commonly used in literature.

Calibrated cameras record both datasets. For our frame-
work, we use detections provided by MOTChallenge, which
are generated by using the approach of Dollar [12] named
Aggregate Channel Features. This pedestrian detector is trained
using the INRIA pedestrian training dataset. We perform the
evaluation using the kit and ground-truth both provided by
MOTChallenge [22].

4.2 Experimental setup

We analyze the performance of several parameters optimiza-
tion tools, where the loss function is as a black box. As men-
tioned in section 3, the framework is considered as a black
box that takes as input the set of parameters λ and returns
a measure of the tracking performance. It consists of two
parts: (1) a tracking-by-detection system in the same vein as
Breitenstein approach [9] and (2) a performance evaluation
system, which is carry out using the Multiple Object Track-
ing Challenge Development Kit provided by MOTChallenge
[4]. This section describes the configurations used for each
tool and the evaluation metrics used.

4.2.1 Tool configurations

All the three tools require to define a search space, either
with lower and upper bounds, or covariance. Additionally,
SMAC and MCMC require to set initial values, we choose
the middle point of the space search. The tools are able to
call our tracking function with any test parameters within
the specified search space. We need to set a configuration
file in order to use any of those optimization tools. In gen-
eral, it requires to define three aspects: searching space, ini-
tial value and type of variable. The searching space must be
delimited according to the parameters to evaluate. As men-
tioned in Eq. 1, we have λ with seven variables. From those,
only the histogram-update-ratio variable hur is well delim-
ited because it is normalized. For the rest, we can only use
our experience to set the limits. Therefore, we define a small
configuration space S fixed around from where we expect to
find the optimal configuration. In our case, S is set as fol-
lows:

S = {dH ∈ [0.1, 10], hur ∈ [0.1, 1],

rwn∗ ∈ [0.1, 3], np ∈ [10, 100]}.
(2)

However, we do not know if those parameters are the
best. Then, we create a larger configuration set L as follows:
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Fig. 3: Evaluation of SMAC using the configuration SF. The
function evaluations, using the metric MOTA, are shown in
orange. Cumulative distribution is shown in blue.

L = {dH ∈ [0.1, 20], hur ∈ [0.1, 1],

rwn∗ ∈ [0.1, 20], np ∈ [10, 100]}.
(3)

Also, it could be a correlation between the number of
particles np and the rest of parameters which influences the
final results. A higher number could overcome the limits of
the other parameters. We analyze this aspect and we label
the experiments as F and NF when the number is fixed or
not.

4.2.2 Evaluations and comparison protocol

In the literature there exists several metrics to measure the
performance of tracking approaches. The best-known are the
CLEAR-MOT and those are implemented in the MOTChal-
lenge development kit. From all the metrics, we use the Mul-
tiple Object Tracking Accuracy (MOTA) metrics as the loss
function f because is, commonly, the key metric when com-
paring several tracking methods. It evaluates the algorithm
results with respect to the ground-truth. MOTA combines
the information of missed detection, mismatches between
detected objects, and false positives. The MOTChallenge
[22] ranked by default the results using this metric. When
comparing the best positions of the 2D MOT 2015 chal-
lenge7, we observe that the approaches achieve a similar
tracking precision (MOTP). The standard deviation is of 0.9
over 100. Nevertheless, the difference lies in the accuracy
that shows a standard deviation of 5.3. By optimizing this
metric, the ranking of the methods could change.

7 https://motchallenge.net/results/2D MOT 2015/
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Fig. 4: Convergence speed evaluation. Cumulative MOTA of SMAC [19], TPE [2], MCMC and Spearmint [35] using
PETS09-S2L1 sequence.
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Fig. 5: Convergence speed evaluation. Cumulative MOTA of SMAC [19], TPE [2], MCMC and Spearmint [35] using ETH
Sunny day sequence.

We carry on the evaluations using public sequences. The
videos are divided into two sets. One is a training set that
is used with the optimization tools to estimate the optimal
hyper-parameters. The resulting parameters are then evalu-
ated with the rest of the video that defines the test set. This
division allows to avoid over-fitting of the results and boost
the configurations that generalize better. Due to the stochas-
tic nature of the method, i.e. tracking framework, we evalu-
ate several times (10) each possible configuration of all the
tools. Thus, the results shown are the mean of all the eval-
uations. This allows to evaluate tools stability and speed of
convergence. The later is an important factor that can favor
the use of one tool or another. We launch all the evaluations
using a Dell Precision Tower 3620, with an Intel Xeon CPU
v5 of 3.60GHz and 8 cores, 16 GB of RAM over a Linux
system (Ubuntu 14.04).

In traditional optimization, the algorithm converges once
it reaches a stationary value of the cost function. This is not
possible when optimizing stochastic methods. In the liter-
ature there are plenty termination criteria but selecting the
most appropriate depends on the evaluated functions. There-
fore, instead of providing an automatic termination criterion,
the tools end after a certain number of iterations, set by the
user. SMAC, TPE and Spearmint benefit from additional it-
erations because that allows them to further explore the con-
figuration space. In theory, the methods will converge to the

optimal value when the number of iterations tends to infinity,
following the central limit theorem. In order to analyze the
convergence of the tools, we use the weak convergence cri-
terion that estimates the cumulative distribution of the mea-
sured parameters. We can see an example in Fig. 3 using
the results of SMAC. The orange line shows the evaluations
of the function (tracking framework), in terms of MOTA,
and blue line is the cumulative distribution. We observe that
after 50 iterations SMAC starts to stabilize. This means that
most of the time SMAC is exploring zones with high MOTA
values (33).

4.3 Results

We present the results of each hyper-parameter optimization
tool using two challenging sequences. On these two views
we observe how the tool performs under two different con-
text: static and dynamic cameras. Recall that we analyze
the tools in terms of: (1) convergence speed, (2)stability of
the optimum value, (3) performance accuracy according to
MOTA metric, (4) computational time and influence of (5)
starting point, (6) training size and (7) number of particles.
Finally, from these evaluations, we propose a ranking of the
tools in Tab. 9.
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Table 1: Accuracy. Evaluation over the PETS09 S2L1 sequence.

MCMC SMAC TPE Spearmint

Conf. It Training Test Training Test Training Test Training Test

SF 250 32.75 21.65 33.45 20.70 38.20 21.12 33.47 21.94
SF 500 30.28 21.39 33.55 20.58 39.44 20.58 33.53 20.30
SF 1000 33.10 20.64 33.46 20.55 39.61 20.88 33.46 21.96
SF 2000 33.63 21.97 33.43 20.51 39.79 20.78 34.01 21.62
SNF 250 35.04 20.95 33.97 21.31 39.44 21.67 33.66 18.78
SNF 500 31.69 19.89 33.87 22.56 39.79 20.32 33.99 21.86
SNF 1000 30.99 18.72 33.80 21.76 37.68 21.45 33.96 20.53
SNF 2000 34.33 22.59 33.70 21.74 40.14 20.21 33.94 22.21
LF 250 34.51 21.05 33.61 21.99 36.97 22.55 33.87 22.12
LF 500 33.98 19.02 33.28 22.96 38.73 21.77 34.03 22.56
LF 1000 35.56 18.82 33.56 21.75 39.09 21.62 33.91 22.28
LF 2000 33.45 22.34 33.84 22.16 39.09 21.51 34.23 19.22
LNF 250 32.75 21.18 33.95 20.85 36.97 21.52 34.26 5.43
LNF 500 30.46 20.79 33.92 20.55 37.32 21.40 34.27 20.76
LNF 1000 33.45 20.75 33.99 21.85 38.56 21.41 34.25 22.00
LNF 2000 31.87 22.06 34.01 21.79 40.14 21.97 34.51 21.11

St.D 1.53 1.17 0.23 0.75 1.05 0.60 0.30 3.98

Table 2: Accuracy. Evaluation over ETH Sunny Day sequence.

Conf. It
MCMC SMAC TPE Spearmint

Training Test Training Test Training Test Training Test

SF 250 42.39 40.75 34.39 40.70 46.95 40.71 35.00 40.62
SF 500 11.68 29.91 35.16 40.84 48.48 40.62 36.35 40.65
SF 1000 41.12 40.79 35.25 40.88 46.70 40.95 35.98 40.64
SF 2000 25.13 35.09 35.71 40.97 48.22 40.69 36.23 40.65
SNF 250 43.91 40.72 34.96 40.62 45.43 41.03 36.56 40.52
SNF 500 12.69 39.83 33.73 40.77 48.22 40.66 36.34 40.81
SNF 1000 29.44 40.74 34.47 40.80 47.21 40.75 37.03 40.44
SNF 2000 20.05 40.75 35.17 40.85 47.21 40.59 35.86 40.60
LF 250 43.91 40.48 34.41 40.66 47.21 40.77 35.04 40.78
LF 500 23.86 13.17 35.58 40.66 47.21 41.01 35.04 41.21
LF 1000 27.16 40.68 35.30 40.73 47.46 40.50 37.08 40.84
LF 2000 14.98 34.04 34.66 40.81 47.62 40.67 37.97 40.58
LNF 250 31.22 40.88 35.33 40.89 46.45 40.79 35.92 41.02
LNF 500 14.72 36.34 33.75 40.72 49.49 40.82 36.05 40.23
LNF 1000 31.73 40.66 35.22 40.75 47.46 40.80 36.38 40.57
LNF 2000 22.59 40.22 35.90 40.89 48.73 40.75 37.73 36.30

St. D. 10.81 6.95 0.62 0.10 0.94 0.14 0.84 1.08

Convergence speed. We analyze the weak convergence cri-
terion for all the tools under different configurations S and
L with the number of particle fixed F and non-fixed NF .
Figs. 4 and 5 shows the results. We observe that SMAC and
TPE stabilize faster and to the highest values most of the
time. Meanwhile, MCMC stabilizes slower than the others
and Spearmint shows an average performance in most of the
cases.

Stability. In Fig. 6 and 7 we analyze the performance sta-
bility of the tools for the four configurations SF, SNF,LF,
LNF . The evaluations are done with 1000 iterations, mean-
ing that each tool evaluate 1000 times the cost function. The
MOTA output is used to build up a box plot that represents
MOTA distribution. Both Figs. show the median (red line),

the first and third quantiles (blue box) and the outliers (red
crosses). We can observe that all the boxes of MCMC are
the bigger than the others.

Accuracy. The previous results indicate that TPE and SMAC
have a better convergence rate with an efficient use of each
iteration. We can observe in Tables 1 and 2 the results in
terms of precision using the MOTA metric. We evaluate the
tools for all the configurations and a fixed number of itera-
tions using the training set (i.e. the first part of the sequence).
At the end, the tool gives a configuration and its associated
MOTA value. We evaluate 10 times each tool and we show
the mean value in the training column. This number offers
a good compromise between the computation time and the
number of evaluations needed to estimate the behavior of
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Fig. 6: Performance stability. Analysis using PETS sequence. We show the distribution of the MOTA values obtained with
1000 iteration of each tool: SMAC [19], TPE [2], MCMC and Spearmint [35].
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Fig. 7: Performance stability. Analysis using ETH Sunny day sequence. We show the distribution of the MOTA values
obtained with 1000 iteration of each tool: SMAC [19], TPE [2], MCMC and Spearmint [35].

these stochastic tools. In all the cases, the variance is less
than 0.2. Then, we evaluate 30 times the parameters given
by the tools using the test set. The results are shown in the
test column. Last row shows the mean standard deviation of
each column.

We analyze the whole sequences using the best param-
eters of each tools. The results are shown in Tables 3 and
4. In both cases, SMAC and TPE show the best results. The
results displayed at the webpage of MOTChallenge are the
average values across all sequences. Nevertheless, they pro-
vide the individual results of each single video. We calculate
the mean and standard deviation of all provided results for
the ETH and PETS sequences. The results are shown in the
last two lines of the tables.

Computational time. The Tab. 5 and Fig. 8 show the mean
computational time used for each configuration (S,L) using
the PETS sequence. The time of each iteration of MCMC is
practically the same, having a linear increment with respect
to the number of iterations. Meanwhile SMAC is a bit slower
than MCMC, but it is faster than the rest of the tools. TPE
has a good performance in comparison. However, Spearmint
computational time increases at each iteration. This could be
a limitation. In our experiment we observe that Spearmint
performs, in general, better with more iterations. The results
with ETH sequence are similar and the only difference is,
therefore, a different number of frames to process.

Influence of starting point. In optimization, the initial pa-
rameters could influence the final results. TPE and Spearmint
use the lower limits of S and L as starting point by de-
fault and this cannot be changed. Nevertheless, SMAC and
MCMC allow to set the initial point. We evaluate 10 param-
eters randomly generated 5 times each using the training set
with 500 iterations. We use the large configuration without
fixing the number of particles because this setting has shown
the best performance. The tool results are evaluated 30 times
using the test set. We calculate the mean and standard devi-
ation of the MOTA metric of the training and test set. The
results are shown in Table 6 for PETS and ETH sequences
respectively.

Influence of the training size. The tool performance increases
when more data is available. However, this is not possible in
all cases. We analyze how training size impacts the results.
We evaluate 4 sizes corresponding to the initial 5, 10, 15
and 20 percent of the video. The Table 7 shows the results
for both sequences. We observe that all the tools work well
after 10 percent. MCMC, SMAC and TPE increase the pre-
cision when more frames are used.

Influence of the number of particles. In our evaluations, we
fixed the number of particles to 30. This is motivated be-
cause this number gives a good trade-off between computa-
tional time and precision. However, a variation on the used
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Table 3: Accuracy. Evaluation over the whole PETS09-S2L1 sequence.

Method Conf. IDF1 Rcll Prcn MT ML FP FN IDs MOTA MOTP MOTAL
MCMC SF 43.22 75.07 65.12 7.27 0.43 1869.40 1158.60 39.97 33.98 69.37 34.80
MCMC SNF 42.77 74.49 65.18 7.53 1.57 1849.30 1185.03 40.53 33.83 69.55 34.67
MCMC LN 42.33 74.15 65.03 7.17 1.57 1853.27 1201.23 40.73 33.39 69.37 34.24
MCMC LNF 42.38 74.29 65.24 7.07 1.83 1838.97 1194.60 40.57 33.85 69.47 34.68
SMAC SF 42.41 74.88 64.78 7.57 0.67 1892.13 1167.50 44.13 33.21 69.39 34.12
SMAC SNF 43.15 75.33 65.24 7.43 0.60 1865.17 1146.03 43.53 34.26 69.56 35.17
SMAC LN 43.82 75.11 65.12 7.57 0.53 1868.90 1157.03 40.90 34.01 69.39 34.84
SMAC LNF 43.97 75.80 65.60 7.60 0.20 1847.27 1125.07 41.93 35.13 69.61 36.00
TPE SF 43.06 75.01 65.01 7.53 0.53 1876.47 1160.63 44.67 33.68 69.35 34.61
TPE SNF 43.14 75.10 64.88 7.70 1.37 1888.47 1157.40 46.83 33.44 69.52 34.42
TPE LN 44.05 75.09 65.15 7.57 0.53 1866.33 1157.53 41.30 34.05 69.33 34.89
TPE LNF 43.69 75.49 65.44 7.33 0.43 1852.50 1139.30 42.27 34.70 69.57 35.58
Spearmint SF 41.27 74.76 64.62 7.50 1.43 1901.47 1173.47 50.93 32.73 69.37 33.79
Spearmint SNF 42.45 75.33 65.21 7.53 0.50 1867.40 1146.23 43.83 34.21 69.61 35.12
Spearmint LN 43.36 74.90 64.91 7.53 0.83 1881.83 1165.90 42.40 33.50 69.41 34.37
Spearmint LNF 42.75 75.73 65.33 7.54 0.53 1857.40 1141.13 43.13 34.33 69.61 35.17
MOTChallenge Mean - 83.29 81.24 14 - 1029.17 775 167 57.13 71.17 60.701
MOTChallenge St. D. - 5.541 10.77 2.08 - 894.224 261.054 108.5 16.23 0.442 15.376

Table 4: Accuracy. Evaluation over the whole ETH Sunny day sequence.

Method Conf. IDF1 Rcll Prcn MT ML FP FN IDs MOTA MOTP MOTAL

MCMC SF 53.02 71.67 85.95 9.10 9 217.40 526.50 11.10 59.37 78.19 59.90
MCMC SNF 54 71.16 86.3 10.5 8.8 209.9 535.9 10.2 59.31 78.19 59.8
MCMC LN 52.74 71.82 86.03 9.2 8.9 217.2 523.7 11.3 59.51 78.06 60.07
MCMC LNF 52.15 71.28 86.1 9 9 213.8 533.5 10.6 59.21 77.93 59.71
SMAC SF 52.78 71.76 86.14 9 9 214.5 524.7 10.4 59.64 77.97 60.16
SMAC SNF 52.47 71.72 86.03 9.4 9 216.4 525.4 11.5 59.46 78.2 60.02
SMAC LN 53.2 71.46 86.27 8.9 9 211.2 530.4 10.5 59.52 77.9 60.01
SMAC LNF 52.89 71.72 86.01 9.10 8.9 216.90 525.80 11.60 59.40 78.06 59.96
TPE SF 52.73 71.74 86.16 9.1 9 214.5 524.9 10.9 59.6 78.07 60.16
TPE SNF 52.92 71.77 86.25 9.2 8.9 212.4 524.6 11.5 59.72 78.09 60.27
TPE LN 52.89 71.6 86.11 9 9 214.7 527.9 11.4 59.42 78.07 59.97
TPE LNF 53.02 71.78 86.2 8.8 9 213.6 524.2 11.2 59.69 77.92 60.24
Spearmint SF 52.69 71.62 85.79 9 9 220.6 527.2 10.8 59.17 78.13 59.7
Spearmint SNF 52.87 71.65 86.04 9 9 216.2 526.9 11 59.41 78.07 59.95
Spearmint LN 52.3 71.77 86.25 9.1 9 212.8 524.5 11.2 59.31 78.25 59.26
Spearmint LNF 52.65 71.85 86.48 9.2 9 218.7 523.1 11.2 58.98 78.41 59.55

MOTChallenge Mean - 61.13 86.26 5.33 8.17 211.67 736.33 41.50 47.66 77.77 49.78
MOTChallenge St. D. - 3.22 10.40 2.21 1.34 211.58 63.17 40.96 10.87 1.88 10.64
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Fig. 8: Computational time, in hours, used by the tools with the PETS09 S2-L1 sequence
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value changes the performance of the results. We analyze
this behavior testing different number of particles under the
large configuration. We focus into analysis of SMAC and
TPE because these have shown the best performance un-
til now. The optimized hyper-parameters are then evaluated
over the whole sequence of PETS. The mean of 30 evalua-
tions is shown in the Table 8.

Table 5: Computational time, in hours, used by the tools
with the PETS09 S2-L1 sequence.

Time (hours)
Conf. No. Iter. MCMC SMAC TPE Spearmint

SF

250 0.73 0.83 1.86 1.14
500 1.12 1.69 2.96 5.83

1000 2.79 3.27 7.34 14.78
2000 5.41 6.72 11.60 38.36

SNF

250 0.77 1.02 2.02 1.92
500 1.14 2.26 3.21 4.64

SNF 1000 2.86 4.46 8.00 12.24
2000 5.37 9.42 13.38 37.17

LF

250 0.70 0.83 1.85 1.15
500 1.09 1.69 2.92 5.80

1000 2.83 3.40 7.31 14.71
2000 5.33 6.63 11.52 37.17

LNF

250 0.72 1.15 2.08 1.98
500 1.08 2.26 3.31 4.99

LNF 1000 2.77 4.60 8.66 12.78
2000 5.24 8.73 12.57 39.95

Table 6: Influence of starting point. Mean MOTA results
with 10 parameter sets randomly generated. We test them
with the large configuration with not fixed particles and 500
iterations.

Training Test
Sequence Method MOTA St. D. MOTA St. D.

PETS MCMC 33.95 0.72 19.13 1.56
PETS SMAC 34.05 0.08 22.39 0.66

ETH MCMC 19.77 6.37 27.92 14.71
ETH SMAC 34.81 0.76 40.23 0.30

4.4 Discussion

Hyper-parameters optimization tools are designed to sup-
port proposals that require tuning multiple variables. There-
fore, they must be intuitive to use and adapt well to different
scenarios. Our proposal gives an original insight of relevant
tools for MOT frameworks. This section highlights some in-
teresting aspect of the tools based on the previous results.

Convergence speed. The analysis of the weak convergence
criteria (see Figs. 4 and 5) show interesting results. Both

SMAC and TPE find the highest values of MOTA most of
the time. They converge faster than the rest on any configu-
ration. Our MCMC baseline takes longer to stabilize and the
cumulative distribution reaches lower MOTA values com-
pared to the others. Spearmint can find in the short configu-
ration high MOTA values in few iterations. However, it takes
more time to process the large one. Furthermore, the small
configuration is selected around where it is expected to have
the optimal parameter configuration. It is set based on expert
knowledge about the parameters of the MOT framework.
This prior information helps optimization tools to converge
faster with more stable MOTA values compared to the larger
configuration. However, if these limits cannot be clearly de-
lineated or if we know little about the effect of the param-
eters on the system, we can use a larger configuration and
get the same results with just more iterations. The number of
particles plays an important factor. The initial intuition to fix
it is to reduce the number of parameters to optimize. How-
ever, we observe that the results labeled as NF (Non-Fixed)
converge more rapidly than the others. This is because the
tools use this variable to compensate the rest. More clearly,
a high number of particles are considered when the other
parameters do not perform well in the tracking system. For
example, the tools test with more particles when the noise
of the random walk parameters is small. Moreover, fixing or
not fixing this parameter changes the behavior of TPE by im-
proving its performances in the short configuration for both
sequences. Thus, we conclude that both TPE and SMAC
generally converge to the optimal MOTA value in a faster
way than the other approaches. Therefore, these tools are
recommended when a result with few function evaluations
is required.

Stability. Ideally, tools should explore the configuration space
efficiently, evaluating promising parameters. If this is the
case, we expect that the distribution of the evaluations fol-
lows a Gaussian distribution with a small variance. Other-
wise, the variance increases when evaluating suboptimal pa-
rameters, which translates in a waste of iterations. The box
plot quantifies this analysis in the Figs. 6-7. This shows how
MCMC is, overall, unstable to achieve a proper solution and
constantly evaluating, and accepting, hyperparameters with
low MOTA values. On the other hand, TPE is more robust,
using wisely each iteration to explore promising parameters.
SMAC outperforms the rest with respect to PETS dataset,
showing a smaller variance than the others. It finds stable
parameters that generalize well in this scenario with static
camera. However, SMAC has problems to handle the mov-
ing camera of ETH sequence. This is because it tries to opti-
mize as quickly as possible the variables related to distance.
This makes it oscillate between configurations adapted for
moments where the targets are far from the camera and con-
figurations for targets close to the camera. Thus, it is advis-
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Table 7: Influence of the training size. Performance evaluation changing the size of training set.

Seq. %
MCMC SMAC TPE Spearmint

Training Test Training Test Training Test Training Test

PETS 5 30.97 17.58 30.69 21.35 37.85 20.10 7.09 18.58
PETS 10 31.13 17.60 31.18 21.88 39.09 19.97 34.30 21.21
PETS 15 31.53 18.93 32.46 22.09 37.15 22.60 34.85 22.56
PETS 20 31.89 19.47 33.80 22.19 38.20 22.76 32.11 20.87
ETH 5 6.80 18.20 17.88 28.09 27.42 18.2 33.13 38.45
ETH 10 21.22 19.20 34.87 38.26 48.58 19.2 33.11 40.08
ETH 15 23.53 38.95 35.42 40.17 46.36 38.95 33.07 39.32
ETH 20 37.22 39.71 39.28 40.53 40.17 39.19 32.82 39.94

able to use SMAC or TPE for methods whose cost function
contains noise, i.e. stochastic methods and TPE is more re-
liable with non-static sequences.

Accuracy. From Tabs. 1-2, we observe that the results of
MCMC are unstable, arriving to different values at each it-
eration. This is due to its implementation does not consider
noisy function evaluations. MCMC results are unstable, reach-
ing different values in each iteration. This is because their
implementation does not consider that evaluations of func-
tions have noise, i.e., two evaluations of the same parame-
ters result in two different MOTA values. Then, its perfor-
mance is affected by the stochastic output of the particle
filter-based tracker. One way to overcome this issue is to
approximate the distribution of the parameter set using, for
example, MCMC. This will require a larger number of eval-
uations, which makes it computationally expensive. Also,
MCMC training results show that it needs a few iterations
to converge at any configuration (small or large and fixed or
non-fixed). A greater number of iterations generates over-
fitting, reducing its performance. Spearmint provides more
stable results, with a standard deviation of 0.3. However,
the given parameters do not generalize well the rest of the
sequence. Moreover, in this case the number of iterations
needed to obtain good results is proportional to the com-
plexity of the configuration, i.e., the large non-fixed con-
figuration needs more iterations to reach the optimal value.
Unlike, TPE converges slowly but it provides robust param-
eters. It presents the highest values on the training set but
this is because TPE reports the highest value found. Mean-
while, SMAC and Spearmint report the expected mean
value. SMAC appears to be more stable than the others in
both training and testing sets. The results from the training
set are generally consistent with those from the testing set.
From Tables 3 and 4, we can compare our results with those
provided by MOTChallenge. The obtained MOTA in PETS
sequence is in the lower middle with respect to the others,
meanwhile, out tracking method is in the upper middle with
the ETH sequence. This is due to the fact that the sequence
of PETS has been evaluated by dozens of methods, each one
contributing a slight increase with respect to the previous

one. However, ETH sequence has been analyzed with only
few methods, which are not at the top of the ranking. Our
system does not attempt to compete with the methods of
literature, but to show how the same framework can out-
perform itself by using better parameters. From Tab. 3 we
observe a difference of more than 2 percent between the
worst and best result. It may not seem to be much, but if
we check the MOTChallenge ranking, scores between ap-
proaches are only different by a few decimals. Therefore,
this slight change over several sequences could end in an
increase of 5 positions in this ranking. In general, all meth-
ods give a good performance, but among them SMAC gives
a more accurate result. Therefore, we recommend its use
when the main goal is the accuracy.

We analyze the performance of the tools considering other
metrics and making a combination between them. However,
the MOTA metric includes many features that range from
false positives, false negatives and identity switch. Those are
strongly related to other metrics and therefore the results ob-
tained reached the same conclusions as when using MOTA
exclusively.

Computational time. The time used for each tool plays an
important role when selecting which one to use. When com-
paring the configurations F and NF of Fig. 8, we observe
MCMC and Spearmint have a similar cost. However, SMAC
and TPE present a different behavior. The CPU time is larger
when the number is not fixed, the Table 5 highlights this phe-
nomenon. This is because both tools need to build a model
for 7 parameters instead of 6. Thus, the computational time
of both tools will increase according to the number of pa-
rameters that will be optimized. In this case, SMAC is the
one with the largest increment.

Influence of starting point. The choice of starting point in-
fluences the outcome of most optimization systems. A good
method should be able to handle this and converge to the
global optimum, avoiding getting stuck in the local mini-
mum. When comparing Table 6 against Tables 1 and 2, we
observe that SMAC and MCMC show a similar behavior
regardless the initial parameters. Moreover, the analysis of
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Table 8: Influence of the number of particles. Evaluation on PETS09 sequence fixing the number of particles.

Method Conf. No. Part. Time (hrs.) IDF1 Rcll Prcn MT ML FP FN IDs MOTA MOTP MOTAL

TPE LF 10 1.94 42.68 73.99 64.12 7.20 0.90 1923.9 1209 44 31.64 69.09 32.55
TPE LF 30 2.17 44.05 75.09 65.15 7.57 0.53 1866.3 1158 41.30 34.05 69.33 34.9
TPE LF 50 2.38 43.91 75.49 65.51 7.50 0.40 1847.1 1139 40.3 34.88 69.40 35.7
TPE LF 70 2.69 42.09 74.92 65.01 7.60 1.20 1873.5 1165 45 34.63 69.57 35.56
TPE LF 100 3.17 42.55 75.69 65.39 7.30 0.10 1861 1130 41.6 34.74 69.66 35.62
SMAC LF 10 1.38 44.33 74.38 64.74 6.90 0.80 1883.9 1190 38.7 33.02 69.10 33.82
SMAC LF 30 1.69 43.82 75.11 65.12 7.57 0.53 1868.9 1157 40.9 34.01 69.39 34.84
SMAC LF 50 1.82 42.47 75.46 65.36 8.00 1.00 1857.7 1141 44.1 34.54 69.54 35.44
SMAC LF 70 2.56 45.02 75.62 65.46 7.20 0.40 1854.7 1132 40.5 34.86 69.57 35.71
SMAC LF 100 2.66 43.52 75.82 65.46 7.80 0.60 1859.4 1124 43.9 34.87 69.55 35.77

Tool Convergence Stability Accuracy CPU cost Init. Cond. Training size Accessibility Rank
MCMC [7] + + + +++ + + + 4
Spearmint [35] ++ ++ ++ + - ++ + 3
SMAC [19] +++ ++ +++ +++ +++ +++ +++ 1
TPE [2] +++ +++ ++ ++ - +++ ++ 2

Table 9: Evaluation summary: (+) Good, (++) Better, (+++) Best.

SMAC in terms of convergence shows that the only differ-
ence is that the number of iterations varies with respect to
how far it is from the optimal minimum. However, MCMC
still has problems to converge, staying on local minimums
for several iterations and over-fitting problems.

Influence of training size. It is natural that increasing the
size of training data also increases the accuracy. Our results
show this same effect. Also, we can see that starting from
10 percent, the increase is small. This is because the initial
10 percent of the evaluated sequences describes, in a general
way, the movement of pedestrians in the scene. And likewise
the optimal parameters that should be used.

Influence of the number of particles. The number of par-
ticles plays an important role in this type of trackers. When
fixing this number, we observe how the results improve when
more particles are used. However, this also increases the
computational time. Furthermore, analyzing the parameter
sets evaluated by the tools without fixing this number, we
noticed that many good candidates maintained a low num-
ber of particles, in the range of 10 to 50.

Accessibility. Overall, the tools define the search space but
only SMAC and (our implementation of) MCMC can set the
initial parameters. In contrast, TPE and Spearmint use the
lower limit as initial position making them simpler to config-
ure. SMAC has the best ratio between CPU time and perfor-
mance, followed by TPE. On the contrary, Spearmint has a
constant increase in time in each iteration. This is a problem
because its results are better with more iterations. TPE has
the advantage that it can be call as a function. In comparison,
SMAC and Spearmint are more complex, requiring to create

a set of files and folders with specific formats. The documen-
tation is a vital part when we decide to use a new tool. In this
aspect, SMAC surpasses the rest with detailed official docu-
mentation, active discussion forums and developer support.
MCMC has a strong background in the literature with many
examples for different topics. TPE has a small but good doc-
umentation of its use. However, Spearmint’s official docu-
mentation is almost non-existent, mostly limited to the in-
stallation and how to launch a simple example. Additionally,
SMAC and Spearmint collect information from each itera-
tion, which is available so that the user can observe and ana-
lyze it. SMAC is more organized, separating specific data in
many easy-to-understand files. Meanwhile, Spearmint pro-
vides summary files of each iteration and a database with
the global information. TPE and MCMC do not provide in-
formation as exhaustive as the other two, but simple results
such as the parameters and the value of the cost function
in each iteration. From the above, we created Tab. 9 that
summarizes our experience when using these tools. We con-
sider that SMAC gives the best compromise with respect to
our criteria mentioned on Tab. 9. It is the easiest to use de-
spite the number of files to configure. The documentation is
extensive and detailed and it has an active community sup-
porting it. In addition, SMAC shows to be more stable in
both convergence efficiency and exploration, which is im-
portant for the repeatability of the results. We consider TPE
as a good option but we rank it in second place. It offers
a wide range of possibilities but the limited documentation
makes it difficult to use for different scenarios. It also has
a good convergence rate, even surpassing SMAC in some
cases. Spearmint gives good performance but, according to
our results, not as SMAC and TPE. Furthermore, the small
documentation and the computational time are characteris-
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tics that make it difficult to use. However, MCMC presents
the worst performance and therefore we rank it as number
four. In this case, MCMC is not available as an optimization
library and requires to be implemented. The results are fair
and it is the fastest of all the tools, but it is difficult to set the
correct number of iterations to avoid over-fitting.

5 Conclusions

In this paper, we have presented a comparative study of four
relevant hyper-parameter optimization approaches in the con-
text of MOT system. The tools are reviewed with respect to
performance criteria, accessibility, computational cost time,
among others. To the best of our knowledge, they are not
comparative studies of optimization tools that study the tun-
ing influence over tracking systems. This application is an
example but can be extended to others.

We have shown how the same application can provide
better results by using a better combination of parameters,
and how these can be found using expert tools. Our goal is to
introduce the reader these four optimization methods, with
their respective tools, and motivate their use with respect to
a criterion provided in the Tab. 9. Thus, new methods that
use optimized hyper parameters will give results that reflect
their maximum potential. We have highlighted the strengths
and weaknesses of each as detailed as possible considering
many criteria.
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