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Abstract

Protein signaling networks are not static in nature since proteins go through many
biochemical modifications such as ubiquitination and phosphorylation to propagate
signals that act as feed-back to the system. Understanding the precise mechanisms
underlying protein interactions elucidates how signaling flow occurs within cells in
different diseases such as cancer. This knowledge may guide clinicians and biologists to
propose better drug designs. Large-scale protein-protein networks contain an important
number of experimentally verified protein relations but lack the capability to predict
the outcomes of a system, and therefore to be trained with respect to experimental
measurements. Boolean Networks (BNs) are a powerful framework to study and model the
dynamics of the protein signaling networks. While many BN approaches exist to model
the dynamics of biological systems, they focus mainly on system properties, and very few
exist to integrate experimental data onto them. In this work, we show an application
of a method conceived to integrate time series phosphoproteomic measurements on
protein signaling networks. We use a large-scale real case study from the DREAM
8 Breast Cancer challenge. Our efficient and parameter-free method combines logic
programming and model-checking to infer a family of BNs from multiple perturbation
phosphoproteomic time series data of four breast cancer cell lines. Because each predicted
BN family is cell line specific, our method highlights commonalities and discrepancies
between the four cell lines. To further validate our results, BNs are compared with the
canonical pathway. The obtained results are comparable to the top performing teams
of the DREAM 8 challenge, proving the aforementioned methodology as an efficient
dynamic model discovery method in multiple-time course experimental data of large-scale
signaling networks, with the added advantage of identifying the erroneous experiments.

Author Summary

Traditional canonical signaling pathways help to understand overall signaling behavior
inside the cell. Large scale phosphoproteomic data shows alteration among different
protein levels under different experimental settings. Our goal is to combine the traditional
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signaling networks with complex phosphoproteomic data in order to unravel the cell
specific signaling networks. In this study, we have applied the caspo time series (caspo-ts)
approach which is a combination of logic programming and model checking, over the
phosphoproteomic dataset of the DREAM 8 challenge to learn cell specific BNs. The
learned BNs provide valuable information about the cell specific topology. We discovered
that caspo-ts scales to real datasets, outputting networks that are not random with
a lower fitness error than the models used by the 178 methods participating on the
DREAM 8 challenge. On the biological side, we discovered that the inferred cell specific
networks are surprisingly different.

Introduction

Protein signaling networks are not static in nature since protein regulation is controlled
by feedback mechanisms. Discovering the precise mechanisms of protein interaction
may provide a better fundamental understanding of disease behavior. For instance, the
main difficulty in cancer treatment is the fact that cell populations specialize upon
treatment and therefore patient responses may be heterogeneous. Computational models
of signaling control for different patient groups could guide cancer research towards a
better drug targeting system. In this work, we propose a methodological framework
to discriminate among the regulatory mechanisms of four breast cancer cell lines by
building predictive computational models.

Several formalisms have been used widely to model interaction networks including
differential equations, boolean logic and fuzzy logic. Models elucidated using differential
equations require explicit specifications of kinetic parameters of the system and work well
for smaller systems. Despite being highly predictive, mathematical modeling becomes
computationally intensive as networks become larger [1–3]. On the other hand stochastic
modeling is suitable for problems of a random nature but fails to scale well with large
scale systems of proteins [1].

The Boolean Network (BN) formalism [4] is a powerful approach to model signaling
and regulatory networks [5]. Recently, it was suggested that if the Boolean models are
constructed well then they can produce the same output as ODE models even in their
quantitative aspects [6, 7]. Various BN learning frameworks exist focusing on varying
levels of details [1, 8]. As compared to the extensive literature on Boolean frameworks,
BN modeling of protein networks is quite recent. Here, we focus on learning Boolean
models of causal protein signaling networks for four human breast cancer cell lines (BT20,
BT549, MCF7, UACC812).

Regarding the training of BNs with respect to multiple perturbation datasets, in [9]
the authors proposed the CellNetOptimizer (CNO) which assembles the BNs from a
Prior Knowledge Network (PKN) and phosphoproteomic dataset. Their tool has been
implemented using stochastic search algorithms (more precisely, a genetic algorithm),
to suggest multiple BNs explaining the data. However, it scales poorly because of an
exponential increase in the search space with an increase in the network size. Furthermore,
stochastic search methods cannot generate a complete set of solutions, hence they cannot
guarantee a global optimal solution. In [10, 11], the authors overcome this problem
by proposing caspo, an approach based on Answer Set Programming to infer BNs
explaining the underlying protein signaling network. This approach can generate all
possible optimized boolean models as compared to the CNO approach. Authors in [12],
presented a framework based on integer linear programming (ILP) to learn the subset of
interactions best fitted to the experimental data. Recently, another approach based on
ILP has been proposed to reconstruct BNs from experimental data. Their framework
proposed the maximum fit model without having the need for annotation of edges [13].

Despite their relative success, the aforementioned methods restrain themselves to
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learn from only two time points, assuming the system has reached an early steady-state
when the measurements are performed. This assumption prevents us from capturing
interesting characteristics like loops as shown in [3]. To overcome this issue, the caspo
time series (caspo-ts) method was proposed in [14]. This method learns BNs from
multiple perturbation phosphoproteomic time series data given a Prior Knowledge
Network (PKN). The proposed method is based on Answer Set Programming (ASP) and
a model-checking step is needed to detect false positive BNs. They tested their approach
on synthetic data for a small Prior Knowledge Network (PKN) (≈17 nodes and ≈50
edges) [14]. More recently, an approach based on genetic algorithms was proposed to
learn context specific networks given a PKN and experimental information about stable
states and their transitions but it cannot scale well with larger networks and finding a
global optimum is not guaranteed [15].

In this work, we have improved and configured caspo time series (caspo-ts) (Fig
1) to deal with a large-scale PKN (64 nodes and 178 edges) in order to learn the
BNs of four breast cancer cell lines from their phosphoproteomic dataset. Importantly,
the PKN did not contain any information about the temporal changes or dynamic
properties of the proteins. This information was learned from the DREAM 8 challenge
dataset. In comparison to the current methods that learn signaling networks using static
measurements [16,17], and one-time point measurements across multiple perturbations
[10–13], our method allows us to handle time series data. A further advantage is the
guarantee of optimal BNs as opposed to the previously proposed methods [3, 15].
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Fig 1. Generic workflow. Workflow illustrating the 4 step caspo-ts improved and
adapted method used in this work. (1) A family of BNs is produced given protein
perturbations (akt and hgf ) and a prior knowledge network, (2) BNs are filtered based
on the verification of trajectories using the over-approximation criteria, (3) BNs are
optimized based on the distance between the original time series and discretized data,
(4) it is verified that there exist at least one path which satisfies the binarized
perturbation data. ASP stands for Answer Set Programming.
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Our results show that the Answer Set Programming (ASP) component of our method
allows us to filter the explosion of possible dynamical states inherent to this type of
problem, and thanks to that filtering, the model-checking step allows us to provide true
positive BNs. Our results point to measurements in the time series DREAM 8 dataset
that contradict the experimental setting and to perturbations that show contradictory
dynamics. We observed that given the same PKN, the solving time was different for
each cell line dataset, being the more complete for BT20, BT549, MCF7, while for the
UACC812 cell line dataset it was impossible to find a true positive (TP) BN within a
time-frame of 24 hours. This different structure of the solution space could point to
incompatibilities of the dataset, which may give valuable insights for experimentalists.
We also show that this method is capable of recovering time series measurements with a
Root Mean Square Error (RMSE) of 0.31, the minimum achieved so far as compared to
other participants of the DREAM 8 challenge. Based on a comparison with the canonical
mTOR pathway, we show that the discovered context specific BNs had a True Positive
Rate (TPR) of 82% on average. Computational time varies from one cell line to another
depending on the number of perturbations and the order of the solution tree internally
generated by the ASP solver. It took about 24 hours on average to generate TP BNs.
We found 38% of the cell line specific interactions explaining the heterogeneity among
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these four cancer cell lines, which can be observed in different cell specific networks,
shown in S1 Fig, S2 Fig, S3 Fig and S4 Fig.

Results

Prior Knowledge Network

The structure of the signaling protein network was generated by mapping the experi-
mentally measured phosphorylated proteins (DREAM 8 dataset) to their equivalents
from literature-curated databases and connecting them together within a network. The
reference network (Fig 2) was built using the ReactomeFIViz app (also called the Re-
actomeFIPlugIn or Reactome FI Cytoscape app) [18], which accesses the interactions
existing in the Reactome and other databases [18,19].

In the context of our work, nodes are associated with stimuli, inhibitors and readouts,
and are encoded by green, red and blue colors respectively. White nodes are unobserved
nodes. The PKN shown in Fig 2 consists of 64 nodes (7 Stimuli, 3 Inhibitors, and
23 readouts) and 178 edges. Stimuli are used to bound the system and also serves as
interaction points of the system. Inhibitors are those nodes which remain inactive or
blocked over all time points of the experiment by small molecule inhibitors. Readouts
are the measured nodes against perturbations (See Materials and Methods).
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Fig 2. Breast Cancer Signaling Pathway. This figure shows the reconstructed
signaling network from a combination of databases. An arrow shows the positive
regulatory relationship between two proteins, while a T shaped arrow indicates
inhibition. Green nodes are stimuli, blue nodes are readouts, white nodes are
unmeasured, and blue nodes with a red border represent inhibitors and readouts at the
same time. White nodes are unobserved nodes. Stimuli, inhibitors and readouts have
been defined in the text above. Please note that we have added the phosphorylation
sites to the protein names in order to connect it to the experimental measurements.
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Data Processing

The dataset used here consists of four breast cancer cell lines - UACC812, BT20, BT549,
and MCF7 [20, 21]. For the present study, we performed numerous data processing
steps. The data from DREAM 8 contained values of measured proteins ranging over a
variable range. We set the protein values between a common scale, i.e., 0 and 1, using a
maximum-value-based normalization scheme (See Materials and Methods). Since the
initial values for some time series were not available, controlled experimental readings
have been used as the initial time point for each of these time series. There were a
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few noisy and incomplete experiments. To resolve the issue of noisy data, one protein
measurement was kept for each distinct time point of each noisy series. Experiments
containing missing time points were removed to handle the time series incompleteness.
There were some proteins which were inhibitors and readouts at the same time e.g.,
AKT and MEK1. We discovered that those proteins were showing abnormal behavior.
For example, when a protein A is an inhibitor as well as a readout, then we observed
an oscillatory behavior in the readout measurements of the protein A. We removed the
experiments having such abnormal protein behavior. All data was refined and visualized
using Matlab [22] and CellNOptR [23].

Cell Specific Boolean Networks

We used caspo-ts to model topology using a combination of existing knowledge (Fig 2)
and the phosphoproteomic data of four breast cancer cell lines - BT20, BT549, MCF7,
and UACC812. We inferred a family of cell specific BNs for each cancer cell line and
they are shown in the Supplementary Figures (S1 Fig, S2 Fig, S3 Fig and S4 Fig).

The subset minimal solutions of different sizes for each cell line were obtained using
the over-approximation criteria of caspo-ts within a few seconds (S1 Table). We put the
restriction of 7 days to check the reachability of each solution using a model checker
implemented as part of the caspo-ts tool. The number of verified solutions varies from
one cell line to another, depending on a number of factors such as the number of
perturbations, the order of answer sets in the solutions space, and the perturbation order.
The total number of verified solutions within a constrained time are 231, 52, 188 and
150 for the BT549, MCF7, BT20 and UACC812 cell lines respectively. There were 191,
21, and 72 true positive BNs for BT549, MCF7, and BT20 cell lines respectively with an
optimal fit to the data. The UACC812 cell line was more difficult to work with. We
were unable to obtain true positive solutions by bounding it to the aforementioned time
limit for verification. Hence, we kept the 20 BNs from UACC812 cell line confirming to
the over-approximation criteria of caspo-ts method.

An aggregated network was built (Fig 3) by combining the BN families (with 191, 21,
72, and 20 BNs for BT549, MCF7, BT20, and UACC812 cell lines respectively) obtained
for the four cell lines by keeping the hyper-edges (logic formulas) having a frequency
higher than 0.3 within each BN family. This aggregated network contained 34 nodes
and 74 boolean formulas involving 36 AND gates. As compared to the PKN (Fig 2), the
inferred networks are strongly constrained to the context specificity. From Fig 3, we can
see that all the cell lines share limited behaviors, however the similarity score varies if
they are compared one by one with each other.
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Fig 3. Boolean network of breast cancer cell lines. The aggregated graph for all
cell lines. Blue, Red, Green and Pink colors have been used for each cell line BT20,
BT549, MCF7 and UACC812 respectively. Inferred BNs consist of nodes connected by
different edges (→ for activation and a for inhibition). Edges represent OR and AND
gates. An AND gate is represented by a small black circle. An OR gate is represented
by multiple edges pointing to a node. A different color scheme is used to represent
different types of nodes. A green color is for stimuli, red is for inhibitors, blue is used to
show readouts, and white is for unobserved nodes. Black edges are those edges which
are common in cell lines, and the thickness of the edges represents the shared number of
cell lines.
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In order to analyze the similarity among cell lines, we calculated the similarity score
by applying Graph Similarity Algorithm (GSA) on family of BNs (with 191, 21, 72, and
20 BNs for BT549, MCF7, BT20, and UACC812 cell lines respectively) of breast cancer
cell lines. This algorithm takes one gold standard network as an input and compares
it to the family of BNs (See Materials and Methods). In our case, the gold standard
network is the aggregation of one family of BNs. We keep the average of these similarity
scores for each understudy breast cancer cell line shown in Table 1. Fig 3 agrees with
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the results presented in Table 1 as we can see the clear discrepancies among the four
cell lines. It can be seen that 23% of the boolean formulas are shared among BT549
and MCF7, and also between BT20 and UACC812. BT20 shares the least number of
boolean formulas (15%) with BT549. This table revealed pronounced differences among
different cell lines of breast cancer. Here, we also analyzed the diversity of boolean
functions among the family of BNs within the same cell line. The similarity among
boolean formulas from BT20 (0.73) and MCF7 (0.63) is higher than the BT549 (0.43)
and UACC812 (0.46) cell lines.

Table 1. Similarity between four Breast Cancer Cell Lines.

Family of BNs Cell Line
BT20 BT549 MCF7 UACC812

BT20 0.73 0.15 0.17 0.23
BT549 ∗∗ 0.43 0.23 0.20
MCF7 ∗∗ ∗∗ 0.63 0.21

UACC812 ∗∗ ∗∗ ∗∗ 0.46

The similarity analysis performed on each family of breast cancer cell lines i.e., BT20,
BT549, MCF7 and UACC812. An aggregated network is generated for each cell line.
Then the GSA is applied on each cell line. It computes the intersection between cell
lines and generates the similarity score.

Heterogeneity among Cell Lines

There are a total of 69 distinct boolean formulas shown in Fig 4 along with their
respective frequencies. It is interesting to note that the B549 and UACC812 cell lines
have more distinct models among their family of BNs with a variable frequency range.
This shows that these cell lines have different mechanisms and strongly supports the
effectiveness of our graph comparison algorithm.

Fig 4. Heterogeneous Behaviors. The discrepancies across all cell lines. Boolean
formulas are represented on the X-axis and frequency of each boolean formula is shown
on the Y-axis.

Fig 5 shows the common boolean formulas along with their frequency in all BNs.
Interestingly, only 4% of the boolean formulas are shared and 99% of these shared
formulas have the same frequency. In this figure, there is only one boolean formula
which is frequent in 3 cell lines and has a lower frequency in BT20. Interestingly, all cell
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lines share only 4% of boolean formulas and among them 99% have higher frequency in
all the cell lines.

Fig 5. Common Behaviors across all four cell lines The commonalities among
all cell lines. Boolean formulas are represented on the X-axis and frequency of each
boolean formula is shown on the Y-axis.
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Literature Knowledge about Behaviors discovered by caspo-ts

The union of each cell line is displayed in the Supplementary Figures (S1 Fig, S2 Fig,
S3 Fig and S4 Fig). The caspo-ts method revealed that cell line specific reactions are
clustered around the AKT, MAPK3, and PIK3R1 proteins. PI3K is an important
factor for cancer development in HER2 amplified cancers (UACC812) as compared to
non-HER2 amplified (BT20, BT549 and MCF7) cancer cell lines. We can see from the
Supplementary Figures (S1 Fig, S2 Fig, S3 Fig and S4 Fig) that PIK3R1 exists in all
cell lines but is rather more connected in the UACC812 cell line with the 10 incoming
edges while in others with only 1 incoming edge. The PIK3R1 node in UACC812 (S4
Fig) has a centrality measure of 0.37 while in the other three cell lines the centrality
measure is less than 0.11.

It has been established that P1K3R1 (the regulatory unit of PI3K) plays an important
role in suppressing tumors [24,25]. Recently, it has been found that PIK3R1 is mutated
in 3% of breast cancer cell lines [26]. Nonetheless, it is worth studying the impact of the
PIK3R1 regulatory unit in breast cancer.

Bcl-2 associated death promoter(BAD) is regulated by AKT in triple negative breast
cancer (TNBC) cell lines [27] and our method found the same in case of BT20 and
BT549. In BT20 (S1 Fig), BAD is activated or inhibited through many signals. In
BT549 (S2 Fig), BAD is regulated by AKT. In MCF7 (S3 Fig), BAD is activated by
MAPK3 only. In UACC812 (S4 Fig), BAD is regulated by both AKT, MAPK3, and
p90RSK. BAD is regulated differently in different breast cancer types emphasizing the
importance of studying the context dependence functionality.

Validation w.r.t. Root Mean Square Error

The goal was not just to infer the best trained networks but also to verify that these
networks are able to recover trajectories not existing in the experimental learning data.
For this purpose, we are using experimental testing data to check the specificity of the
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trajectories of the proposed networks. The data is provided by the DREAM8 challenge
organizers (See Materials and Methods). We identify two types of RMSE: discrete and
model. Discrete RMSE is imposed by the discretization of the method while model
RMSE is the difference between the predictions of the BNs and the discretized data (See
Materials and Methods). Table 2 shows the corresponding RMSE in case of learning and
testing data. It can be seen that our cell specific Boolean models are able to produce
the trajectories without any error in learning dataset for all cell lines. It is encouraging
to see that predicted models are able to recover trajectories without any error in MCF7,
with 0.0009 in BT20, with 0.0106 in BT549, and with 0.0035 in UACC812.

We also compared the RMSE score with the top two best performers of the DREAM8
challenge. We got the top position with a RMSE score of 0.31 as compared to their
RMSE scores of 0.47 and 0.50. Our RMSE compares the trajectories predicted by
Boolean models with the original trajectories existing in the testing data. In comparison
to other DREAM 8 challenge methods based on Bayesian inference, Regression, and
Granger Causality among others, we are not making new predictions but we are checking
the recoverability of the testing trajectories by inferred BNs.

Table 2. Root Mean Square Error.

Cell Line Learning Testing
Discrete Model Delta Discrete Model Delta

BT20 0.3464 0.3464 0 0.3293 0.3302 0.0009
BT549 0.3498 0.3498 0 0.3007 0.3113 0.0106
MCF7 0.3207 0.3207 0 0.2772 0.2772 0

UACC812 0.3464 0.3464 0 0.3084 0.3119 0.0035

Table 2 summarizes the statistical results. The cell line column shows the cell line under
consideration. We have calculated discrete and model RMSE for the learning and testing
datasets of each cell line. Delta shows the difference between discrete and model RMSE.

Validation w.r.t. Random Data Samples

We generated 100 random data samples per cell line, then calculated the RMSE for the
BNs of each cell line, and finally compared it with the learning and testing RMSE of
these BNs. Fig 6 shows the performance of the method with respect to the learning,
testing and random data. It can be observed that the method is unable to recover
trajectories in the case of random data points without error as compared to the learning
data, and to a maximum of 0.0106 of error in case of testing data. From Fig 6, It can
be seen that learning and testing are clear outliers shown in red color in the case of
all cell lines. It is worth noting that the caspo-ts method has failed to recover random
data time series, hence proving the specificity of the learned networks with respect to
DREAM 8 challenge data.
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Fig 6. Performance Assessment w.r.t Learning, Testing and Random
Dataset. Here, x axis shows the cell line and y axis shows the ratio of discrete and
model RMSE for each respective cell line. Different cell lines are encoded by different
color codes. Blue, Red, Green and Pink colors are used to denote BT20, BT549, MCF7
and UACC812 respectively.
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Validation w.r.t. Canonical Pathway

To perform the validation, we compared the downstream nodes of the MTOR signaling
cascade in the PKN with the downstream nodes of MTOR in cell specific BNs. True
positive rate (TPR) and False positive rate (FPR) for each cell line was calculated using
Equation (4) and (5) (See Materials and Methods). Fig 7 shows the Receiver Operating
Characteristic (ROC) curve of each cell line according to their TPR and FPR. BT549
cell line models are the most accurate ones followed by MCF7 and BT20. We can observe
the clear distinction between True Positive (TP) and False Positive (FP) BNs. In this
case study, we were able to get TP BNs for the BT20, BT549 and MCF7 cell lines within
approximately 24 hours. UACC812 cell line was the most difficult to deal with, making
it difficult to get TP BNs within a reasonable computation time. We have obtained the a
0.77 AUROC score which is comparable to the 0.78 AUROC score of the top performing
method of DREAM 8 challenge. A number of assumptions made during the modeling
phase may have influenced our ranking. First, since our method can pinpoint the noisy,
incomplete and erroneous experiment, it allows us to use only the reliable experimental
settings. Second, our method constrains its solutions space to the proteins existing in
the PKN, anything outside the background knowledge cannot be found. From figure 7,
we can see that the method is quite promising for inferring TP BNs.
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Fig 7. ROC curve. ROC curve across all cell lines. Here, the X-axis shows the FPR
and the Y-axis denotes the TPR. Different cell lines are marked by different colors. The
AUROC score is 0.77.
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Discussion

In this paper, we build cell line specific signaling networks for a DREAM 8 time series
dataset of 4 breast cancer cell lines (BT20, BT549, MCF7,and UACC812) using caspo-ts
approach, which is a combination of Answer Set Programming and Model Checking
methods. It allowed us to handle large-scale PKN (64 nodes and 178 edges) and real
biological system. We were also interested in learning the dynamic properties of these
networks explaining the time series data. Our results suggest that the behavior of cell
line specific signaling network is highly variable even under same the perturbations,
agreeing with the heterogeneity of breast cancer. We found that this method is capable
of constructing cell line specific BNs, which is extremely valuable given heterogeneity of
breast cancer due to many genetic modifications. Boolean models of each cell line are
analyzed under different perturbation to identify commonalities as well as discrepancies.
Moreover, these inferred models can be executed computationally to identify potential
drug targets or to see the effect of unseen perturbations. The predictive power of the
these models can be increased with improvements in protein interaction databases and
comprehensive experimental data.

We have discovered 38% of the cell line dependent behaviors as compared to the 33%
of the DREAM 8 challenge winner [28]. We have implemented an algorithm to analyze
the variability among cell lines. We have also observed pairwise similarities among these
cell lines. The similarity index varies from 15% (BT20 & BT549) to 23% (MCF7 &
BT549, BT20 & MCF7). We have analyzed the similarity among family of BNs of the
same cell line as well, which varies from 0.43 to 0.73. We have evaluated the accuracy
of our method with RMSE and AUROC score 7. The maximum RMSE is 0.31 placing
caspo-ts in first place in the DREAM 8 challenge. Various choices made during this study
may have an impact on the final score. The caspo-ts method allowed us to remove noisy
and faulty experiments, leaving us with the reliable experimental settings only. Here,
we made the choice to use only reliable experiments instead of using all experimental
settings. We did not observe all 45 proteins as we could not find connections in our PKN
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for all the studied proteins, leaving us with approximately 23 proteins for each cell line.
Nonetheless, the obtained results are quite promising, making caspo-ts a good

candidate in the computational method tools. In fact, the caspo-ts method can be used
to pinpoint the errors in the experimental data. We have discovered the experiments
where protein AKT was inhibited but was having a dynamic behavior as a readout
protein. Our work therefore provides a novel approach to show erroneous experiments
which is very crucial and current approaches do not provide these insights, hence our
method can be complement for the existing tools. The DREAM 8 dataset contained
some noisy readings of experiments. Noisy experimental data reduces the efficiency of
computational methods by posing the variability among constructed Boolean models.
To overcome this, it is necessary to build automated methods to filter out the noisy
experiments. This approach provides a step forward in building context dependent
networks in the case of phosphoproteomic data. We are planning to investigate several
aspects of this method, such as (i) the order of the solution space of over-approximated
Boolean models; (ii) the computational time for checking reachability; (iii) design an
efficient experimental design strategy and apply it prior to selecting the most informative
experiment.

Perspective

The caspo-ts always gives answer sets in the same order because of the solver of ASP.
It can be problematic in the case of large scale problems where we can not explore the
whole solution space because of computational time constraint. We are currently working
on sampling the solution space by splitting it to limit the number of considerable answer
sets. We are also studying another feature to allow the diversity among subset minimal
answer sets. It will be implemented by dynamically modifying the heuristic of the ASP
solver at solving time. To reduce the false positive BNs rate, we are planning to use the
multi-shot ASP technique. It solves the problem by customizing the logic problem at
the solving step, hence generating a continuously modified logic program [29].

Materials and Methods

Data Acquisition

The DREAM portal provides unrestricted access to complex, pre-tested data to encourage
the development of useful methods. In this study, we are focused on the DREAM 8
challenge, which was motivated by the fact that the same experimental conditions may
lead to different signaling behaviors in different backgrounds, making it necessary to
build a model which can perform unseen predictions (absent from the learning data).
The main goal of the DREAM 8 challenge is to learn signaling networks efficiently and
effectively to predict the dynamics of breast cancer [30].

Learning Data

Reverse Phase Protein Array (RPPA) quantitative proteomics technology was used for
generating the dataset of this challenge. The measurements focus on short term changes
on up to 45 proteins and their phosphorylation over 0 to 4 hours. The DREAM 8 dataset
includes temporal changes in phosphorylated proteins at seven different time points
(t1 = 0min, t2 = 5min, t3 = 15min, t4 = 30min, t5 = 60min, t6 = 120min, t7 = 240
min). Experimental data consists of of four cancer cell lines (BT20, BT549, MCF7 and
UACC812) under different perturbations (≈8 stimuli and ≈3 inhibitors). In each cancer
cell line, approximately 45 phosphorylated proteins are measured against different set of
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perturbation over multiple time scales. In this study, we use the term perturbation to
refer to the combination of stimuli and inhibitors, similarly to the other studies such
as [20,21,30].

Testing Data

Test data is available for assessing the performance of networks learned from the
experimental data. The DREAM 8 portal provides testing data for four cancer cell
lines (BT20, BT549, MCF7 and UACC812) under different perturbations (8 stimuli
and 1 inhibitor). They contain gold standard datasets of time series predictions of up
to 45 proteins at seven different time points (t1 = 0min, t2 = 5min, t3 = 15min, t4 =
30min, t5 = 60min, t6 = 120min, t7 = 240 min) [20,21,30]. This data is used to test the
performance of caspo-ts.

Normalization

The protein measurements were ranging over variable ranges. Maximum value based
normalization was used to set the measurements between a common scale, i.e., 0 and
1 in order to assign activation or inactivation values to variables or species of the BN.
Equation 1 describes the formula used for the normalization:

zpi,t =
xpi,t

max(xpi,t)
(1)

where i ∈ {1, . . . , n}, t ∈ {1, . . . , 7} , and p ∈ {1, . . . , 23}. xpi,t represents the value of
protein p under perturbation i at time point t and max(xpi,t) denotes the highest value
of protein p under all perturbations and time-points.

Prior Knowledge Network Derivation

PKNs are available in different databases such as Reactome, PID, and kegg among
others [19, 31–42]. We can construct a PKN through different tools or softwares such
as ReactomeFIViz [18] which is available as a Cytoscape [43] plugin. A PKN alone
can not be used to build reliable dynamical models or to explain underlying biological
behaviors [44], especially in the case of multiple perturbations data because of the
need of specificity. In order to overcome this issue, methods have been proposed which
take into account both literature based knowledge and experimental data to build logic
models [3, 9–11, 44, 45]. In the context of our work, nodes in the PKN (Fig 2) are
associated with stimuli, inhibitors and readouts and are encoded by different colors.
Stimuli are represented by green, inhibitors by red and readouts by a blue color. Stimuli
are those nodes which have no predecessors, are used to bound the system and also
serve as entry points of the system. Inhibitors are those nodes which remain inactive or
blocked over all time points of the experiment by small molecule inhibitors. Readouts
are the nodes which are measured against given perturbations.

Network Reconstruction

For the reconstruction of BNs, we chose the caspo-ts method [14,45]. This method was
tailored to handle protein phosphoproteomic time series data. The input of the method
consists of a prior knowledge network and normalized phosphoproteomic time series data
under different perturbations to generate a family of BNs whose structure is compatible
with the PKN and that can also reproduce the patterns observed in the experimental
data.
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The workflow of the reconstruction procedure is shown in Fig 1. It consists of four
steps: 1) inference of a BN structure, 2) filtering of BNs according to time series data,
3) minimizing the distance between time series and discretized time series, 4) model
checking of BNs to confirm that each condition given in phosphoproteomic data is
satisfied. Experimental data consist of perturbations and readouts, where a perturbation
is a combination of stimuli and inhibitors. In Fig 1, there are two perturbations involving
akt (inhibitor) and hgf (stimulus): 1) akt=0, hgf =1 and 2) akt =1, hgf = 0. Black
color means the value is 1 while white represents the value 0. Readouts are specified in
a blue color and describe the time series under given perturbations.

Structure and Formula

A Boolean Network [46, 47] is defined as a pair b = (N ,F ), where

• N = {n1, ... , nk} is a finite set of nodes (or variables/proteins/genes)

• F = {f1, ... , fk} is a set of Boolean functions (regulatory functions) fi : Bk → B,
with B = {0, 1}, describing the evolution of variable ni.

A vector (or state) n(t) = (nt1, ... , ntk) is the value of all nodes of N at time step t,
where nti represents the state of the node ni at time step t, and equals either 1 or 0.
There are up to 2k possible distinct states for each time step. If there is no update for
node ni then nt+1

i = ni. If there is an update for node ni then the state of a node ni at
the next time step t+ 1 is determined by nt+1

i = fi(n
t
i, ... ,ntk), with ni, ... ,nk are the

nodes directly influencing ni. Notice that usually only a subset influence the evolution
of node ni. These nodes are called the regulatory nodes of ni.

The state of each node can be updated in a synchronous (parallel) or asynchronous
fashion. In the synchronous update schedule, the states of all nodes are updated
synchronously, while in asynchronous update schedule, the state of one node can be
updated at a time. The work presented in this article is independent of the update
schedule routine, hence any number of nodes can be updated at a time.

The prior knowledge network is modeled as a labeled (or colored) directed graph
with nodes V = {v1, v2, . . . , vm} associated to proteins and edges are labeled by −1
(v1 a v2) or +1 (v1 → v2) depending on the interaction between proteins. Given a prior
knowledge network, a set of BNs B = {b1, b2, . . . , bq} are exhaustively enumerated where
each node mk of the bk ∈ B and k ∈ {1, . . . , q} has a formula compatible with the prior
knowledge network, meaning the regulatory nodes are the same. Please refer to [14] to
know in detail about the enumeration process of BNs.

Abstraction of state space

After enumerating the set of BNs, experimental data is discretized in order to verify that
trajectories can be reproduced through these BNs. The search space of BNs is generated
by enumerating values for each node in a BN. Since the concrete search space is too large
to handle, an abstract search space for the BN is generated to check the reachability of
each node from another. Abstraction was achieved through over approximation to verify
time series traces and was implemented in ASP. Please refer to [14,45] for implementation
details. Over approximation was applied with the help of meta states which means that
the previous value is retained through each sweep of the dynamic BN, resulting in the
generation of false positive (FP) BNs. To resolve this issue, model checking is applied to
rule out false positives.
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Optimization

Root Mean Square Error (RMSE) refers to the distance between the actual time series
zpi,t and the predicted time series ypi,t. We have adopted the formula in the ASP part of
caspo-ts according to the DREAM 8 challenge.

RMSE =

√√√√ 1

23 ∗ 7 ∗ n

23∑
p=1

7∑
t=1

n∑
i=1

(zpi,t − y
p
i,t)

2 (2)

If a BN can verify the time series traces of experimental data then it will have
minimal MSE. But there may be some cases where it is not able to construct a BN
which can reproduce all the time points of the trajectories. In that case, it will try to
optimize the BN with the smallest distance possible.

Model Checking

To filter out the false positive BNs, exact model checking is applied. Computational tree
logic (CTL) is used to check that there exists a path in the BN which can reproduce
all trajectories under all experimental settings. CTL is a formal verification technique
belonging to the branching temporal logic theory. Branching temporal refers to the fact
that the future is not deterministic. The NuSMV model checker has been used to check
the reachability of all experimental conditions [48].

Graph Similarity Algorithm (GSA)

This work introduces the study of a graph similarity measure in order to check the
variability among the families of BNs generated by caspo-ts. The algorithm works by
comparing the reactions existing in the gold standard network (A) with the family of
BNs (B) and is based on the Jaccard similarity coefficient which measures the diversity
of these models.

Jaccard Similarity Coefficient

The Jaccard index between A and Bi can be defined as length of the intersection divided
by the union:

J(A,Bi) =
| A ∩Bi |
| A ∪Bi |

=
| A ∩Bi |

| A | + | Bi | − | A ∩Bi |
(3)

We apply the Jaccard Similarity Coefficient on Bi (the BN i where Bi ⊂ B) by taking
A as being the gold standard.

Evaluation

The performance of the caspo-ts method is evaluated using three criteria: 1) RMSE calcu-
lation using a typical learning and testing data approach, 2) Random Data Comparison,
3) AUROC (Area Under the Operating Curve) score.

The Boolean networks are learned using the learning dataset only. The prediction
accuracy is evaluated by comparing the RMSE of trajectories in the learning dataset
and of those predicted by the learned networks. There are two types of RMSE - discrete
and model. Discrete RMSE is associated with the method error. Since we use a BN
discrete approach, our predicted traces will be in {0,1} and this introduces an error with
respect to continuous measurements in [0,1]. Model RMSE refers to the learned BN
model error, it will be larger than discrete RMSE when the BN model has some errors
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in the predictions with respect to the discrete data. If the difference between these two
is zero then inferred networks are able to recover the trajectories without any error.

In order to check if our method will produce random time series, we have generated
random data samples for each perturbation and time point of the four cell lines. We
have generated 100 random data files for each cell line. Finally, we applied the RMSE
formula and compared the results with the testing and learning RMSE.

Next, the validity of these networks is verified by comparing them with the canonical
MTOR signaling pathway using two parameters, i.e., true positive rate (TPR) and false
positive rate (FPR). We calculated a set of nodes which should be modified under these
unknown experimental settings and also exist in our PKN, called standard nodes. We
evaluated how many of these nodes are modified in the learned networks, called modified
nodes. TPR and FPR are defined by Equation (4) and Equation (5):

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

Here, TP is the number of nodes in the intersection between standard and inferred
sets, FP is the number of nodes in the inferred set but not in the standard set, FN is the
number of nodes in the standard set but not in the inferred set and TN is the number
of nodes which are not in the standard set nor the inferred set. Finally, AUROC was
drawn using TPR and FPR indicators.
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S1 Fig. Union of BNs of BT20. Here, we show the union of BNs for the cell line
BT20. This network is generated by combining 72 true positive BNs. It contains 31
nodes and 41 boolean functions with 12 AND gates. There are 2 stimuli, 2 inhibitors
and 21 readouts.
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S2 Fig. Union of BNs of BT549. Here, we show the union of BNs for the cell line
BT549. This networks is generated by combining 191 true positive BNs. It contains 28
nodes and 53 boolean functions with 35 AND gates. There are 5 stimuli, 2 inhibitors
and 17 readouts.

AKT_pS473

GSK3-alpha-beta_pS21_S9

..

CASP9

.

p70S6K_pT389GSK3-alpha-beta_pS9

CASP3

Rb_pS807_S811

.

MAPK_pT202_Y204

BAD_pS112 EGF

.

.

.

STAT3_pY705

PIK3R1

NRG1

. ... . ..

MEK1_pS217_S221

.

AKT_pT308

MAPK3

FGF1

.

EGFR_pY992

IGF1

.

.ER-alpha_pS118 JNK_pT183_pT185c-Raf_pS338

. IRS1

mTOR_pS2448

S3 Fig. Union of BNs of MCF7. Here, we show the union of BNs for the cell line
MCF7. This network is generated by combining 21 true positive BNs. It contains 24
nodes and 37 boolean functions with 19 AND gates. There are 4 stimuli, 2 inhibitors
and 15 readouts.

PLOS 19/23



.

AKT_pT308

.

Src_pY416

.

. .

p90RSK_pT359_S363

.

GSK3-alpha-beta_pS9

.

.

ER-alpha_pS118

AR

.

.

SERUM

AKT_pS473

GSK3-alpha-beta_pS21_S9

.

.

CASP9

.

BAD_pS112

c-Raf_pS338

MAPK3

CASP3

p70S6K_pT389

SMAD3

HER3_pY1298

Rb_pS807_S811

HGF

PIK3R1

EGFR_pY992

.

.

.

.

HER2_pY1248

.

STAT3_pY705

.

EGF

NRG1

.

. .

..

.. .

.

MEK1_pS217_S221

MAPK_pT202_Y204

.

4EBP1_pS65

IGF1

IRS1

mTOR_pS2448

INSULIN

EIF4E

S4 Fig. Union of BNs of UACC812. Here, we show the union of BNs for the cell
line UACC812. This network is generated by combining 20 BNs. It contains 33 nodes
and 54 boolean functions with 29 AND gates. There are 6 stimuli, 2 inhibitors and 18
readouts.

Cell Line Number of Solutions True Positives False Positives Time
Computation Validation

BT20 188 72 116 210 seconds 7 days
BT549 231 191 40 93 seconds 7 days
MCF7 52 21 21 36 seconds 7 days

UACC812 150 0 150 197 seconds 7 days

S1 Table. Computation Summary. Here, we show the number of solutions, true
positive and false positive BNs, and their computation (Solving) and validation (Model
Checking) time for each cell line. We generated 32 true positive solutions for UACC812
cell line by allowing the model checker to run without bounding it to the aforementioned
time limit.
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