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 

 

Abstract— In the context of developing a pedagogical tool for 

teaching anatomy, the need for a comparative study between two 

RGB-D cameras has emerged. This paper addresses the 

assessment of the accuracy and precision of two RGB-D sensors 

(Carmine Primesense and Persee Orbbec) through two different 

experiments. The evaluation not only provides comparative 

results on the sensors performances but also aims at determining 

in which conditions they are the most efficient. The first 

experiment evaluates the variability of the output depth map 

data. The second experiment focuses on analyzing the influence 

of the distance in the positioning accuracy of an object submitted 

to controlled displacements. The results are summarized in a set 

of error heat maps and a table; they provide clues for using one 

sensor rather than another by describing their robustness both 

in a static scene and in a motion capture scenario. 

I. INTRODUCTION 

This work has been conducted in the context of a 
collaborative research project which objective is to propose 
innovative pedagogical tools for teaching of anatomy. This 
project has already resulted in the “Living Book of Anatomy”, 
a mirror-like augmented reality (AR) system [1] enabling a 
trainee to see his/her anatomy in motion super-imposed to 
his/her image captured by a single RGB-D camera. In order to 
further develop the system through the addition of other 
cameras for capturing a larger posture range, we studied a new 
RGB-D camera, the Orbbec Persee (2016), and compared it to 
an older one, the Primesense Carmine (2011) which was 
initially used in the project. 

 Since its commercialization in 2010, the Kinect sensor has 

gained a lot of momentum in biomedicine. Not only is it a 

portable and non-invasive device, it is also an affordable way 

of tracking movements, recognizing objects and modeling 

scenes. Recently, RGB-D cameras were used to perform fall 

detection of elderly people with multi-modal features 

including color images and skeleton data [2] or to assess the 

dementia disease degree with recurrent neural network [3]. It 

was also involved in the design of augmented reality systems 

for applications in anatomy education [1], [4]. 

 

 Some methods have been investigated in order to assess 

and to compare the performance of RGB-D sensors. In 2012, 

a complete study was  conducted in order to deeply investigate 

the accuracy and precision of the Microsoft Kinect device [5]. 

The accuracy of the sensor was determined by comparing a 

scene depth map of a Kinect sensor with that of a laser 
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camera. The laser camera was considered as ground-truth 

data. The two resulting point clouds were registered in order 

to be comparable. Two different registration methods were 

used: one based on manual initialization and Iterative Closest 

Point (ICP) and the other one on RANSAC algorithm. The 

precision of the sensor was assessed through the study of the 

standard-deviation of the depth measure error as a function of 

the distance to the sensor. To achieve this, a plane was fitted 

on a door surface at different distances and the residual error 

on the region of interest was calculated.  In [6], Haggag et al. 

studied the resolution of the sensor by computing, for various 

plane-camera distances, the smallest discrepancy in the 

retrieved depth maps. They also evaluated the entropy of 

depth measurement for each pixel of a static scene.  

 

 One requirement of our collaborative research project was 

to capture the motion of a human being from one frame to the 

other. Although [5] carried out an interesting experiment on 

systematic errors of RGB-D cameras, their method depends 

on the registration between the camera data and other 

modality data, which may be a source of error. The study of 

entropy in [6] does not give any quantitative insight about the 

camera precision in terms of distance, which is a crucial 

parameter in our project. Moreover, neither [5] nor [6] studied 

the random errors for a more complex object than a plane, 

although a complex geometry exhibits common issues that 

might occur in routine usage, in particular lighting changes 

and partially hidden zones. 

 

 The purpose of the present study is to propose new methods 

for assessing the performance of RGB-D sensors without 

using any other modality. We designed two experiments for 

evaluating the capability of a camera to retrieve a known 

transformation of an object between two frames. The first one 

gives quantitative information on the measurement precision 

of the two cameras. The second experiment compares known 

motions of this reference object with the motions computed 

from the RGB-D sensor measurements.  

II. MATERIAL 

RGB-D devices are composed of an RGB camera, an IR 
projector and an IR sensor. An IR pattern is projected by the 
camera, the deformation of this pattern is captured by the 
sensor and analyzed in order to create a depth map of the scene. 
The two cameras studied in this work are the Primesense 
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Carmine (2011) and the Orbbec Persee (2016). Both of them 
provide 480x640 depth map frames at 30 FPS (Frames per 
Second). The range of Primesense Carmine is 0.8 m to 3.5 m 
and the one of Orbbec Persee is 0.6 m to 8 m. 

 For the experiments, we have designed and printed a 3D 
reference object (a polyhedron consisting of eight faces, see 
Fig. 2). The geometry of the object is not representative of the 
human body, but its structure is complex enough to assess and 
compare the RGB-D cameras. The object size is 
15 cm x 10 cm x 10 cm, it is adapted to the camera field of 
view at the studied ranges. It has been printed by a Makerbot 
Replicator 2X 3D printer that features a 100-micron layer-
height resolution. It was made of PLA (polyactic acid) and was 
painted in white for better reflectance of IR. For the second 
experiment, the polyhedron is represented by a cloud of 4000 
points in the object reference frame.  

III. PRECISION EVALUATION 

 The idea of the first experiment was to capture the 

reference object and to study the variability of each pixel of 

the depth map. It aimed at describing the repeatability of the 

two sensors especially regarding the quality of the point cloud 

representing the reference object. 

A. Method 

Let us note the depth image as followed: 

𝐼𝐷
 (𝑢, 𝑣) = 𝑑 

 

With: 

- (u,v), the pixel coordinates. 

- d, the distance from the camera origin to the scene at 

pixel (u,v). 
 

 Each RGB-D camera is placed successively at three 

different distances from the object: 800 mm, 1300 mm and 

1800 mm. For each distance, 100 depth maps of a static scene 

featuring the reference object are acquired. Standard 

deviation is computed independently for each pixel among the 

100 samples. 

  

𝐼𝑆𝐷
 (𝑢, 𝑣) = √

1

100
∑ (𝐼𝐷

(𝑖)(𝑢, 𝑣) − 𝐼𝑚𝑒𝑎𝑛
 (𝑢, 𝑣))

2
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B. Results 

 Results are shown in Fig. 1. These tests permitted to make 

sure the reference object was reasonably well represented in 

the depth maps. It provides an initial view of variability of 

depth measure on each device, the standard deviation being 

an indicator of the data consistency. The depth variability on 

edges for both sensors is significantly high. In particular, the 

edges separating the background from the reference object are 

not precisely captured. More generally, on the areas that are 

not occluded, the standard deviation is between 0 mm and 10 

mm, this is consistent with the study in [6]. One can notice 

that Persee data feature generally more noise than Carmine 

data. The metallic texture of the table causes errors for Orbbec 

Persee, probably due to disturbed reflectance of the IR 

pattern. Some vertical bands can be seen on Primesense data 

as well. 

IV. ACCURACY 

The objective of the second experiment is to assess and 
compare the accuracy of the two RGB-D sensors in a 
controlled experiment with a ground truth measurement table. 
The reference object is translated with the table and its 
displacements are measured with the two RGB-D sensors. The 
measured transformation is compared to the ground-truth 
transformation given by the table. A measurement table 
(Zaber, Model LSQ-600B-E01-T3) is used in order to provide 
the ground truth in the motion analysis. It can move a fixed 
object with high precision (0.49 µm per motor step) in two 
directions in a range of 60x60 cm². Fig. 2 illustrates the basic 
idea of the setup. 

A. Method 

The reference object is fixed on the table and is illuminated 
by the IR projector of an RGB-D camera. The object is moved 
of 100 mm on a grid of size 6 x 6. The distance to the sensor 
ranges from 800 to 1300 mm. On each transverse line, the 
acquisitions are performed four times in order to have a better 

Figure 1.  Heat map of the standard-deviation of depth values 

for each pixel (in millimeters) computed over 100 images for 

three different distances: 800 mm, 1300 mm and 1800 mm (up 

to down) and for two different sensors: Primesense Carmine 

sensor data (a, c, e) and Orbbec Persee data (b,d,f). Deep blue 

corresponds to a 0-mm-standard-deviation and every values 

greater than or equal to 20 mm of standard deviation appear in 

yellow. 

 

  

 



  

statistic on the data. This gives a total of N=144 (24x6) 
measurements of translations of 100 mm. Because the position 
of the camera relative to the table is unknown, we study the 
norm of the object motion instead of the motion itself. For each 
of the translations, the error between the norm of the computed 
translation and the norm of the ground truth displacement of 
the table is computed. The error mean and standard deviation 
are computed for each line in order to estimate the impact of 
the object distance on the accuracy of the sensor. 

𝐸𝑟𝑟 𝑚𝑒𝑎𝑛 =
1

𝑁
∑ (‖ 𝑡𝑚𝑒𝑠

(𝑖)

 
𝐶

 
‖ − ‖ 𝑡𝑟𝑒𝑓

(𝑖)

 
𝑇 ‖)𝑁

𝑖=1   

𝐸𝑟𝑟 𝑣𝑎𝑟 =
1

𝑁
∑ (‖ 𝑡𝑚𝑒𝑠

(𝑖)

 
𝐶

 
‖ − ‖ 𝑡𝑟𝑒𝑓

(𝑖)

 
𝑇 ‖)𝑁

𝑖=1  2 − (𝐸𝑟𝑟 𝑚𝑒𝑎𝑛) 2  

With: 

- 𝑡𝑚𝑒𝑠
(𝑖)

 
𝐶  , the translation measured in the camera frame 𝐶. 

- 𝑡𝑟𝑒𝑓
(𝑖)

 
𝑇 , the ground truth translation expressed in the table 

frame 𝑇. 

 The vector 𝑡𝑚𝑒𝑠
(𝑖)

 
𝐶  is found by computing the 

transformation matrix 𝑇̂𝑀 
𝐶  from the model frame (noted 𝑀) to 

the camera frame (noted 𝐶) for two successive positions of the 
calibrating model (Fig. 2). In this formalism, one can express 

𝑡𝑚𝑒𝑠 
(𝑖)

 
𝐶 as follows: 

𝑡𝑚𝑒𝑠
(𝑖)

  
𝐶 

 
= 𝑡̂(𝑖+1)

𝑀 
𝐶 − 𝑡̂(𝑖)

𝑀 
𝐶  1. 

 

𝑇̂𝑀 
𝐶 (𝑖) is computed using the ICP method [7]:  it fits the object 
model point cloud to the object in the captured scene at each 
acquisition. It is based on a coarse-to-fine implementation of 
the ICP algorithm which improves the matching performance 
[8]. It takes as input the scene and model point clouds and it 
triggers as output the refined transformation between both set 
of points. The algorithm iterates over different scales (from 
coarse-to-fine) and for each scale over a predefined number of 
iterations.  

Each iteration of the algorithm can be divided in four steps: 

1) Compute closest points. 

2) Weigh the couplings. 

3) Find the optimal rigid transformation. 

4) Apply the transformation to the model. 

 

The algorithm stops either if the number of iterations has 

reached a maximum or if the optimal rigid transformation of 

the current iteration is close enough to identity according to a 

defined parameter.  

 
The scale parameter of the ICP is fixed to 6. Tolerance and 
rejection scale parameters of the ICP have been set 
(respectively 0.06 and 0.4) in order to reject easily aberrant 
matching. The maximum number of iterations has been set to 
300.  

 Because the ICP needs a robust initialization, a paired-point 
matching method (“Arun” [9]) is employed with manually-
selected points. More precisely, a region of interest is set by 
the user in order to crop the scene point cloud around the object 
which has to be registered to the model. Then, the 𝑁𝐴 most 

visible vertices 𝑝𝑖
𝑠 of the object points cloud are matched by 

the user to corresponding points 𝑝𝑖
𝑚  in the reference model 

frame (most often 𝑁𝐴 =3). The optimal rotation 𝑅𝐴 and 
translation 𝑡𝐴 are computed such that they minimize the 
functional in Eq. 2: 

arg min
𝑅𝐴 𝑇𝐴

∑‖𝑝𝑖
𝑠 − 𝑅𝐴 ∗ 𝑝𝑖

𝑚 − 𝑡𝐴‖  
2

𝑁𝐴

𝑖=1

  

 

2. 

With:  

- 𝑝𝑖
𝑆 and 𝑝𝑖

𝑀, the 𝑁𝐴 corresponding column points 
between the scene and the model. 

- 𝑅𝐴, the optimal rotation computed after manual 
matching. 

- 𝑡𝐴 , the optimal translation computed after manual 
matching. 

 

The homogeneous transform computed with the ICP 
transformation,  𝑇𝐼𝐶𝑃 , is applied to the initialized model point 
cloud 𝑇𝐴 ∗ 𝑃 

𝑚
 
 : 

𝑃𝑓𝑖𝑛𝑎𝑙
𝑚  

= 𝑇𝐼𝐶𝑃 ∗ 𝑇𝐴 ∗ 𝑃 
𝑚

 
  

Where: 

-  𝑃𝑚 = 

[
 
 
 
𝑥1

𝑚 … 𝑥𝑁𝑚
𝑚

𝑦1
𝑚 … 𝑦𝑁𝑚

𝑚

𝑧1
𝑚 … 𝑧𝑁𝑚

𝑚

1 … 1 ]
 
 
 

, the matrix of homogeneous 

coordinates of the model point cloud before 
transformation. 

- 𝑇𝐴 = [

    
 𝑅𝐴  𝑡𝐴
    
0 0 0 1

], the initial homogeneous 

transform computed with Arun method. 

- 𝑇𝐼𝐶𝑃 is the homogeneous transform computed with 
multi-scale ICP method. 

 

 

 
 

Figure 2.  Illustration of the relationship between two successive 

acquisitions involved in the experiment on a transverse line. Frames 

and transformations involved. 



  

 At the end of the procedure, the position of each point of the 
model is known in the camera frame. The estimate of the 
transformation matrix from the frame of the model 𝑀 to the 
frame of the camera 𝐶, written 𝑇 ̂𝑀 

𝐶  can be expressed as: 

𝑇̂𝑀 
𝐶 = 𝑇𝐼𝐶𝑃 ∗ 𝑇𝐴 = [

    
 𝑅𝐼𝐶𝑃 ∗ 𝑅𝐴  𝑅𝐼𝐶𝑃 ∗ 𝑡𝐴 + 𝑡𝐼𝐶𝑃

    
0 0 0 1

]  

    

It is hence possible to compute 𝑡𝑚𝑒𝑠
(𝑖)

  
𝐶  defined in Eq. 1: 

𝑡𝑚𝑒𝑠
(𝑖)

 
𝐶 = (𝑅𝐼𝐶𝑃 ∗ 𝑡𝐴 + 𝑡𝐼𝐶𝑃) 

 

(𝑖+1) − (𝑅𝐼𝐶𝑃 ∗ 𝑡𝐴 + 𝑡𝐼𝐶𝑃) 
 

(𝑖) and 

finally to get the mean error 𝐸𝑟𝑟 𝑚𝑒𝑎𝑛 and the variance 𝐸𝑟𝑟 𝑣𝑎𝑟  

(over all the translations) as a function of the six distances from 
the sensor. 

B. Results 

 The results are presented in Table. 1. The Carmine sensor 

systematically under-evaluates the motion by 6 to 8 

millimeters for the considered distances. The Persee device is 

accurate at the lowest distance (800 mm) but its performance 

decreases of around 4% at 900 mm and stagnates over 

900mm. The standard-deviation for Primesense is generally 

low compared to Orbbec.   

V. DISCUSSION 

The proposed study compares the precision and accuracy 

of two RGB-D sensors (Primesense Carmine and Orbbec 

Persee). The first experiment provides comparative clues on 

the variability of both sensors in a static scene for different 

distances. The second experiment aimed at measuring the 

accuracy of each sensor by comparing translations of an 

object measured with each sensor to ground-truth translations. 

We can conclude that Primesense Carmine has better 

performance than Orbbec Persee in terms of precision. The 

systematic shift suggests that an additional calibration could 

improve this performance. The high values for Orbbec 

standard deviation at 1300 mm seem mainly due to 

difficulties to perform accurate registration in presence of 

very noisy data (cf. first experiment) and when the object is 

placed far from the sensor. It might be problematic when 

motion must be estimated with high accuracy. In the context 

of our project, we plan to use several cameras in order to 

capture a given scene from different points of view. We will 

therefore position our cameras regarding their performance 

i.e. we will prioritize the use of Persee at close range.  

 

The choice of a suitable camera is a crucial step in the 

design of experimental protocols, and this paper describes a 

methodology to evaluate the performance of two affordable 

cameras on the market thanks to the use of a 3D printer and a 

measurement table, which could be applied to any RGB-D 

camera. Future works include the fusion of data of two or 

three RGB-D sensors in order to improve the performance of 

pose estimation. Another research direction is to assess the 

capability of dynamic capture for different sensors. 
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TABLE I.  COMPARATIVE STUDY OF TWO RGB-D CAMERAS 

Distance 

(mm) 

Mean (standard-deviation) of errors in millimeters  

Primesense Carmine Orbbec Persee 

800 -6.94 (0.90) 1.72 (3.32) 

900 -6.96 (0.91) 5.82 (3.86) 

1000 -7.28 (0.71) 4.99 (4.99) 

1100 -7.57 (0.74) 4.25 (3.76) 

1200 -7.94 (0.69) 5.57 (4.50) 

1300 - 8.12 (0.99) 11.25 (16.62) 

 

 


