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Abstract

Commutativity between two stationary functions is a notion that generalizes the concept of stationary correlation.
Two stationary functions commute if and only if their associated spectral measures and unitary operators commute.
When the operators do not commute, we define the concept of commuter for two operators, and then derive it for
two projectors, for a projector and a unitary operator, and for two unitary operators. We establish relations between
these commuters and some other tools related to proximity between processes. Finally, we propose a method which
retrieves the commuter for two stationary series of finite spectrum, and we study some convergence properties.

Keywords: Commuter, Orthogonal projectors, Partial order relation, Random measures, Spectral measures,
Stationary processes, Unitary operators.
AMS subject classification: 60G57, 60G10, 60B15, 60H05

1. Introduction

Methods for comparing sets of curves are largely rooted in the comparison of populations through factor analysis;
see, e.g., [2, 12]. Spectral theory is well suited to the task when the curves stem from the observation of processes. This
approach has been used successfully to study many issues dealing with, e.g., autoregressive processes [3], dimension
reduction [4, 5], and large deviation theory [14]. To the best of our knowledge, however, the use of spectral elements
for comparing two sets of functions has been scant. This is in spite of their obvious relevance for issues such as
extracting common and specific features for two sets of curves, or retrieving all the curves with a common shape.

To avoid time dependence issues, curve comparison issues are typically addressed in the frequency domain, and
harmonic analysis techniques can be used in this context. They do not rely on the Gaussian assumption commonly
used in functional data analysis on functional processes; see [10] for a discussion. Dependent functional data analysis,
including functional time series and spatial statistics, is treated in detail by Horváth and Kokoszka [13]. Part of these
developments were stimulated by the early work of Bosq [3] for dependent data; see also Ramsay and Silverman [18].

According to Hsing and Eubank [15], functional data can be approached either from a random element perspective
or from a stochastic process perspective. This paper does a bit of both. Specifically, we develop mathematical tools for
stationary processes. For a stationary function, we know that there exists one and only one unitary operator, namely
the shift operator. The latter can be expressed as a linear combination of projectors or more generally as an integral
with respect to a projector-valued spectral measure, viz.

UX =
∑
j∈J

eiλ j P jX or UX =

∫
eiλdE(λ)X,

where E is a projector-valued spectral measure. A spectral measure is associated with a unitary operator U in a
unique way; we denote it EU . Our objective is to study the relations between the spectral measures EU , EV , EUV and
EVU , where U and V are unitary operators. The comparison of two random functions can then be transposed in the
frequency domain through the comparison of their associated unitary operators.
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Commutativity between two unitary operators makes complete sense in this context. When two random functions
are stationarily correlated, they show some similarity. The notion of stationary correlation can be generalized by the
commutativity of these functions; see [8]. In the frequency domain, this notion corresponds to the commutativity of
the unitary operators, which is equivalent to the commutativity of the associated spectral measures. When two unitary
operators U and V commute, there exists a simple relation between EU , EV and EUV = EVU . By analogy with measure
theory, it is natural to say that EUV is the convolution product of the spectral measures EU and EV . We emphasize that
the product of convolution of spectral measures, as defined in [6], relies on a commutativity assumption. When the
operators do not commute, the relation is more complex.

These considerations lead us to introduce here the notion of commuter, which retrieves the part that commutes
between two operators. The study of this commuter then allows us to define how close two random functions can
be. Projections play an important role in our study; for, EUV A, EVU A and the commuter are projectors. We also rely
on a partial order relation defined on the set of projectors [9]. Obviously, the commuter of two projectors is linked
with the canonical analysis of the spaces they generate. These concepts are developed here in a general Hilbertian
framework, and when the C-Hilbert space is of the L2

H(Ω,A, P) type, our results apply to stationary processes. When
the operators do not commute, we can define the convolution product on a subspace generated by the commuter. The
study of unitary operators, and of their associated random functions, contributes to the development of operator-based
statistical theory, with potential application to functional data analysis.

This paper is structured as follows. Prerequisites and notation are first reviewed in Section 2. The maximal
commuter of two operators is then defined in Section 3, where it is discussed in three special cases: two unitary
operators, a projector and a unitary operator, and two projectors. In Section 4, we examine the relations between the
spectral measures associated with two unitary operators and their product. Section 5 is devoted to the study of the
convergence of the case where the spectrum is finite to the continuous spectrum case. As an application, Section 6
contains a characterization of all stationary series which are stationarily correlated with a given stationary series, and
which belong to a given vector subspace. A graphical illustration of the results is given in Section 7.

2. Background and notation

We recall here the necessary tools and fix notation. We work in the complex field to be able to use Fourier
transforms. General references on stochastic integrals and the product of convolution of spectral measures are [6, 7];
see also [9] for the notions of convergence of projectors, gap between projectors, and gap between spectral measures.

In what follows, H is a C-Hilbert space and L(H) is the set of bounded endomorphisms, which is a C-Banach
space for the norm ‖A‖L(H) = sup{‖AX‖ : ‖X‖ = 1}. Let P(H) be the set of projectors on H. If H′ is a closed vector
subspace of H, P(H′) is the set of projectors on H′. Denote by C⊥ the projector I − C which is orthogonal to a
projector C. Let B denote the Borel σ-field of Π = [−π, π). For any λ ∈ Π, δλ is the Dirac measure concentrated on λ.

A random measure Z, defined on a σ-field ξ of subsets of a set E and taking values in H, is a vector measure
such that < ZA,ZB > = 0 for all pairs (A, B) of disjoint elements of ξ. It can be shown that the application µZ : A ∈
ξ 7→ ‖ZA‖2 ∈ R+ is a bounded measure. A stochastic integral relative to the random measure Z can be defined as the
unique isometry from L2(E, ξ, µZ) onto HZ = vect{ZA : A ∈ ξ} which associates ZA to 1A for all A ∈ ξ. The image of
an element ϕ of L2(E, ξ, µZ) by this isometry is called the integral of ϕ with respect to the random measure Z and is
denoted either

∫
ϕdZ or

∫
ϕ(λ)dZ(λ).

If U is a unitary operator, then U◦Z is a random measure, µU◦Z = µZ , and for any ϕ ∈ L2(E, ξ, µU◦Z) = L2(E, ξ, µZ),∫
ϕdU ◦ Z = U(

∫
ϕdZ). The qualifier “random” makes sense if H is of the L2(Ω,A, P) type.

A stationary series (Xn, n ∈ Z) is a family of elements of H such that < Xn, Xm > = < Xn−m, X0 > for all n,m ∈ Z.
When H = L2(Ω,A, P), and when

∫
XndP = 0 for every n ∈ Z, we get the usual definition of stationarity of order 2,

because < Xn, Xm > = cov(Xn, Xm).
With any stationary series (Xn, n ∈ Z) of elements of H, we can associate a unique random measure Z, defined on

B and taking values in H, such that Xn =
∫

eiλndZ(λ) for all n ∈ Z. In the following, we will also write Xn =
∫

ei·ndZ,
where ei·n is the application λ ∈ Π 7→ eiλn ∈ C.

In the same way, we can define a stationary series indexed by Z × Z: a family {Xn,m : (n,m) ∈ Z × Z} of elements
of H is a stationary series when < Xn,m, Xn′,m′ > = < Xn−n′,m−m′ , X0,0 > for all n, n′,m,m′ ∈ Z. Two stationary series
(Xn, n ∈ Z) and (Yn, n ∈ Z) are said to be stationarily correlated when < Xn,Ym > = < Xn−m,Y0 > for all n,m ∈ Z.
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A spectral measure E on ξ for H is an application from ξ into P(H) such that EE = IH , E(A ∪ B) = EA + EB
for any pair (A, B) of disjoint elements of ξ, and EAnX → 0 as n → ∞ for any X ∈ H and any decreasing sequence
(An : n ∈ N) of elements of ξ converging to ∅.

It can be shown that for any X ∈ H, the application ZX
E

: A ∈ ξ 7→ EAX ∈ H is a random measure. If (F,F )
is a second measurable space and f is a measurable application from E to F, then the application f (E) : A ∈ F 7→
E( f −1A) ∈ P(H) is a spectral measure on F for H called the spectral measure image of E by f .

With any unitary operator U of H, we can associate a unique spectral measure on B for H, denoted EU and
called the spectral measure associated with the unitary operator U, such that UX =

∫
eiλdZX

EU
(λ) ∈ H for all X ∈ H.

Conversely, if E is a spectral measure on B for H, then the application X ∈ H 7→
∫

ei·1dZX
E
∈ H is a unitary operator

of associated spectral measure E. If U is a unitary operator, then, for any λ ∈ Π, ImEU({λ}) = {X ∈ H : UX = eiλX}.
Let {P j : j ∈ J} be a finite family of projectors such that

∑
j∈J P j = IH and such that P jP` = 0 for all pairs ( j, `) of

distinct elements of J. If {λ j : j ∈ J} is a (finite) family of distinct elements of Π, then U =
∑

j∈J eiλ j P j is a unitary
operator and EU =

∑
j∈J δλ j P j.

For any n ∈ Z, the application ĥn : λ ∈ Π 7→ nλ− 2π[(nλ+π)/(2π)] ∈ Π, where [x] denotes the integer part of x, is
measurable. It can be shown that if U is a unitary operator, the spectral measure associated with the unitary operator
Un is the image by ĥn of the spectral measure associated with U. With the notational convention we have adopted,
ĥn(EU) = EUn .

A bounded endomorphism T of H commutes with a unitary operator U if and only if (EU A)T = T (EU A) for
all A ∈ B. Thus, two unitary operators U and V commute if and only if, for any pair (A, B) of elements of B, the
projectors EU A and EV B commute. We then say that the spectral measures EU and EV commute and it can be shown
that there exists a unique spectral measure, denoted EU ⊗EV , on B⊗B for H, such that EU ⊗EV (A×B) = (EU A)(EV B)
for all pairs (A, B) of elements of B. Note that (EU A)(EV B) is a projector because EU A and EV B commute. The image
of EU ⊗EV by the measurable application S : (λ, λ′) ∈ Π×Π 7→ λ+ λ′ − 2π [(λ + λ′ + π)/(2π)] ∈ Π, denoted EU ∗EV ,
is called the product of convolution of the spectral measures EU and EV ; it is associated with the unitary operator UV ,
i.e., EUV = EU ∗ EV = S (EU ⊗ EV ).

When C is a projector of H, we denote by LC the application X ∈ Im C 7→ X ∈ H. It can be seen that L∗C(X) = CX
for all X ∈ H, that LC L∗C = C, L∗C LC = IIm C , L∗CC = L∗C , and that CLC = LC .

A projector C and a unitary operator U commute if and only if L∗CULC is a unitary operator of Im C. One can then
check that for all A ∈ B, L∗C(EU A)LC is a projector of Im C and that the application A ∈ B 7→ L∗C(EU A)LC ∈ P(Im C)
is the spectral measure associated with the unitary operator L∗CULC , i.e., EL∗CULC (A) = L∗C(EU A)LC for all A ∈ B.

Finally, we recall the following notions concerning a partial order relation defined on P(H). Let P and Q be two
projectors. We say that P is smaller than Q, denoted P � Q, if one of the following equivalent properties is verified:
(i) P = PQ = QP; (ii) Im P ⊂ Im Q; (iii) ‖PX‖ ≤ ‖QX‖ for all X ∈ H. Any family {Pλ : λ ∈ Λ} of projectors has a
greatest lower bound, denoted inf{Pλ : λ ∈ Λ}, and a least upper bound, denoted sup {Pλ : λ ∈ Λ}. In what follows,
the following properties will often be used:

(i) P � Q if and only if Q⊥ � P⊥.

(ii) If (P,Q) is a pair of projectors which commute, then inf(P,Q) = PQ.

(iii) Im inf{Pλ : λ ∈ Λ} = ∩λ∈ΛIm Pλ.

(iv) [sup {Pλ : λ ∈ Λ}]⊥ = inf{P⊥λ : λ ∈ Λ}.

(v) [inf{Pλ : λ ∈ Λ}]⊥ = sup {P⊥λ : λ ∈ Λ}.

(vi) If a projector C commutes with projectors P and Q, then C commutes with inf(P,Q), and C inf(P,Q) =

inf(CP,CQ).

Let (Pn, n ∈ N) be a sequence of projectors. It is then possible to define its upper and lower limits as

lim sup{Pn : n ∈ N} = inf{sup {Pm : m ≥ n} : n ∈ N}, lim inf{Pn : n ∈ N} = sup {inf{Pm : m ≥ n} : n ∈ N},

respectively. We always have lim inf{Pn : n ∈ N} � lim sup{Pn : n ∈ N}. When there is equality, we say that
(Pn, n ∈ N) r-converges: limr

n Pn = P if and only if lim inf{Pn : n ∈ N} = lim sup{Pn : n ∈ N} = P.
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If a sequence of projections r-converges, then it converges point-wise, but the converse is not true. If (Pn, n ∈ N)
is an increasing (resp. decreasing) sequence of projectors, it is r-convergent and limr

n Pn = sup{Pn : n ∈ N} (resp.
limr

n Pn = inf{Pn : n ∈ N}).
For any pair (P,Q) of projectors, we define d(P,Q) = sup(P,Q) − inf(P,Q). This notion looks like a distance but

it is not, as d(P,Q) is a projector. It is interesting nevertheless because limr
n Pn = P if and only if limr

n d(Pn, P) = 0.
Note that d(P,Q) = 0 if and only if P = Q. It can also be checked that Im{d(P,Q)}⊥ = Ker(P − Q).

Given spectral measures E and α on B for H, their associated gap is given by EE,α = sup{d(EA, αA) : A ∈ B}. An
equalizer of two unitary operators U and V is a projector K which commutes with U and V and such that UK = VK.
The upper bound of the family of the equalizers of the unitary operators U and V is an equalizer of U and V , denoted
RU,V and called the maximal equalizer of U and V . Note that R⊥U,V = EEU ,EV and Im RU,V = ∩n∈ZKer(Un − Vn).

3. Commuters

The notion of commuter studied here is different from the notion of commutator described in other papers, e.g.,
Laustsen [16], who defines the commutator of two operators A and B as [A, B] = AB − BA. We define a commuter as
a projector which will be equal to the identity when the operators commute.

3.1. Maximal commuter

We begin by stating some preliminary results pertaining to commutativity.

Lemma 1. If the projector P commutes with A ∈ L(H), then PA∗ = A∗P and P⊥A = AP⊥.

Proof. From AP = PA, we get PA∗ = A∗P using the adjoint. Commutativity between P⊥ and A is easily checked. �

The following result is somewhat more involved.

Lemma 2. If A ∈ L(H) commutes with each projector in {Pλ : λ ∈ Λ}, then MAM = AM with M = inf{Pλ : λ ∈ Λ}.

Proof. Fix an arbitrary X ∈ H. For any λ ∈ Λ, we have PλAMX = APλMX = AMX. This means that AMX belongs
to ∩λ∈ΛIm Pλ = Im inf{Pλ : λ ∈ Λ} = Im M. So MAMX = AMX, which completes the proof. �

The commutativity of a family of projectors implies the commutativity of the upper and the lower bounds.

Lemma 3. If A ∈ L(H) commutes with each projector in {Pλ : λ ∈ Λ}, then A commutes with M = inf{Pλ : λ ∈ Λ}

and S = sup{Pλ : λ ∈ Λ}.

Proof. From Lemma 2, we have MAM = AM. Furthermore, from Lemma 1, A∗ commutes with each projector in
{Pλ : λ ∈ Λ}. Lemma 2 also allows us to write MA∗M = A∗M, and hence MAM = MA. We can then conclude that
MA = AM. Finally, from Lemma 1, A commutes with each projector in {P⊥λ : λ ∈ Λ}, i.e., with inf{P⊥λ : λ ∈ Λ}, and
hence with [inf{P⊥λ : λ ∈ Λ}]⊥ = sup{Pλ : λ ∈ Λ} = S . �

We are now ready to introduce the notion of commuter.

Definition 1. A projector K is a commuter of A, B ∈ L(H) if it commutes with A and B and AKB = BKA.

The upper bound of a family of commuters is a commuter.

Proposition 1. If each projector in {Kλ : λ ∈ Λ} is a commuter of A, B ∈ L(H), then K = sup{Kλ : λ ∈ Λ} is a
commuter of A and B.

Proof. From Lemma 3, A (resp. B) commutes with K. Denote by D the projector on the closed vector subspace
Ker (AB − BA). For any λ ∈ Λ, we have

(AB − BA)Kλ = ABKλ − BAKλ = AKλB − BKλA = BKλA − BKλA = 0.
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This means that Im Kλ ⊂ Im D = Ker (AB − BA), and hence Kλ � D. The projector D being an upper bound of
the family {Kλ : λ ∈ Λ}, we have K � D. For any X ∈ H, we have KX ∈ Im K ⊂ Im D = Ker (AB − BA), so
ABKX = BAKX. In other words, because K commutes with A and B, AKBX = BKAX. Since X ∈ H was arbitrary,
we have ABK = BKA. Hence the proof is complete. �

As the set of the commuters of a pair (A, B) of elements of L(H) is never empty, because 0 is a commuter of A
and B, Proposition 1 allows us to define the maximal commuter.

Definition 2. If A and B are elements of L(H), the upper bound of the family of all commuters of A and B is called
the maximal commuter of A and B, and it is denoted CA,B.

In the following subsections, we consider in turn the maximal commuter of two unitary operators, of a projector
and a unitary operator, and of two projectors.

3.2. Maximal commuter of two unitary operators
A commuter of two unitary operators can be defined by means of their associated spectral measures. For this, we

establish the following preliminary result.

Lemma 4. A projector K is a commuter of the unitary operators U and V if and only if L∗KULK and L∗KVLK are
unitary operators which commute.

Proof. If K is a commuter of U and V , K commutes with U, so L∗KULK is a unitary operator of Im K. For the same
reasons, L∗KVLK is a unitary operator of Im K. Moreover,

(L∗KULK)(L∗KVLK) = L∗KUKVLK = L∗KVKULK = (L∗KVLK)(L∗KULK),

so L∗KULK and L∗KVLK are unitary operators of Im K which commute.
Conversely, if L∗KULK and L∗KVLK are unitary operators of Im K which commute, we have that K commutes with

U and V . In addition,

UKV = KUKVK = LK L∗KULK L∗KVLK L∗K = LK L∗KVLK L∗KULK L∗K = KVKUK = VKU.

Indeed, the projector K is a commuter of the unitary operators U and V . �

We can now establish a relationship between the commuter of two unitary operators and the commuter of a family
of pairs of projectors.

Proposition 2. A projector K is a commuter of the unitary operators U and V if and only if, for all pairs (A, B) of
elements of B, K is a commuter of the projectors EU A and EV B.

Proof. Let K be a commuter of U and V . As K commutes with U (resp. V), L∗KULK (resp. L∗KVLK) is a unitary
operator of Im K, for all A ∈ B, L∗KEU ALK (resp. L∗KEV ALK) is a projector of Im K and the application A ∈ B 7→
L∗KEU ALK ∈ P(Im K) (resp. A ∈ B 7→ L∗KEV ALK ∈ P(Im K)) is the spectral measure associated with L∗KULK (resp.
L∗KVLK). From the previous lemma, K being a commuter of U and V , the unitary operators L∗KULK and L∗KVLK

commute, so, considering a pair (A, B) of elements of B, K commutes with EU A and EV B and the projectors of Im K,
L∗KEU ALK and L∗KEV BLK , commute. In order to prove that K is a commuter of the projectors EU A and EV B, it is then
sufficient to note that

(EU A)K(EV B) = K(EU A)K(EV B)K = LK L∗K(EU A)LK L∗K(EV B)LK L∗K
= LK L∗K(EV B)LK L∗K(EU A)LK L∗K = K(EV B)K(EU A)K = (EV B)K(EU A).

Conversely, assume that K is a commuter of the projectors EU A and EV B, for any pair (A, B) of elements of B. As
K commutes with EU A for all A ∈ B, K commutes with U. So, L∗KEU ALK is a projector of Im K and the application
A ∈ B 7→ L∗K(EU A)LK ∈ P(Im K) is the spectral measure associated with the unitary operator L∗KULK . The same
property stands for V , viz. KV = VK, and the application B ∈ B 7→ L∗K(EV B)LK ∈ P(Im K) is the spectral measure
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associated with the unitary operator L∗KVLK . Let us consider a pair (A, B) of elements of B. As K is a commuter of
EU A and EV B, we can write

L∗K(EU A)LK L∗K(EV B)LK = L∗K(EU A)K(EV B)LK = L∗K(EV B)K(EU A)LK = L∗K(EV B)LK L∗K(EU A)LK .

Thus the projectors L∗K(EU A)LK and L∗K(EV B)LK commute whatever (A, B) ∈ B × B. We conclude that the unitary
operators L∗KULK and L∗KVLK commute, so (see Lemma 4) K is a commuter of the unitary operators U and V . �

Proposition 2 has the following consequence.

Corollary 1. If K is a commuter of the unitary operators U and V, then, for any (n,m) ∈ Z2, K is a commuter of the
unitary operators Un and Vm.

Proof. From the background material in Section 2, EUn = ĥnEU and EVm = ĥmEV . From Proposition 2, K will be
a commuter of Un and Vm if K is a commuter of the projectors ĥnEU A and ĥmEV B for all (A, B) ∈ B × B. So, let
(A, B) be a pair of elements of B. As K is a commuter of U and V , Proposition 2 implies that K is a commuter of the
projectors EU ĥn

−1
A and EV ĥm

−1
B, and so of the projectors ĥnEU A and ĥmEV B. �

If U and V are two unitary operators, denote by C the projector on the closed vector subspace

∩(n,m)∈Z2 Ker(UnVm − VmUn).

Proposition 3. C is a commuter of the unitary operators U and V.

Proof. First note that X ∈ Im C if and only if UnVmX = VmUnX for all (n,m) ∈ Z2. For any (p, X) ∈ Z × Im C, write

UnVm(U pX) = Un(VmU pX) = Un(U pVmX) = Un+pVmX = VmUn+pX = VmUn(U pX)

for any n,m ∈ Z. We can then assert that, for any X ∈ H, UCX and U−1CX belong to Im C, so CUCX = UCX and
CU−1CX = U−1CX. Then CUC = UC and CU−1C = U−1C. This involves the commutativity of C and U, because
CU = (U−1C)∗ = (CU−1C)∗ = CUC = UC. Similarly, we can prove that VC = CV . Finally, these properties of
commutativity and the fact that CX belongs to Im C allow us to write UCVX = UVCX = VUCX = VCUX whatever
X ∈ H. So UCV = VCU, which allows us to conclude. �

With the same notation, we have the following.

Proposition 4. If K is a commuter of the unitary operators U and V, then K � C.

Proof. Take X ∈ Im K, i.e., such that X = KX. As K is a commuter of the operators Un and Vm (see Corollary 1), we
have

UnVmX = UnVmKX = UnKVmX = VmKUnX = VmUnKX = VmUnX

for any n,m ∈ Z. Thus X ∈ ∩(n,m)∈Z2 Ker(UnVm − VmUn), i.e., X ∈ Im C. Hence Im K ⊂ Im C, i.e., K � C. �

With these results, we can describe explicitly the maximal commuter of two unitary operators.

Proposition 5. If U and V are two unitary operators of H, then Im CU,V = ∩(n,m)∈Z2 Ker(UnVm − VmUn).

The maximal commuter can also be defined by the way of a family of equalizers.

Proposition 6. For any pair (U,V) of unitary operators, we have CU,V = inf{RV,U−nVUn : n ∈ Z}.

Proof. By mathematical induction, we can show that for any m ∈ N, U−nVmUn = (U−nVUn)m. Then, we extend
this property for any m ∈ Z: if the property is verified for m ≥ 0, then when m < 0, we can write (U−nVUn)|m| =

U−nV |m|Un, and taking the adjoint we get (U−nVUn)−|m| = U−nV−|m|Un, i.e., (U−nVUn)m = U−nVmUn. Finally,

Im CU,V = ∩(n,m)∈Z2 Ker(UnVm − VmUn) = ∩n∈Z ∩m∈Z Ker(Vm − U−nVmUn)
= ∩n∈Z ∩m∈Z Ker{Vm − (U−nVUn)m} = ∩n∈ZIm RV,U−nVUn = Im inf{RV,U−nVUn : n ∈ Z},

so the claim holds. �
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3.3. Maximal commuter of a projector and of a unitary operator

When A ∈ L(H), {An/n! : n ∈ N} is a summable family of the C-Banach space L(H). The sum of this family is
denoted eA; see [19]. Of course, the formula eA =

∑
n∈N An/n! is reminiscent of the formula ez =

∑
n∈Z zn/n!, when

z ∈ R or C. In the particular case where P is a projector of H, we have

eiP =
∑
n∈N

in

n!
Pn = I +

∑
n∈N∗

in

n!
Pn = I + (ei − 1)P = eiP + P⊥.

It is clear that eiP is a unitary operator with spectral measure EeiP = δ0P⊥ + δ1P. This yields the following result.

Lemma 5. If P is a projector and U a unitary operator, then CP,U = CeiP,U .

Proof. It is easy to check that a projector K is a commuter of P and U if and only if K is commuter of the unitary
operators eiP = I + (ei − 1)P and U. Therefore, the families of the commuters of P and U and of the commuters of eiP

and U are equal, which is why CP,U = CeiP,U . �

This lemma allows us to use the results of Section 3.2 for the study of the maximal commuter of a projector and a
unitary operator.

Proposition 7. For any projector P of H and any unitary operator U of H, we have Im CP,U = ∩n∈ZKer(PUn −UnP).

Proof. We first notice that for any m ∈ Z, we have (eiP)m = eimP + P⊥ = I + (eim − 1)P. This can be proved by
induction for any m ∈ N, and then can be extended to any m ∈ Z, by using the adjoint form. Then, for any n,m ∈ Z,
we have (eiP)mUn − Un(eiP)m = (eim − 1)(PUn − UnP). It follows from Proposition 5 that

ImCP,U = ImCeiP,U = ∩(n,m)∈Z2 Ker{(eiP)mUn − Un(eiP)m} = ∩n∈ZKer(PUn − UnP),

which completes the proof. �

Noting that U−nPUn is a projector, we have the following ergodic property.

Proposition 8. If P is a projector and U is a unitary operator, then CP,U = inf{d(P,U−nPUn)⊥ : n ∈ Z}.

Proof. As Ker(PUn−UnP) = Ker(U−nPUn−P) = Im{d(P,U−nPUn)⊥}, we have Im CP,U = ∩n∈ZIm {d(P,U−nPUn)⊥} =

Im inf{d(P,U−nPUn)⊥ : n ∈ Z}, and the property stands. �

Remark 1. The maximal commuter CP,U of the projector P and of the unitary operator U measures the level of
commutativity between P and U. We can easily verify that they commute if and only if CP,U = I. As for the formula
CP,U = inf{d(P,U−nPUn)⊥ : n ∈ Z}, it leads to the following interpretation: if PUn and UnP are close together, that
is if the projectors P and U−nPUn are close together, then d(P,U−nPUn) is of small rank, and so d(P,U−nPUn)⊥ is of
high rank, together with the lower bound, CP,U , of the family {d(P,U−nPUn)⊥ : n ∈ Z}.

3.4. Maximal commuter of two projectors

If P and D are two projectors, it is easy to check that any commuter of P and D is a commuter of P and eiD.
Conversely, any commuter of P and eiD is a commuter of P and D. Thus, the family of the commuters of P and D
coincides with the family of the commuters of P and eiD. We deduce the following result.

Lemma 6. If P and D are two projectors, then CP,D = CP,eiD .

We can complete this observation with the following.

Proposition 9. If P and D are two projectors, then Im CP,D = Ker (PD − DP).
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Proof. For any n ∈ Z, we have P(eiD)n − (eiD)nP = (ein − 1)(PD − DP). Lemma 6 and Proposition 7 yield Im CP,D =

Im CP,eiD = ∩n∈ZKer{(ein − 1)(PD − DP)} = Ker (PD − DP). �

Let (P,D) be a pair of projectors. For any X ∈ H, we have

‖PDX − DPX‖ ≤ ‖PDX − PDCP,DX‖ + ‖PDCP,DX − DPX‖.

As PDCP,DX = PCP,DDX = DCP,DPX = DPCP,DX, we find

‖PDX − DPX‖ ≤ ‖X −CP,DX‖ + ‖CP,DX − X‖ = 2‖C⊥P,DX‖,

which allows us to conclude. �

Proposition 10. Given any pair (P,D) of projectors, we have ‖PDX − DPX‖ ≤ 2 ‖C⊥P,DX‖ for all X ∈ H.

Remark 2. (a) The term “maximal commuter” is justified by the fact that CP,D is the projector on the closed vector
subspace of the elements X such that PDX = DPX.

(b) The maximal commuter measures the degree of commutativity of two projectors. We can easily check that
CP,D = I if and only if P and D commute.

(c) From Proposition 10, when X is close to Im CP,D, i.e., when ‖C⊥P,DX‖ is small, then PDX and DPX are close
together.

(d) For any pair (P,D) of projectors, CP,D = CP⊥,D because Ker (PD − DP) = Ker (P⊥D − DP⊥).

3.5. Links between the three families of commuters
In this section, we will establish and study various relations between the maximal commuters of (a) two unitary

operators; (b) a projector and a unitary operator; (c) two projectors. In particular, the maximal commuter of two unitary
operators U and V can be expressed through a family of maximal commuters of projectors {CEU A,EV B : (A, B) ∈ B×B}.

Proposition 11. If U and V are two unitary operators, we have CU,V = inf{CEU A,EV B : (A, B) ∈ B × B}.

Proof. Let us consider an element X of ∩(A,B)∈B×BKer{(EU A)(EV B) − (EV B)(EU A)}. For any (B, n) ∈ B × Z, we have

Z(EV B)X
EU

= (EV B) ◦ ZX
EU
. (1)

As vect(1A : A ∈ B) = L2(Π,B, µZ(EV B)X
EU

+ µZX
EU

), we can write

ei.n = lim
m→∞

km∑
j=1

α j,m1A j,m in L2(µZ(EV B)X
EU

+ µZX
EU

), (2)

where A j,m ∈ B, α j,m ∈ C and km ∈ N∗. Relation (2) is also true in L2(µZ(EV B)X
EU

) and in L2(µZX
EU

) because

‖ · ‖2L2(µ
Z

(EV B)X
EU

+µZX
EU

) = ‖ · ‖2L2(µ
Z

(EV B)X
EU

) + ‖ · ‖2L2(µZX
EU

).

Integrating (2) with respect to the random measure ZX
EU

yields

UnX = lim
m→∞

km∑
j=1

α j,mZX
EU

A j,m and (EV B)UnX = lim
m→∞

km∑
j=1

α j,m(EV B)ZX
EU

A j,m.

Taking into account (1), we then get

(EV B)UnX = lim
m→∞

km∑
j=1

α j,mZ(EV B)X
EU

A j,m.
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Integrating (2) with respect to the random measure Z(EV B)X
EU

, we find

Un(EV B)X = lim
m→∞

km∑
j=1

α j,mZ(EV B)X
EU

A j,m.

Thus, from what precedes, (EV B)UnX = Un(EV B)X for any B ∈ B, from which we deduce that ZUnX
EV

= Un ◦ ZX
EV

.
Keeping in mind the background material, we have, for all n,m ∈ Z,∫

ei·mdZUnX
EV

=

∫
ei·mdUn ◦ ZX

EV
= Un

(∫
ei·mdZX

EV

)
.

As ZUnX
EV

and ZX
EV

are the random measures respectively associated with the stationary series (VmUnX,m ∈ Z) and
(VmX,m ∈ Z), we see that VmUnX = UnVmX. This means that X belongs to Ker (VmUn − UnVm) whatever n,m ∈ Z,
so that X ∈ ∩(n,m)∈Z2 Ker (VmUn − UnVm) = Im CU,V . We have just proved that

∩(A,B)∈B×BKer {(EU A)(EV B) − (EV B)(EU A)} ⊂ Im CU,V ,

and hence
Im inf{CEU A,EV B : (A, B) ∈ B × B} ⊂ Im CU,V ,

so that inf{CEU A,EV B : (A, B) ∈ B × B} � CU,V .
As CU,V is a commuter of U and V , Proposition 2 implies that it is a commuter of the projectors EU A and EV B for

all (A, B) ∈ B × B. So we have CU,V � CEU A,EV B. This means that CU,V is a lower bound of the family of projectors
{CEU A,EV B : (A, B) ∈ B × B}. Therefore, CU,V � inf{CEU A,EV B : (A, B) ∈ B × B}, which allows us to conclude. �

Let us examine what this last result becomes in the particular case where U = eiP, P being a projector.

Proposition 12. If P is a projector and V a unitary operator of H, then we have CP,V = inf{CP,EV B : B ∈ B}.

Proof. We know that EeiP = δ0P⊥ + δ1P. Depending on whether an element A of B includes 0 and 1, 0 and not 1, 1
and not 0, or neither 0 neither 1, EeiP A takes the value I, P⊥, P or 0, respectively. Thus, for any A, B ∈ B, CEeiP A,EV B

equals either CI,EV B = I = CP,EV Π, either CP⊥,EV B = CP,EV B, or C0,EV B = I = CP,EV Π. This means that {CEeiP A,EV B :
(A, B) ∈ B × B} ⊂ {CP,EV B : B ∈ B}. However, we also have {CP,EV B : B ∈ B} ⊂ {CEeiP A,EV B : (A, B) ∈ B × B}, because
CP,EV B = CEeiP ({1}),EV B. Thus we can write {CEeiP A,EV B : (A, B) ∈ B × B} = {CP,EV B : B ∈ B}. In view of Lemma 6 and
Proposition 11, we conclude that CP,V = CeiP,V = inf{CEeiP A,EV B : (A, B) ∈ B × B} = inf{CP,EV B : B ∈ B}. �

The following is a consequence of Proposition 12.

Corollary 2. If U and V are any two unitary operators, then CU,V = inf{CEV B,U : B ∈ B}.

Proof. From Propositions 11 and 12, we get

Im CU,V = ∩B∈B ∩A∈B Im CEU A,EV B = ∩B∈BIm inf{CEU A,EV B : A ∈ B}

= ∩B∈BIm CEV B,U = Im inf{CEV B,U : B ∈ B},

which completes the proof. �

In general, if U and V are two unitary operators which do not commute, the series (UnVmX, (n,m) ∈ Z2) is not
stationary. Nevertheless, if X belongs to Im CU,V , i.e., if UnVmX = VmUnX for any n,m ∈ Z, then for any pair
((n,m), (n′,m′)) of elements of Z2, we have < UnVmX,Un′Vm′X > = < Un−n′VmX,Vm′X > = < VmUn−n′X,Vm′X > =

< Vm−m′Un−n′X, X > = < Un−n′Vm−m′X, X >. So we get the following result.

Proposition 13. Let U and V be two unitary operators. Then, for any X ∈ Im CU,V , the series (UnVmX, (n,m) ∈ Z2)
and (VmUnX, (n,m) ∈ Z2) are equal and stationary.
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What can be said if X is close to Im CU,V? The following proposition gives a partial answer to this question.

Proposition 14. Let U and V be two unitary operators. Then, for any X ∈ H, we have

(i) ‖(EU A)(EV B)X − (EV B)(EU A)X‖ ≤ 2 ‖C⊥U,V X‖, for all A, B ∈ B.

(ii) ‖UnVmX − VmUnX‖ ≤ 2 ‖C⊥U,V X‖ for all n,m ∈ Z.

(iii) | < UnVmX,Un′Vm′X > − < Un−n′Vm−m′X, X > | ≤ 4 ‖C⊥U,V X‖ ‖X‖, for all n,m, n′,m′ ∈ Z.

Proof. From Proposition 11, we have C⊥
EU A,EV B � C⊥U,V . Proposition 10 then allows us to get Part (i), viz.

‖(EU A)(EV B)X − (EV B)(EU A)X‖ ≤ 2 ‖C⊥EU A,EV BX‖ ≤ 2 ‖C⊥U,V X‖.

Turning to Part (ii), for any X ∈ H, CU,V X belongs to∩(n,m)∈Z2 Ker(UnVm−VmUn) and then UnVmCU,V X = VmUnCU,V X.
We can then write

‖UnVmX − VmUnX‖ ≤ ‖UnVmX − UnVmCU,V X‖ + ‖UnVmCU,V X − VmUnX‖

= ‖X −CU,V X‖ + ‖VmUnCU,V X − VmUnX‖ = ‖C⊥U,V X‖ + ‖CU,V X − X‖ = 2 ‖C⊥U,V X‖.

As for Part (iii), it is a consequence of Part (ii). Indeed, for any pair ((n,m), (n′,m′)) of elements of Z2, we have

| < UnVmX,Un′Vm′X > − < Un−n′Vm−m′X, X > |

= | < Vm−m′Un−n′X − Un−n′Vm−m′X, X > + < Un−n′VmX − VmUn−n′X,Vm′X > |

≤ ‖Vm−m′Un−n′X − Un−n′Vm−m′X‖‖X‖ + ‖Un−n′VmX − VmUn−n′X‖‖Vm′X‖ ≤ 4 ‖C⊥U,V X‖ ‖X‖.

Thus the proof is complete. �

Remark 3. (a) Parts (i) and (ii) of Proposition 14 respectively concern the frequential and temporal expressions of
the same phenomenon: the proximity between X and Im CU,V .

(b) If X is close to Im CU,V , i.e., if ‖C⊥U,V X‖ is small, then the series (UnVmX, (n,m) ∈ Z2) is almost stationary: for
any n,m, n′,m′ ∈ Z2, | < UnVmX,Un′Vm′X > − < Un−n′Vm−m′X, X > | is small.

(c) For any (X, X′) ∈ H × Im C, we have the following commutativity property:

‖UnVmX′ − UnVmX‖ = ‖X′ − X‖ = ‖VmUnX′ − VmUnX‖

for any n,m ∈ Z. Recall that the series (UnVmX′, (n,m) ∈ Z2) = (VmUnX′, (n,m) ∈ Z2) is stationary.

(d) It can be checked that CU,V is an equalizer of UV and VU. If R denotes the maximal equalizer of the unitary
operators UV and VU, then d(EUV A,EVU A) � EEUV ,EVU = R⊥ � C⊥U,V . Note that this equalizer can be different
from the maximal equalizer.

Of course, we can obtain similar results to the last proposition for the maximal commuter of a projector and a
unitary operator.

Corollary 3. If P is a projector and V a unitary operator, then, for any X ∈ H, we have

(i) ‖P(EV B)X − (EV B)PX‖ ≤ 2‖C⊥P,V X‖ for all B ∈ B.

(ii) ‖PVmX − VmPX‖ ≤ ‖C⊥P,V X‖/| sin(1)| for all m ∈ Z.
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Proof. We use Proposition 14 in the particular case where U = eiP = eiP + P⊥ = I + (ei − 1)P. We recall that
EeiP = δ0P⊥ + δ1P. Part (i) of this proposition implies that, for any B ∈ B,

‖P(EV B)X − (EV B)PX‖ = ‖EeiP ({1})(EV B)X − (EV B)EeiP ({1})X‖ ≤ 2 ‖C⊥eiP,V X‖ = 2 ‖C⊥P,V X‖,

which proves Part (i). As for Part (ii), it can be deduced from Part (ii) of Proposition 14, which implies

‖(ei2 − 1)(PVm − VmP)X‖ = ‖U2VmX − VmU2X‖ ≤ 2 ‖C⊥eiP,V X‖ = 2 ‖C⊥P,V X‖.

Thus, for any m ∈ Z, ‖PVmX − VmPX‖ ≤ ‖C⊥P,V X‖/| sin(1)| and hence the argument is complete. �

Remark 4. These inequalities are respectively the temporal and the frequential expressions of the same phenomenon.
They can be interpretated as follows: when X is close to Im CP,V , that is when ‖C⊥P,V X‖ is small, then (PVmX,m ∈ Z)
is an almost stationary series, close to the series (VmPX,m ∈ Z). As for P ◦ ZX

EV
, it is almost a random measure, close

to ZPX
EV

, which is the random measure associated with the stationary series (VmPX,m ∈ Z).

3.6. Commuter and history of a series
When (Xn, n ∈ Z) is a stationary series (of elements of H), we call Pn the projector on vect{Xm : m ≤ n}, as

per [11, 17]. This projector Pn can be called the projector on the history to time n. Obviously, if n′ ≤ n, from
vect{Xm : m ≤ n′} ⊂ vect{Xm : m ≤ n}, we have Pn′ � Pn. It can be shown [11] that the applications P−∞ : X ∈ H 7→
limn→∞ P−nX ∈ H and P+∞ : X ∈ H 7→ limn→∞ PnX ∈ H are projectors.

From the property Pn′ � Pn when n′ ≤ n, we deduce that the sequences of projectors (Pk+n, n ∈ N) and
(Pk−n, n ∈ N) are increasing and decreasing, respectively. In view of the background material in Section 2, we can write
limr

n Pk+n = sup{Pk+n : n ∈ N} and limr
n Pk−n = inf{Pk−n : n ∈ N}. Noting that sup{Pk+n : n ∈ N} = sup{Pn : n ∈ Z}

and inf{Pk−n : n ∈ N} = inf{Pn : n ∈ Z}, one can then make the following assertion:

For any k ∈ Z, the sequence (Pk+n, n ∈ N) r-converges increasingly to sup{Pn : n ∈ Z}, and the sequence
(Pk−n, n ∈ N) r-converges decreasingly to inf{Pn : n ∈ Z}.

Thus, when k = 0, limr
n Pn = sup{Pn : n ∈ Z} and limr

n P−n = inf{Pn : n ∈ Z}. As r-convergence implies point-wise
convergence, on one hand we have limn PnX = (sup{Pn : n ∈ Z})X and hence P+∞ = sup{Pn : n ∈ Z}. Furthermore,
limn P−nX = (inf{Pn : n ∈ Z})X and hence P−∞ = inf{Pn : n ∈ Z}.

Let U be a unitary operator of H such that UXn = Xn+1 for all n ∈ Z. There exists at least one U. If H = vect{Xn :
n ∈ Z}, then U is unique, and is often named the shift operator. So we have the following property.

Lemma 7. For any k ∈ Z, CPk ,U = inf{d(Pk, Pk+n)⊥ : n ∈ Z}.

Proof. As stated in [11], Un(Im Pk) = Im Pk+n. Hence, UnPk = Pk+nUnPk for any (n, k) ∈ Z2. We also can write
U−nPk+n = PkU−nPk+n, because (−n, k + n) ∈ Z2. This implies, taking the adjoint, that Pk+nUn = Pk+nUnPk. So we
have Pk+nUn = UnPk or otherwise Pk+n = UnPkU−n. Proposition 8 then implies

CPk ,U = inf{d(Pk,U−nPkUn)⊥ : n ∈ Z} = inf{d(Pk,UnPkU−n)⊥ : n ∈ Z} = inf{d(Pk, Pk+n)⊥ : n ∈ Z},

whence the proof is complete. �

We are now in a position to state the main result of this section.

Proposition 15. For any k ∈ Z, we have CPk ,U = P⊥+∞ + P−∞.

Proof. Let X be an element of Im CPk ,U , i.e., of ∩n∈ZIm d(Pk, Pk+n)⊥ = ∩n∈ZKer(Pk − Pk+n). This means that PkX =

Pk+nX for all n ∈ Z. So, as limr
n Pk+n = P+∞,

P+∞X = lim
n→∞

Pk+nX = PkX. (3)

In a similar way, we have PkX = Pk+nX for all n ∈ Z, and hence PkX = Pk−nX for all n ∈ Z. Therefore, as
limr

n Pk−n = P−∞,
P−∞X = lim

n→∞
Pk−nX = PkX. (4)
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Combining (3) and (4), we have P−∞X = P+∞X, which brings us to conclude that X belongs to Ker(P+∞ − P−∞) =

Im(P+∞ − P−∞)⊥ = Im(P⊥+∞ + P−∞). Thus we have proved that Im(CPk ,U) ⊂ Im(P⊥+∞ + P−∞).
Conversely, consider an element X of Im(P⊥+∞ + P−∞) = Ker(P+∞ − P−∞). Then P+∞X = P−∞X. Fix m ∈ Z. From

P−∞ = inf{Pn : n ∈ Z} � Pm � sup{Pn : n ∈ Z} = P+∞, we deduce that ‖P−∞X‖ ≤ ‖PmX‖ ≤ ‖P+∞X‖. Given that
‖P−∞X‖ = ‖P+∞X‖, ‖PmX‖ = ‖P−∞X‖, we have P−∞X = PmX. Indeed,

‖PmX‖2 = ‖{P−∞ + (Pm − P−∞)}X‖2 = ‖P−∞X‖2 + ‖(Pm − P−∞)X‖2.

As this is true for arbitrary m ∈ Z, we have P−∞X = PkX = Pk+nX for all n ∈ Z. We can thus conclude that X belongs
to ∩n∈ZKer(Pk − Pk+n) = ∩n∈ZIm d(Pk, Pk+n)⊥ = Im CPk ,U . Hence, Im (P⊥+∞ + P−∞) ⊂ Im CPk ,U . This, combined with
the previous inclusion, gives Im CPk ,U = Im (P⊥+∞ + P−∞), and finally we have CPk ,U = P⊥+∞ + P−∞. �

Remark 5. From [11, 17], the series (Xn, n ∈ Z) is said to be regular or purely non-deterministic when P−∞ = 0,
and to be singular or purely deterministic when P−∞ = P+∞. In order to simplify these definitions, let us consider
the case where H = vect(Xn, n ∈ Z). So P+∞ = I. The series then will be said to be singular when P−∞ = I. As for
the formula CPk ,U = P⊥+∞ + P−∞, it becomes CPk ,U = P−∞: P−∞ is the maximal commuter of the projector Pk and the
unitary operator U. This gives us a new definition of the projector P−∞, and makes the maximal commuter relevant
once again. Then we can assert that the series is singular if and only if CPk ,U = I, i.e., if and only if the projector on
the history to the instant k and the shift operator commute.

4. Relations between the spectral measures EU, EV , EUV and EVU

When two unitary operators U and V commute, we can compute the spectral measure associated with UV = VU,
thanks to the convolution product of the spectral measures respectively associated with U and V . Now what happens
when the operators do not commute? The maximal commuter will help us to address this question. Let us first look
at some preliminary results.

Lemma 8. If P and Q are two projectors on H which commute, then L∗PQLP is a projector of Im P.

Proof. This result holds because (L∗PQLP)∗ = L∗PQLP and (L∗PQLP)(L∗PQLP) = L∗PQPQLP = L∗PPQQLP = L∗PQLP. �

Lemma 9. If P is a projector of H and Q a projector of Im P, then LPQL∗P is a projector of H.

Proof. This is because LPQL∗P is self-adjoint and LPQL∗PLPQL∗P = LPQIIm PQL∗P = LPQQL∗P = LPQL∗P. �

Lemma 10. If C is a projector of H which commutes with the projectors P and P′, then inf(L∗C PLC , LC P′L∗C) =

L∗C inf(P, P′)LC .

Proof. As C commutes with each of the elements of the family of projectors {P, P′}, it commutes with inf(P, P′). As C
commutes with the projectors P, P′ and inf(P, P′), from Lemma 8, L∗C PLC , L∗C P′LC , and L∗C inf(P, P′)LC are projectors
of Im C. Given that

L∗C inf(P, P′)LC L∗C PLC = L∗C inf(P, P′)CPLC = L∗CC inf(P, P′)PLC = L∗C inf(P, P′)LC ,

we deduce that L∗C inf(P, P′)LC � L∗C PLC . In the same way, we establish that L∗C inf(P, P′)LC � L∗C P′LC , so that
L∗C inf(P, P′)LC is a lower bound of the family of projectors {L∗C PLC , L∗C P′LC}.

Let us consider a lower bound K of the family {L∗C PLC , L∗C P′LC}. From Lemma 9, LC KL∗C is a projector of H.
From K � L∗C PLC , we deduce that KL∗C PLC = K and hence LC KL∗C = LC KL∗C PLC L∗C = LC KL∗C PC = LC KL∗CCP =

LC KL∗C P. This means that L∗C KLC � P. In the same way, we can show that LC KL∗C � P′ and hence LC KL∗C is a
lower bound of the family {P, P′}, so LC KL∗C � inf(P, P′). Then we can write L∗C LC KL∗C inf(P, P′)LC = L∗C LC KL∗C LC ,
that is KL∗C inf(P, P′)LC = K. This means that L∗C inf(P, P′)LC is the largest lower bound of the family of projectors
{L∗C PLC , L∗C P′LC}. Thus the proof is complete. �

In what follows, U and V are two unitary operators, and we denote by C their maximal commuter. As C commutes
with U and V , it follows from the background material in Section 2 that U′ = L∗CULC and V ′ = L∗CVLC are unitary
operators of Im C. Moreover, EU′A = L∗C(EU A)LC and EV ′A = L∗C(EV A)LC for all A ∈ B. As C is a commuter of the
unitary operators U and V , the unitary operators U′ and V ′ commute (see Lemma 4), yielding the following result.
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Proposition 16. There exists a spectral measure EU′⊗EV ′ , and only one, onB⊗B for Im C, such that EU′⊗EV ′ (A×B) =

L∗C inf(EU A,EV B)LC for all A, B ∈ B.

Proof. As U′V ′ = V ′U′, the spectral measures EU′ and EV ′ commute and we can consider EU′ ⊗ EV ′ , which is a
spectral measure on B ⊗ B for Im C such that, for all A, B ∈ B,

EU′ ⊗ EV ′ (A × B) = (EU′A)(EV ′B) = L∗C(EU A)LC L∗C(EV B)LC = inf{L∗C(EU A)LC , L∗C(EV B)LC}.

As C commutes with U and V , it commutes with the projectors EU A and EV B. So we can use Lemma 10, and write

inf{L∗C(EU A)LC , L∗C(EV B)LC} = L∗C inf(EU A,EV B)LC ,

which leads us to conclude that the spectral measure EU′ ⊗ EV ′ is the only one on B ⊗ B for Im C such that, for all
A, B ∈ B, EU′ ⊗ EV ′ (A × B) = L∗C inf(EU A,EV B)LC . �

Remark 6. When U and V commute, we know how to define a spectral measure on B ⊗ B for H. When U and
V do not commute, we know how to define a spectral measure on B ⊗ B, but for Im C, which is a closed vector
subspace of H. Of course, when U and V commute, we recover the definition of the spectral measure EU ⊗ EV such
that EU ⊗ EV (A × B) = inf(EU A,EV B) = (EU A)(EV B) for all A, B ∈ B.

Now we are going to study some relations between the spectral measures EUV , EVU and EU′ ∗ EV ′ = EU′V ′ =

EV ′U′ = S (EU′ ⊗ EV ′ ).

Proposition 17. For any A ∈ B, we have

(i) LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = CEUV A = CEVU A = C inf(EUV A,EVU A) = inf(C,EUV A,EVU A).

(ii) LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C � inf(EUV A,EVU A) � sup(EUV A,EVU A) � C⊥ + LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C .

Proof. EU′∗EV ′ = EU′V ′ is the spectral measure associated with the unitary operator U′V ′. But U′V ′ = L∗CULC L∗CVLC =

L∗CCUVLC = L∗CUVLC = V ′U′ = L∗CVULC . As C commutes with the unitary operators UV and VU, we can con-
clude that L∗CUVLC and L∗CVULC are unitary operators of Im C which are equal, and of associated spectral measure
the application A ∈ B 7→ L∗C(EUV A)LC ∈ P(Im C) or equivalently A ∈ B 7→ L∗C(EVU A)LC ∈ P(Im C).

As U′V ′ = L∗CUVLC = L∗CVULC , we have, for any A ∈ B,

EU′ ∗ EV ′ (A) = L∗C ◦ (EUV A) ◦ LC = L∗C ◦ (EVU A) ◦ LC .

Therefore,
LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = C(EUV A)C = C(EVU A)C = CEUV A = CEVU A.

We recall that C commutes with the unitary operators UV and VU, so with the projectors EUV A and EVU A. As C
commutes with EUV A and EVU A, it commutes with inf(EUV A,EVU A) and C inf(EUV A,EVU A) = inf(CEUV A,CEVU A) =

CEUV A = CEVU A.
Let A be an element of B. Then

L∗C ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = CEUV A = CEVU A = inf(CEUV A,CEVU A) = inf{inf(C,EUV A), inf(C,EVU A)}.

However, the right-hand term is a lower bound of the family {C,EUV A,EVU A}, so

inf{inf(C,EUV A), inf(C,EVU A)} � inf(C,EUV A,EVU A).

Moreover, inf(C,EUV A,EVU A) is a lower bound of the families {C,EUV A} and {C,EVU A}, so inf(C,EUV A,EVU A) �
inf(C,EUV A) and inf(C,EUV A,EVU A) � inf(C,EVU A) and then

inf{C,EUV A,EVU A} � inf{inf{C,EUV A}, inf{C,EVU A}},

which completes the proof of claim (i). Furthermore, we have

LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = CEUV A = CEVU A = inf(C,EUV A,EVU A).
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Let A be an element of B, LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = CEUV A = CEVU A = inf(C,EUV A,EVU A) is then a lower
bound of the family {C,EUV A,EVU A} and then of the family {EUV A,EVU A}. Thus

LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C � inf(EUV A,EVU A) � sup(EUV A,EVU A). (5)

For any A ∈ B, we can also write

LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C � inf{EUV ({A),EVU({A)}

and then, taking the orthogonal, sup(EUV A,EVU A) � I − LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C , i.e.,

sup(EUV A,EVU A) � C⊥ + LC L∗C − LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C .

Therefore,

sup(EUV A,EVU A) � C⊥ + LC ◦ [IIm C − {EU′ ∗ EV ′ ({A)}] ◦ L∗C = C⊥ + LC ◦ (EU′ ∗ EV ′A) ◦ L∗C .

Thus, taking into account (5), we can conclude that

LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C � inf(EUV A,EVU A) � sup(EUV A,EVU A) � C⊥ + LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C

for all A ∈ B. �

From Part (i) of Proposition 17, we deduce the following.

Corollary 4. When A ∈ B, we have EU′ ∗ EV ′ (A) = 0 if and only if inf(C,EUV A,EVU A) = 0.

Proof. If 0 = inf(C,EUV A,EVU A) = LC ◦{EU′ ∗EV ′ (A)}◦L∗C , then 0 = L∗C ◦0◦LC = L∗C ◦LC ◦{EU′ ∗EV ′ (A)}◦L∗C ◦LC =

EU′ ∗ EV ′ (A) because L∗C ◦ LC = IIm C . As for the converse, it is obvious. �

As inf(C,EUV A,EVU A) � inf(EUV A,EVU A), we also have the following result.

Corollary 5. If A ∈ B is such that inf(EUV A,EVU A) = 0, then EU′ ∗ EV ′ (A) = 0.

This is a way to obtain a sufficient condition in order to have EU′ ∗ EV ′ (A) = 0. Let us now examine a sufficient
condition in order to have EU′ ∗ EV ′ (A) = I.

Corollary 6. If A ∈ B is such that sup(EUV A,EVU A) = I, then EU′ ∗ EV ′ (A) = I.

Proof. From I = sup(EUV A,EVU A), taking the orthogonal, we have 0 = inf(EUV{A,EVU{A) and then, from Corol-
lary 5, EU′ ∗ EV ′ ({A) = 0, i.e., EU′ ∗ EV ′ (A) = I. �

Part (ii) of Proposition 17 gives an upper bound and a lower bound of the projectors inf(EUV A,EVU A) and
sup(EUV A,EVU A). These projectors give an idea of the difference between the spectral measures EUV and EVU .
Note that the inequalities of Part (ii) of Proposition 17 are optimal in the sense that the inequalities become equalities
in some particular cases: LC ◦ {EU′ ∗EV ′ (∅)} ◦ L∗C = inf{EUV (∅),EVU(∅)} and sup{EUV (Π),EVU(Π)} = C⊥ + LC ◦ {EU′ ∗

EV ′ (Π)} ◦ L∗C . The following result enables us to better understand the conditions for such equalities.

Proposition 18. For arbitrary A ∈ B, the following assertions are equivalent.

(i) LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C = inf(EUV A,EVU A).

(ii) inf(EUV A,EVU A) � C.

(iii) C⊥ � sup{EUV ({A),EVU({A)}.

(iv) sup{EUV ({A),EVU({A)} = C⊥ + LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C .
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Proof. We will prove successively that (i) implies (ii), (ii) implies (iii), (iii) implies (iv), and (iv) implies (i).
Assume (i) holds. If LC◦{EU′∗EV ′ (A)}◦L∗C = inf(EUV A,EVU A), from Proposition 17, we have C inf(EUV A,EVU A) =

inf(EUV A,EVU A), i.e., inf(EUV A,EVU A) � C, and hence (ii) holds.
We prove the second implication by considering orthogonal elements. If C⊥ � sup{EUV ({A),EVU({A)}, we have

C⊥ = C⊥ sup{EUV ({A),EVU({A)} = sup{EUV ({A),EVU({A)} −C sup{EUV ({A),EVU({A)}.

So
sup{EUV ({A),EVU({A)} = C⊥ + C sup{EUV ({A),EVU({A)}. (6)

But, taking into account Proposition 17,

C sup{EUV ({A),EVU({A)} = C[I − inf{EUV (A),EVU(A)}] = C −C inf{EUV (A),EVU(A)}
= LC L∗C − LC{EU′ ∗ EV ′ (A)}L∗C = LC{IIm C − EU′ ∗ EV ′ (A)}L∗C = LC ◦ {EU′ ∗ EV ′ ({A)}L∗C .

In the light of (6), this gives

sup{EUV ({A),EVU({A)} = C⊥ + LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C ,

which proves the third implication.
Finally, if sup{EUV ({A),EVU({A)} = C⊥ + LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C , taking the orthogonal, we get

inf{EUV (A),EVU(A)} = C − LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C = LC L∗C − LC ◦ {EU′ ∗ EV ′ ({A)} ◦ L∗C
= LC ◦ {IIm C − EU′ ∗ EV ′ ({A)} ◦ L∗C = LC ◦ {EU′ ∗ EV ′ (A)} ◦ L∗C ,

which completes the proof. �

Let us now examine a relation which evokes a convolution formula.

Proposition 19. For any pair (U,V) of unitary operators and for any λ ∈ Π, we have sup{inf{EU({λ} 	 λ′),EV {λ
′}} :

λ′ ∈ Π} � EUV {λ}.

Proof. Let X be an element of Im inf{EU({λ} 	 λ′),EV {λ
′}} = ImEU({λ} 	 λ′)∩ ImEV {λ

′}. From X ∈ ImEU({λ} 	 λ′),
we deduce that

UX = ei(λ	λ′)X. (7)

From X ∈ ImEV {λ
′}, we also deduce that

VX = eiλ′X. (8)

Combining (7) and (8), we can write UVX = eiλX, so X ∈ ImEUV {λ}. We have just proved that Im inf{EU({λ} 	
λ′),EV {λ

′}} ⊂ ImEUV {λ}, i.e., inf{EU({λ} 	 λ′),EV {λ
′}} � EUV {λ}. The projector EUV {λ} being an upper bound of the

family {inf{EU({λ} 	 λ′),EV {λ
′}} : λ′ ∈ Π}, we can write sup{inf{EU({λ} 	 λ′),EV {λ

′}} : λ′ ∈ Π} � EUV {λ}, and the
proposition is proved. �

Remark 7. (a) An upper bound of projectors can be a sum, e.g., if the projectors P1 and P2 commute, then
sup(P1, P2) = P1 + P2. Then the first term of the inequality of the proposition becomes similar to the ex-
pression of a convolution product.

(b) In some particular cases, the formula may become sup{inf{EU({λ} 	 λ′),EV {λ
′}} : λ′ ∈ Π} = 0 � EUV {λ}, and

in other cases, it becomes sup{inf{EU({λ} 	 λ′),EV {λ
′}} : λ′ ∈ Π} = EUV {λ}.

We conclude this section with a final relation between the spectral measures EUV and EVU . The unitary operators
UV and VU are unitary equivalent: U−1(UV)U = VU. We are going to see that this can be transposed to the spectral
measures EUV and EVU .

Proposition 20. (i) For any A ∈ B, αA = U−1(EUV A)U is a projector. (ii) the application α : A ∈ B 7→
U−1(EUV A)U ∈ P(H) is a spectral measure. (iii) For any A ∈ B, EVU A = U−1(EUV A)U.
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Proof. It is easy to check the first two parts. Now denote by W the unitary operator of associated spectral measure α.
For a given X of H, we have WX =

∫
ei·1dZX

α . But ZX
α = U−1 ◦ ZUX

EUV
, because for any A ∈ B,

ZX
α A = (αA)X = U−1(EUV A)UX = U−1 ◦ ZUX

EUV
A.

As a result
WX =

∫
ei·1dU−1 ◦ ZUX

EUV
= U−1

∫
ei·1dZUX

EUV
= U−1UVUX,

because EUV is the spectral measure associated with UV . The relation WX = U−1UVUX, for any X ∈ H, allows us to
write W = U−1 ◦ UV ◦ U. This means that U−1 ◦ UV ◦ U, i.e., VU, has α as associated spectral measure. And then,
for any A ∈ B, EVU A = αA = U−1(EUV A)U. �

5. The finite spectrum case and convergence properties

In this section, we study the structure of the commuters CP,U and CU,V when the spectral measures which are
associated with the unitary operators U and V are concentrated on a finite number of elements of Π. This will allow us
to specify the nature of the projectors CP,U and CU,V . Then, when this assumption no longer holds, we will establish
properties of r-convergence of the form: CP,U = limr

n CP,Un and CU,V = limr
n CUn,Vn , where Un and Vn are unitary

operators, respectively defined from U and V , thanks to a partition of Π for which the associated spectral measures
are concentrated on a finite number of elements of Π.

To this end, we first give some reminders and specific notation for this section. For any n ∈ N, set An,k =

[−π + k2π/2n,−π + (k + 1)2π/2n) for all k ∈ {0, . . . , 2n − 1}. It is clear that {An,k : k = 0, . . . , 2n − 1} is a family of
elements of B which constitutes a partition of Π. The application Ln =

∑2n−1
k=0 (−π + k2π/2n)1An,k from Π into itself is

measurable and such that Ln ◦Ln+1 = Ln. If U is a unitary operator and Un the unitary operator of associated spectral
measure LnEU (EUn = LnEU), then

LnEU =

2n−1∑
k=0

δ−π+k2π/2nEU An,k, Un =

2n−1∑
k=0

ei(−π+k2π/2n)EU An,k, UX = lim
n

2n−1∑
k=0

ei(−π+k2π/2n)(EU An,k)X = lim
n

UnX.

We first examine the expression of CU,V when the spectra of U and V are finite.

Proposition 21. Let {P j : j ∈ J} and {D` : ` ∈ L} be two finite families of projectors such that I =
∑

j∈J P j =
∑
`∈L Dl

and such that P jP j′ = D`D`′ = 0, for any pairs ( j, j′) and (`, `′) of distinct elements of J and L, respectively. If
{λ j : j ∈ J} and {µ` : ` ∈ L} are families of distinct elements of Π, then (i) U =

∑
j∈J eiλ j P j and V =

∑
`∈L eiµ`D` are

unitary operators of H; (ii) CU,V =
∑

j∈J
∑
`∈L inf(P j,D`).

Proof. Let C =
∑

j∈J
∑
`∈L inf(P j,D`). For any pair (( j, `), ( j′, `′)) of distinct elements of J × L, we have inf(P j,D`) ◦

inf(P j′ ,D`′ ) = 0, so C is a projector. It is easy to verify that UC = CU, that VC = CV and that VCU = UCV , so that
C is a commuter of the unitary operators U and V . Therefore,

C � CU,V . (9)

Let X be an element of Im CU,V = ∩(A,B)∈B×BKer{(EU A)(EV B) − (EV B)(EU A)}. For any (A, B) ∈ B × B, we have
(EU A)(EV B)X = (EV B)(EU A)X. Let ( j, `) be an element of J × L. As ({λ j}, {µ`}) is an element of B×B, we can write

P jD`X = (EU{λ j})(EV {µ`})X = (EV {µ`})(EU{λ j})X = D`P jX.

So as P jD`X = D`P jX ∈ Im P j ∩ Im D` = Im inf(P j,D`), we have P jD`X = inf(P j,D`)P jD`X = inf(P j,D`)X. As
this holds for all ( j, `) ∈ J × L, we deduce that

CX =
∑
j∈J

∑
`∈L

inf(P j,D`)X =
∑
j∈J

∑
`∈L

P jD`X =
∑
j∈J

P jX = X.

We have just proved that Im CU,V ⊂ Im C, so that CU,V � C, which, combined with (9), gives CU,V = C =∑
j∈J

∑
`∈L inf(P j,D`). �
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Remark 8. If P is a projector, as eiP = eiP + P⊥, so as EeiP = δ0P⊥ + δ1P, we have

CP,V = CeiP,V =
∑
`∈L

inf(P⊥,D`) +
∑
`∈L

inf(P,D`) =
∑
`∈L

{inf(P,D`) + inf(P⊥,D`)}.

We now state a final preliminary result before the major result of this section.

Lemma 11. Let L be a measurable application from Π into itself, U and V be two unitary operators, and U′ and V ′

the unitary operators of the corresponding spectral measures L(EU) and L(EV ). Then we have CU,V � CU′,V ′ .

Proof. As {CEU′A,EV′B : (A, B) ∈ B × B} = {CEUL
−1A,EVL

−1B : (A, B) ∈ B × B} ⊂ {CEU A,EV B : (A, B) ∈ B × B}, we can
write CU,V = inf{CEU A,EV B : (A, B) ∈ B × B} � inf{CEU′A,EV′B : (A, B) ∈ B × B} = CU′,V ′ . �

Here are some consequences of these results.

Proposition 22. If (U,V) is a pair of unitary operators, then (
∑2n−1

k=0
∑2n−1
`=0 inf(EU An,k,EV An,`), n ∈ N) is a decreasing

sequence of projectors which converges to CU,V .

Proof. For any n ∈ N, denote by Un and Vn the unitary operators of respective associated spectral measures LnEU

and LnEV . Then we have EUn = LnEU and EVn = LnEV . So EUn = LnLn+1EU = LnEUn+1 and EVn = LnEVn+1 . From
Lemma 11, we deduce that CUn+1,Vn+1 � CUn,Vn . So (CUn,Vn , n ∈ N) is a decreasing sequence of projectors. From
Section 2, it is r-convergent, and limr

n CUn,Vn = inf(CUn,Vn , n ∈ N). Let C = limr
n CUn,Vn . Still from Lemma 11, we have

CU,V � CUn,Vn for all n ∈ N. Therefore,
CU,V � C. (10)

The projector C commutes with U because

‖UCX −CUX‖ ≤ ‖UCX − UnCX‖ + ‖UnCX − UnCUn,Vn X‖ + ‖CUn,Vn UnX −CUn,Vn UX‖ + ‖CUn,Vn UX −CUX‖

≤ ‖UCX − UnCX‖ + ‖CX −CUn,Vn X‖ + ‖UnX − UX‖ + ‖CUn,Vn UX −CUX‖,

but
lim
n→∞
‖UCX − UnCX‖ = lim

n→∞
‖CX −CUn,Vn X‖ = lim

n→∞
‖UnX − UX‖ = lim

n→∞
‖CUn,Vn UX −CUX‖ = 0.

Hence ‖UCX−CUX‖ = 0 for every X ∈ H. That is, C and U commute. In the same way, we can prove that VC = CV .
For any X ∈ H, we also can write

‖UCVX − VCUX‖ ≤ ‖UCVX − UnCVX‖ + ‖UnCVX − UnCUn,Vn VX‖ + ‖UnCUn,Vn VX − UnCUn,Vn VnX‖

+ ‖VnCUn,Vn UnX − VnCUn,Vn UX‖ + ‖VnCUn,Vn UX − VnCUX‖ + ‖VnCUX − VCUX‖

� ‖UCVX − UnCVX‖ + ‖CVX −CUn,Vn VX‖ + ‖VX − VnX‖

+ ‖UnX − UX‖ + ‖CUn,Vn UX −CUX‖ + ‖VnCUX − VCUX‖,

but

lim
n→∞
‖UCVX − UnCVX‖ = lim

n→∞
‖CVX −CUn,Vn VX‖ = lim

n→∞
‖VnX − VX‖

= lim
n→∞
‖UnX − UX‖ = lim

n→∞
‖CUn,Vn UX −CUX‖ = lim

n→∞
‖VnCUX − VCUX‖ = 0.

So ‖UCVX − VCUX‖ = 0, i.e., UCVX = VCUX for any X ∈ H. Hence UCV = VCU, and we can say that C is a
commuter of U and V . Then C � CU,V , which, combined with (10), implies that CU,V = C = inf{CUn,Vn : n ∈ N}. As

Un =

2n−1∑
k=0

ei(−π+k2π/2n)EU An,k, Vn =

2n−1∑
`=0

ei(−π+`2π/2n)EV An,`,

it follows from Proposition 21 that

CUn,Vn =

2n−1∑
k=0

2n−1∑
`=0

inf(EU An,k,EV An,`).

So we can conclude that {
∑2n−1

k=0
∑2n−1
`=0 inf(EU An,k,EV An,`), n ∈ N} is a sequence of projectors which decreasingly

converges to CU,V . �
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Remark 9. When P is a projector, as eiP is a unitary operator such that CP,V = CeiP,V , Proposition 22 implies that
[
∑2n−1
`=0 {inf(P,EV An,`) + inf(P⊥,EV An,`)}, n ∈ N] is a sequence of projectors which r-converges to CP,V because, for

every integer n ≥ 3,

2n−1∑
`=0

{inf(P,EV An,`) + inf(P⊥,EV An,`)} =

2n−1∑
k=0

2n−1∑
`=0

inf(EeiP An,k,EV An,`).

6. Application to the characterization of a class of families of stationary correlated series

Let (Xn, n ∈ Z) be a stationary series. We propose to characterize all the stationary series (X′n, n ∈ Z), stationarily
correlated with (Xn, n ∈ Z), and such that (X′n, n ∈ Z) ⊂ Im P, where P is a projector. Of course, if H = L2(Ω,A,Q),
Im P can be of L2(Ω,A′,Q) type, where A′ is a sub-σ-field of A. A series solution is a series of A′-measurable
random variables. In order to solve this problem, we need some preliminary results.

Lemma 12. If V is a unitary operator of Im K, K being a projector of H, then U = K⊥+ LKVL∗K is a unitary operator
of H such that Un = K⊥ + LKVnL∗K for all n ∈ Z.

Proof. It is easily seen that U = K⊥ + LKVL∗K is a unitary operator. It can then be shown by induction that, for all
n ∈ N, Un = K⊥ + LKVnL∗K . This property extends to Z. Indeed, when n < 0, we have U |n| = K⊥ + LKV |n|L∗K , and
considering the adjoint, U−|n| = K⊥ + LKV−|n|L∗K , i.e., Un = K⊥ + LKVnL∗K . �

Lemma 13. If (X1
n , n ∈ N) and (X2

n , n ∈ N) are two stationary series that are stationarily correlated, then there exists
a unitary operator U of H such that, for all n ∈ Z, UnX1

0 = X1
n and UnX2

0 = X2
n .

Proof. For any pair ((i, n), (i′, n′)) of elements of {1, 2} × Z, we have < Xi
n, X

i′
n′ > = < Xi

n+1, X
i′
n′+1 >, so from [1], there

exists an isometry V from vect{Xi
n : (i, n) ∈ {1, 2} × Z} onto vect{Xi

n+1 : (i, n) ∈ {1, 2} × Z} such that VXi
n = Xi

n+1,
for any (i, n) ∈ {1, 2} × Z. Noting that vect{Xi

n : (i, n) ∈ {1, 2} × Z} = vect{Xi
n+1 : (i, n) ∈ {1, 2} × Z}, we can then

conclude that there exists a unitary operator V of H′ = vect{Xi
n : (i, n) ∈ {1, 2} × Z} such that VXi

n = Xi
n+1, for all

(i, n) ∈ {1, 2} × Z. Then, considering an element (i, n) of {1, 2} × Z, it is easy to check by induction that for all n ∈ N,
VnXi

m = Xi
n+m. More precisely, VnXi

m = Xi
n+m for all (i, n,m) ∈ {1, 2} × Z × N.

Let n ∈ Z. If n is positive and m = 0, what precedes implies VnXi
0 = Xi

n. If n is negative, as (i,−|n|, |n|) ∈
{1, 2} × Z × N, we have V |n|Xi

−|n| = Xi
|n|−|n|, i.e., V−nXi

n = Xi
0. So Xi

n = VnXi
0. We have just proved that VnXi

0 = Xi
n for

all (i, n) ∈ {1, 2} × Z.
From the previous lemma, if we denote by K the projector on H′, we can assert that U = K⊥ + LKVL∗K is a unitary

operator of H such that Un = K⊥ + LKVnL∗K , for any n ∈ Z. For any (i, n) ∈ {1, 2} × Z, we can then write

UnXi
0 = K⊥Xi

0 + LKVnL∗K Xi
0 = 0 + LKVnXi

0 = LK Xi
n = Xi

n,

which completes the proof. �

We now examine the notion of unitary operator compatible with a stationary series.

Definition 3. We say that a unitary operator U of H is compatible with a stationary series (Xn, n ∈ Z) if UnX0 = Xn

for all n ∈ Z.

Of course, the stationary series (Xn, n ∈ Z) is stationarily correlated with itself, and Lemma 13 allows us to express
the following.

Proposition 23. If (Xn, n ∈ Z) is a stationary series, then there exists at least one unitary operator of H which is
compatible with it.

We now have the tools we need in order to solve the problem stated at the beginning of this section.

Definition 4. Let (Xn, n ∈ Z) be a stationary series and P be a projector of H. A series solution is any stationary
series (X′n, n ∈ Z), stationarily correlated with (Xn, n ∈ Z), and such that (X′n, n ∈ Z) ⊂ Im P.
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Then we have the following property.

Proposition 24. Let (Xn, n ∈ Z) be a stationary series and P be a projector of H. If U is a unitary operator compatible
with (Xn, n ∈ Z), for any X ∈ H, then the series (Un inf(P,CP,U)X, n ∈ Z) is a solution. Conversely, any solution is of
this type.

Proof. Let U be a unitary operator, compatible with the stationary series (Xn, n ∈ Z). The series {Un inf(P,CP,U)X, n ∈
Z} is stationary, stationarily correlated with {UnX0, n ∈ Z}, i.e., with (Xn, n ∈ Z) because (UnX0, n ∈ Z) = (Xn, n ∈ Z).
Moreover, for any n ∈ Z, we have

Un inf(P,CP,U)X = UnCP,U P inf(P,CP,U)X. (11)

As CP,U is a commuter of P and U, it is a commuter of P and Un (CP,U = CeiP,U is a commuter of the unitary
operators eiP and U, so of the unitary operators eiP and Un, and then of P and Un), so (11) can be completed by

Un inf(P,CP,U)X = PCP,UUn inf(P,CP,U)X.

We have then {Un inf(P,CP,U)X, n ∈ Z} ⊂ Im P, which allows us to conclude that {Un inf(P,CP,U)X, n ∈ Z} is a series
solution.

Conversely, let (X′n, n ∈ Z) be a series solution. As the stationary series (Xn, n ∈ Z) and (X′n, n ∈ Z) are stationarily
correlated, from Lemma 13, there exists a unitary operator U such that (UnX0, n ∈ Z) = (Xn, n ∈ Z) and such that
(UnX′0, n ∈ Z) = (X′n, n ∈ Z). The equality (UnX0, n ∈ Z) = (Xn, n ∈ Z) means that U is compatible with (Xn, n ∈ Z);
see Definition 3. As (X′n, n ∈ Z) ⊂ Im P, for any n ∈ Z, we can write PUnX′0 = PX′n = X′n = UnX′0 = UnPX′0 so X′0
belongs to Ker (PUn − UnP). This being exact for any n ∈ Z, X′0 belongs to ∩n∈ZKer (PUn − UnP) = Im CP,U , and so
X′0 = CP,U X′0. Moreover, inf(P,CP,U)X′0 = PCP,U X′0 = PX′0 = X′0. We deduce that X′n = UnX′0 = Un inf(P,CP,U)X′0. It
is then clear that the series (X′n, n ∈ Z) can be written as (Un inf(P,CP,U)X′0, n ∈ Z), which concludes the proof. �

7. Graphical illustrations

As an illustration, we consider two series (Xn, n ∈ Z) and (Yn, n ∈ Z), where Xn = UnX0 and Yn = VnX0, U and V
being two unitary operators expressed as follows

U = eiλP + eiλ′P1 + eiλ′′P2, V = eiλP + eiλ′D1 + eiλ′′D2,

where P, P1, P2, D1 and D2 are projectors of H = Ck such that P1D1 , 0, P + P1 + P2 = P + D1 + D2 = I,
PP1 = PP2 = P1P2 = PD1 = PD2 = D1D2 = 0, and λ, λ′ and λ′′ are values of Π. Then, for any n,m ∈ Z, Un =

eiλnP+eiλ′nP1 +eiλ′′nP2, Vm = eiλmP+eiλ′mD1 +eiλ′′mD2 and UnVm−VmUn = (eiλ′n−eiλ′′n)(eiλ′m−eiλ′′m)(P1D1−D1P1).
From the latter equality, we deduce that CU,V = CP1,D1 .

For illustration purposes, we took H = C5, λ =
√

2/2, λ′ =
√

3 and λ′′ = −
√

5/5. The fact that λ, λ′ and λ′′ are
not elements of 2πQ guaranties the non-periodicity of the series (Xn, n ∈ Z) and (Yn, n ∈ Z). We choose P1 = a ⊗ a
and D1 = b ⊗ b, where a and b are two linearly independent and non orthogonal normed elements of H. In this case,
Im CU,V = {vect(a, b)}⊥.

Let X0 = ε0X0
0 + ε1X1

0 be an element of H such that X0
0 ∈ Im CU,V and X1

0 ∈ Im C⊥U,V . If ε1 = 0, then X0 ∈ Im CU,V ,
and ((UnVn)X0, n ∈ Z) = ((VnUn)X0, n ∈ Z). If ε1 is small (resp. large), we say that X0 is close to (resp. far from)
Im CU,V . We generate many curves for each case by adding a random normal value to each time value and each curve.

Figure 1 shows that when X0 is of high coefficient in Im CU,V , the two sets of curves {(UnVn)X0 : n ∈ Z} and
{(VnUn)X0 : n ∈ Z} have very close shapes. When X0 is close to Im C⊥U,V , then the two sets of curves have different
shapes. With the same notation, for any X ∈ H, we have

‖UnVmX − VmUnX‖ = |eiλn − eiλ′n| × |eiλm − eiλ′m| × ‖ < b, a >< X, b > a− < a, b >< X, a > b‖.

The proximity between the series ((UnVn)X0, n ∈ Z) and ((VnUn)X0, n ∈ Z) can also be illustrated by the norms
of the differences ‖UnVmX0 − VmUnX0‖, when n and m vary. In Figure 2, we see that, even though this norm varies, it
becomes smaller when X0 gets closer to Im CU,V .
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Figure 1: First dimension curves {(UnVn)X0, n ∈ Z} (Group 1) and {(VnUn)X0, n ∈ Z} (Group 2) when X0 is close to Im CU,V (left: ε0 = 1,
ε1 = 0.05) and when X0 is far from Im CU,V (right: ε0 = 0.05, ε1 = 1).

Finally, we illustrate Proposition 24 by a simulation of (Xn, n ∈ Z) and a solution (Yn, n ∈ Z) of the form
(Un inf(P,CP,U)X, n ∈ Z), which is a unique way to write a stationary and stationarily correlated series with (Xn, n ∈ Z).
Let (v1, . . . , v5) be an orthonormal basis of C5. Then let us consider Q1 = v1 ⊗ v1, Q2 = v2 ⊗ v2 + v3 ⊗ v3 and
Q3 = v4 ⊗ v4 + v5 ⊗ v5. We denote by U the unitary operator U = eiλQ1 + eiλ′Q2 + eiλ′′Q3, which is the shift operator
of the series (Xn, n ∈ Z) with Xn = UnX0, X0 being any element of C5.

Let us choose a projector P = v2⊗v2+v4⊗v4. As inf(P,Q1) = 0, inf(P,Q2) = v2⊗v2 and inf(P,Q3) = v4⊗v4, for this
projector, the series solution of the form (Un inf(P,CP,U)X, n ∈ Z) is (Yn, n ∈ Z) = (eiλ′nv2⊗v2X0+eiλ′′nv4⊗v4X0, n ∈ Z).
In Figure 3, the series (Yn, n ∈ Z) appears to have a similar shape as that of the series (Xn, n ∈ Z), with less amplitude
variations.

Figure 2: Norms ‖UnVmX0 − VmUnX0‖ when X0 is close to Im CU,V (left: ε0 = 1, ε1 = 0.05) and when X0 is far from Im CU,V (right: ε0 = 0.05,
ε1 = 1), for n and m varying from 1 to 20.
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Figure 3: Two stationarily correlated series.

8. Conclusion

In closing, we wish to emphasize the similarity between the three types of commuter. The maximal commuters
have analogous properties. In particular, Im CP,D = Ker (PD − DP), Im CP,U = ∩n∈ZKer (PUn − UnP), and Im CV,U =

∩n,m∈ZKer (VmUn − UnVm). Note also that CP,U can be written by means of the maximal commuters of projectors,
viz. CP,U = inf{CP,EU A : A ∈ BΠ}, that CV,U can be written by means of a family of maximal commuters CP,U and of
a family of commuters of two projectors, i.e., CV,U = inf{CEV A,U : A ∈ BΠ} = inf{CEV A,EU B : (A, B) ∈ BΠ × BΠ}. In
the future, one could consider, for two functional processes, the estimation of common and specific features for their
associated shift operators, more precisely, the maximal commuter of the two shift operators.
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