

Needle localization for needle steering under 3D ultrasound feedback

Guillaume Lapouge, Jocelyne Troccaz, Philippe Poignet

▶ To cite this version:

Guillaume Lapouge, Jocelyne Troccaz, Philippe Poignet. Needle localization for needle steering under 3D ultrasound feedback. CSR: Continuum and Soft Robots, Oct 2018, Madrid, Spain. , Continuum and Soft Robots (CSR) for Medical Interventions: Modelling, Fabrication, and Control - IROS Workshop, 2018. hal-01896975

HAL Id: hal-01896975 https://hal.science/hal-01896975

Submitted on 18 Oct 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Needle localization for needle steering under 3D ultrasound feedback

Guillaume Lapouge^{(1) (2)} | Jocelyne Troccaz⁽¹⁾ | Philippe Poignet⁽²⁾

(1) Université Grenoble Alpes, CNRS, TIMC-IMAG, Grenoble, France. (2) Université Montpellier, CNRS, LIRMM, Montpellier, France.

Contact: guillaume.lapougeg@univ-grenoble-alpes.fr

Introduction

Motivation and objectives

- In needle steering, estimating the needle pose is a critical problem
- In 3D ultrasound volumes, fine needle localization is difficult and requires a combination of estimation and image processing to be successful. Indeed, 3D ultrasound imaging suffers from noise, artifacts and works at a low frequency We propose a needle tip pose estimation method in the context of 3D robotic
 - needle steering under 3D ultrasound feedback, based on multi-rate, multi-

Methods

- sensor fusion [1]
- This estimation feeds a segmentation algorithm for robust needle detection

3D kinematic bicycle model

- The needle tip path is modeled by a bicycle kinematic model [3]
- β_{cut} is the cutting angle of the needle, as deduced from data fitting

Multi-rate unscented Kalman filter

The needle tip pose and curvature are estimated by a multi-rate unscented Kalman filter

All available measurements are taken into account asynchronously

filter updates The the estimation error covariance online to account for poor 3D US quality and expected changes of tissue stiffness

Tools

Robotic device

- PROSPER robot for brachytherapy procedure [2]
- 6 degrees of freedom, needle insertion and rotation module

Ultrasound (US) imaging

3D US imaging in B-mode

- 3D B-mode US volume @ 1Hz
- 3D end-fire probe 4DEC-9/10 with Ultrasonix Sonix RP US system

Echogenic Needle Coating

Needle-related artefacts appear such as comet tail artefacts, reverberation etc.

Results

Pre-operative shear wave imaging (SWE)

- SWE estimates tissues Young's modulus from their response to a shear wave US stimulation
- The needle curvature is proportional to the tissue stiffness

- 51 insertions of 8 cm at 1.5 mm.s⁻¹
- Validation on phantoms and ex vivo tissue sample

Medium	Needle	$E_{mean}(mm)$	$E_{std}(mm)$	$E_{max}(mm)$
Agar	S-BT	0.5	0.3	1.9
Agar	N-BT	0.6	0.3	2.6
Paraffin	$\operatorname{S-PC}$	0.6	0.4	6.0
Pork	N-BT	0.7	0.3	1.7

Needle tip localization error N-BT : Nitinol bevel-tip S-PC : Steel pre-curved

0 50 100 150 200 250 300 Bi-layered Agar phantom and associated SWE Young's Modulus (kPa) The red part is stiffer than the blue one Needle curvature dependency to tissue stiffness	Depth of observation (mm) Needle tip path estimation (green) in the last acquired 3D US Volume Needle tip final position prediction Iast acquired 3D US Volume	
Conclusion	References	
 The tip pose estimation is accurate, robust to needle disappearance and 3D ultrasound imaging artefacts An adapted segmentation method, inherited from [4], uses the resulting ROI for needle tip segmentation in the 3D US volumes The good estimation of the tip behavior and its uncertainties could benefit to adapted control laws and path planning methods 	 G. Lapouge, J. Troccaz and P. Poignet, Multi-rate unscented Kalman filtering for pose and curvature estimation in 3D ultrasound-guided needle steering, Control Engineering Practice, vol. 80, pp. 116-124, 2018 N. Hungr, M. Baumann, JA. Long, and J. Troccaz, A 3-D ultrasound robotic prostate brachytherapy system with prostate motion tracking, IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1382-1397, 2012 R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, Nonholonomic Modeling of Needle Steering, The International Journal of Robotics Research, vol. 25, no. 5-6, pp. 509-525, 2006 H. Younes, S. Voros, and J. Troccaz, Automatic needle localization in 3D ultrasound images for brachytherapy, International Symposium on Biomedical Imaging (ISBI), IEEE, pp.1203-1207, 2018 	
TINC UNIVERSITÉ Grenoble Alpes	Grenoble INP Grenoble INP COMPUTER ASSISTED MEDICAL INTERVENTIONS	