
Needle localization for needle steering under 3D ultrasound feedback*

Guillaume Lapouge1,2, Jocelyne Troccaz1, Philippe Poignet2

Abstract— In needle steering, estimating the needle pose is
a critical problem. In 3D ultrasound volumes, fine needle
localization is difficult and requires a combination of estimation
and image processing to be successful. Indeed, 3D ultrasound
imaging suffers from noise, artifacts and works at a low
frequency. We propose a needle tip pose estimation method in
the context of 3D robotic needle steering under 3D ultrasound
feedback, based on multi-rate, multi-sensor fusion [1].

I. INTRODUCTION

In surgery, the success of percutaneous operations seems
closely related to the precision of the procedure. To increase
the procedure efficacy, robotic needle steering has been
extensively researched. Needle steering requires feedback
for closed loop control of a flexible needle. This feedback
consists, most of the time, in ultrasound (US) imaging for
its ease of use despite the quality of the acquired images.

3D robotic needle steering has been validated with camera-
based feedback in [2]. In the context of clinically-compatible
US feedback, most solutions (i.e. [4], [5] and [6]) involve
the translation of a 2D probe used in B-mode imaging to
follow the needle tip during the insertion. This feedback is
referred to as 2.5D US imaging. It aims at solving the poor
needle detection in the ultrasound images by putting a 2D,
25 Hz US probe in position of needle maximal visibility
(i.e. orthogonal to the needle shaft). Such a feedback makes
the needle localization easier but may prove difficult to
transpose to a clinical use. Indeed, the translation of the
probe requires an external device and might cause unwanted
tissue deformation.

3D US probes seem more adapted to a clinical use than
their 2D counterparts. However, their low framerate (around
1 Hz) and low image quality represent a challenge for precise
needle localization.

A. 3D US probe used in Doppler mode

3D US imaging set in Doppler mode has been used in [7].
In this study, the needle is vibrated with an external device.
The vibrations are then detected by the probe and the needle
is defined as the curve that best fits the doppler patches in
the volume. The clinical application of such a method seems
however difficult for security and practical reasons.

A method without need for vibrations has been devel-
oped in [8]. In this study, the needle is rotated during
the acquisition, this rotation is then detected in Doppler
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mode. However, the precision of this method is low despite
additional constraints put on the needle insertion.

Doppler mode for needle steering seems adequate when
the needle is not visible in B-mode images. However, it
requires additional constraints which may prove difficult to
transpose to a clinical application.

B. 3D US probe used in B-mode

Needle steering under 3D US B-mode imaging has very
rarely be developed. The reason lies in the difficulty to detect
fine needles in volumes that are noisy, acquired at 1 Hz and
suffer from many artifacts. Besides, analysing the entire 3D
US volume would be computationally too costly.

In [9] the needle is kept in a position of best visibility by
guiding the ultrasound probe with a robot. The needle posi-
tion is estimated by a Kalman filter which will also provide
a region of interest (ROI) for the next segmentation. Inside
this ROI, and after an intensity-based voxel binarisation, a
RANSAC algorithm fits a Bezier curve to the resulting 3D
data. This method was augmented with particle filtering in
[10]. However, the needle is manually inserted in this study
and no information about insertion speed and rotation is
taken into account. In [11], we described a Kalman filter
based on a mechanical model and fed by the robot inputs.
This filter provides a ROI for the needle localization. The
needle is then detected similarly to the method mentioned
before. A laser microetching of the needle roughens its sur-
face for more echogenicity. However, the needle maximum
curvature is considered constant throughout the insertion
which may not be the case in clinical applications.

II. CONTRIBUTION

A. Methods

To increase the quality of the needle tip pose estimation,
we propose to take into account asynchronous multi-sensor
measurements. To do so, a multi-rate unscented Kalman
filtering (as presented in [12]) is proposed. This filter will
take into account measurements coming from 3D B-mode
US imaging, from the robot sensors and from shear wave
elasticity imaging (SWE) (cf. Figure 1).

The needle tip-tissue interaction is modelled by the bicycle
model first introduced in [13] and under the form
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where x, y and z are the Cartesian coordinates of the
needle tip in the 3D US volume frame [mm]; α, β and γ
are the yaw, pitch and roll of the needle tip [rad]; κ is the
curvature of the needle tip trajectory [mm−1]. The inputs u1
and u2 correspond to the insertion speed [mm.s−1] and the
rotation speed [rad.s−1] of the needle tip respectively. βcut
is the cutting angle detailed in [15].

SWE provides a measurement of tissues stiffness under
small deformations. The stiffer the medium is, the smaller
the radius of curvature of the needle path is [4]. Therefore,
SWE measurements can be considered as curvature measure-
ments. Each needle was inserted into phantoms of different
stiffnesses to establish relationship between needle curvature
and tissue elasticity. A power curve is then fitted to the data
resulting in the following equation: κ = aEb, with κ the
needle curvature, E the tissue Young’s modulus and a, b ∈
R2.

Because κ cos γtanβ is most of the time small, γ̇ ≈ u2
and the needle base rotation measured by the robot can
be considered as a measurement of the tip roll angle γ.
Needle tip segmentation in 3D B-mode US volumes provides
a measurement of the Cartesian coordinates of the tip in the
US volume frame.

Fig. 1. Proposed structure of the multi-rate unscented Kalman filter. Data
flows are represented by arrows. Refresh rates are indicated in red when
specifiable.

The measurement equation is, when all measurements are
available, written as h(x) =

[
x y z γ κ

]
. Its size

varies with the number of measurements available. The filter
runs at 100 Hz to take into account the robot measurements.

To take into account the poor imaging quality of the 3D
US probe, we propose to reset the covariance matrix of the
measurement noise R . Thus, the further the needle is from
the US transducer, the poorer its visibility is and the higher
the corresponding term is reset in R.

When crossing the interface between two tissues of differ-
ent elasticities, we expect the curvature of the needle path to
change. The term corresponding to κ in the error covariance
matrix P is therefore reset. This reflects a decreased trust in
the current estimation.

B. Results

The system is composed of a robot holding the needle
to insert it into a phantom (cf. Figure 2). The robot used
for 24 Gauge Nitinol needle insertions has been developed
for prostate brachytherapy [14]. The ultrasound volumes are
acquired every second with a 3D end-fire probe 4DEC-9/10

used with the Ultrasonix Sonix RP ultrasound system. The
US volume voxels are 0.4 mm3 cubes. Pre-operative SWE
measurements are taken into account.

Fig. 2. Experimental setup composed of the Prosper Robot (1), 3D US
imaging system (2), Beveled-tip needle (3) and Pork tissue incorporated in
Agar (4) [1].

An example of needle tip path estimation is shown in
Figure 3. The mean needle tip localization error was 0.6±0.3

Fig. 3. 3D US volume of a needle inserted in an Agar phantom. The
volume is represented by three planar sections. Estimated needle tip path
represented by the green curve [1].

mm for 51 insertions made in both phantoms and biological
tissues. This error is calculated as the distance with a manual
segmentation. The observer also predicts the final tip pose
with an error smaller than 2 mm after observing the first 2 cm
of 8 cm long insertions. The asynchronous functioning of the
filter along with its prediction precision provide a ROI that
is robust to both elasticity change and needle disappearance.
This greatly helps the needle tip tracking in noisy 3D US
volumes especially when steering in heterogeneous tissues.

III. CONCLUSION

The multi-rate, multi-sensor compatible observer pre-
sented here benefits from all available measurements to
provide a fine estimate of the needle tip pose and its path
curvature. An adapted segmentation method, inherited from



[16], uses the resulting ROI for fine analysis of the 3D
US volumes and for needle tip segmentation. The proposed
filtering can also improve targeting. The good estimation of
the tip behavior and its uncertainties could benefit adapted
control laws and path planning methods.
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