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Abstract

Species generally undergo a complex demographic history, consisting, in particular, of multiple
changes in population size. Genome-wide sequencing data are potentially highly informative for
reconstructing this demographic history. A crucial point is to extract the relevant information from
these very large datasets. Here we designed an approach for inferring past demographic events
from a moderate number of fully sequenced genomes. Our new approach uses Approximate
Bayesian Computation (ABC), a simulation-based statistical framework that allows (i) identifying
the best demographic scenario among several competing scenarios, and (ii) estimating the
best-fitting parameters under the chosen scenario. ABC relies on the computation of summary
statistics. Using a cross-validation approach, we showed that statistics such as the lengths of
haplotypes shared between individuals, or the decay of linkage disequilibrium with distance, can be
combined with classical statistics (eg heterozygosity, Tajima’s D) to accurately infer complex
demographic scenarios including bottlenecks and expansion periods. We also demonstrated the
importance of simultaneously estimating the genotyping error rate. Applying our method on
genome-wide human-sequence databases, we finally showed that a model consisting in a
bottleneck followed by a Paleolithic and a Neolithic expansion was the most relevant for Eurasian

populations.

Introduction

The inference of demographic history from genetic polymorphism data is a long-standing subject in
population genetics (Veeramah and Hammer 2014; Schraiber and Akey 2015). Since
high-throughput sequencing data are becoming increasingly available, it becomes imperative to
develop novel methods aiming at handling these large amounts of data of varying quality.

There are currently several kinds of methods available. The most common ones are based either
on the repartition of polymorphic sites along the genome or on the analysis of the site frequency
spectrum (SFS). The first class includes (i) Hidden Markov model (HMM) methods based on the
sequential Markov coalescent (SMC and SMC') (McVean and Cardin 2005; Marjoram and Wall
2006) such as PSMC (Li and Durbin 2011), MSMC (Schiffels and Durbin 2014), diCal (Sheehan et
al. 2013), and SMC++ (Terhorst et al. 2017), and (ii) methods using the lengths of regions that are
identical-by-state (IBS) or identical-by-descent (IBD) within pairs of haplotypes (Browning and
Browning 2015; Palamara et al. 2012; Harris and Nielsen 2013; MaclLeod et al. 2013). These
methods capture the recombination process and at least partial knowledge on the hidden
genealogies, and therefore allow extracting substantial information even from a very low number of

individuals (as low as 1 for PSMC). A strong limitation of HMM-based methods is that increasing
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this number highly increases the complexity of analytical results and the amount of computational
power required, making them unusable for larger samples (usually above five individuals). This
impedes the inference of recent demographic events (Schiffels and Durbin 2014; Boitard et al.
2016). Note, however, that the more recent SMC++ scales to a large number of individuals, and
thus more recent time scales, by combining information from TMRCAs of all haplotype pairs and
the SFS (Terhorst et al. 2017). The IBD-based methods on the other hand retrieve efficiently recent
events but cannot infer ancient history (Browning and Browning 2015).

The second class of methods is based on the analytical analysis of the site frequency spectrum
and assumes independent segregating sites (e.g. Gutenkunst et al. 2009; Bhaskar et al. 2015; Liu
and Fu 2015). These methods, which do not take the recombination process into account, are
easily scalable to very large sample size datasets, such as large SNP chips or genome-wide
sequences. Because these SNP-based approaches are blind to linkage information, and because
it might be hard in practice to distinguish two SFS computed from limited amount of data, they are
poorly informative about recent history unless the sample size is quite large (in the order of
hundreds, see Bhaskar and Song (2014) for results on identifiability).

Moreover, apart from dadi (Gutenkunst et al. 2009), all the methods previously mentioned (SMC,
IBD or SFS based, ...) do not propose a formal testing between competing demographic models.
For this purpose, Approximate Bayesian Computation (ABC) offers a proper framework aiming at
investigating several models and selecting the best-fitting one, along with inferring its parameters.
ABC is a likelihood-free approach that consists in simulating a large number of pseudo-datasets
under several demographic scenarios; the best scenario is then chosen by analyzing which
pseudo-datasets are the closest to the observed data (Csilléry et al. 2010; Sunnaker et al. 2013)
The parameters of this scenario (e.g. effective population sizes, migration rates, growth rates, split
times, ...) are then estimated similarly. ABC has been shown to be a valuable method to infer
population history, and has been applied widely to many kind of genetic polymorphism data,
including microsatellite data, single nucleotide polymorphism (SNP) data, genotype-by-sequencing
data, and short autosomal sequences (e.g. Excoffier et al. 2005; Fontaine et al. 2012; Sjédin et al.
2012; Shafer et al. 2014; Palstra et al. 2015).

A few ABC methods or other kinds of simulation-based approaches have been proposed to tackle
whole-genome data and investigate complex demographic scenarios. Excoffier et al. (2013)
developed a composite-likelihood approach based on simulations, which relies exclusively on the
joint site frequency spectrum. Although this method differs from the purely analytical SFS-based
methods (Bhaskar et al. 2015; Liu and Fu 2015), it again requires a large sample size to
counterbalance the loss of linkage information. Wollstein et al. (2010) developed an ABC approach
that uses jointly the SFS and short haplotype diversity computed from DNA chips data. Li and
Jakobson (2012) developed another ABC approach based on haplotype information,

short-distance linkage disequilibrium and a few traditional population genetics statistics, all
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computed on 100Kb genomic regions. However, extremely few simulation-based methods are
specifically designed for whole-genome sequence data and the practicability of ABC for long
recombining sequences (22Mb) was investigated only in few studies (Theunert et al. 2012; Boitard
et al. 2016). This scarcity is likely due to the computational burden of simulating long regions of the
genome and computing complex summary statistics for each pseudo-dataset. Theunert et al.
(2012) developed two new statistics: allele frequency-identity by descent (AF-IBD) and allele
frequency-identity by state (AF-IBS), which was computed for simulated long-recombining regions
and genome-wide SNP data. Boitard et al. (2016) also simulated long-recombining regions and
computed both SFS and linkage disequilibrium statistics. These two studies demonstrated that the
approach is feasible and that useful information can be extracted from dense data of intermediate
sample size. Yet, Theunert et al. (2012) did not apply their method to whole-genome sequencing
but to SNP arrays, while Boitard et al. (2016) did not investigate model testing. Moreover, as these
studies focused on specific categories of summary statistics, they did not specifically explore which
combinations of summary statistics would lead to the best demographic inference, among all the
classical statistics proposed in the literature.

Improving existing inference methods is especially relevant for understanding human evolution
history. Even if some demographic processes have been reconstructed repeatedly, such as a
strong bottleneck in population size for non-African populations resulting from the out-of-Africa
migration (Veeramah and Hammer 2014), many other parts of history are still obscure or
controversial. For instance, several studies have shown that food-producing human populations
increased in size since the Paleolithic, while this was not the case for hunter-gatherer populations
(Excoffier and Schneider 1999; Patin et al. 2009; Aime et al. 2013). However, the inferred effective
sizes and timings of expansions vary widely across studies and seem sensitive to the inference
method and sample size used. While some studies inferred an expansion starting in the upper
Paleolithic (Cox et al. 2009; Patin et al. 2009; Batini et al. 2011), other studies using rapidly
mutating microsatellite markers (Aimé et al. 2014) or specific mitochondrial haplogroups (Soares et
al. 2012) point toward a more recent Neolithic expansion which is consistent with the hypothesis of
two subsequent expansions (Tennessen et al. 2012). A recent simulation study (Aimé and
Austerlitz 2017) has shown, indeed, that in case of a Paleolithic expansion followed by a Neolithic
expansion, slowly mutating markers such as nuclear DNA sequences will detect only the ancient
expansion, while rapidly mutating microsatellite markers will only detect the recent one. These
studies provide thus an indirect evidence of this two-expansion process, however the question
remains whether we can infer this process directly from whole-genome data.

Here, we developed a model-based ABC approach for next-generation sequencing data, and
investigated the practicability of using a very large number of summary statistics to maximize the
information that can be extracted from a small or intermediate number of sequences. We also

investigated the power of the method to infer recent history and especially to detect different
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phases of growth. We proposed a simple solution to account for sequence data specificities,
investigating in particular the best way for handling the genotyping error rate. We then applied our
method to several human populations of African, European and Asian ancestries, based on two
published datasets (Complete Genomics and 1000Genomes). These allowed us to investigate
whether these populations were submitted to a bottleneck during the out-of-Africa period and

whether they underwent one or two expansion phases during the Paleolithic and the Neolithic.

New approaches

Our ABC approach leverages whole-genome sequence data to first select the best demographic
model among several proposals, and then co-estimate demographic parameters and a genotyping
error rate. It is based on realistic simulations of long recombining chromosomal segments

encompassing genotyping errors, and on a set of statistics that aims at summarizing most
aspects of NGS data, by capturing dependencies between SNPs at different scales along
the chromosome. These summary statistics were divided into five categories (see table 1
and Methods for details): (i) Classical statistics: Tajima's D, 50kb-haplotype
heterozygosity, etc.; (ii) the site-frequency-spectrum and total number of SNPs (SFS); (iii)
the decay of linkage disequilibrium (LD); (iv) the length of identical-by-state segments
across two or more chromosomes (IBS); and (v) the extended length of IBS around a SNP
conditioned on its derived allele frequency (allele-frequency identity-by-state, AFIBS;
Theunert et al. 2012). These choices were based on a great number of previous studies
highlighting that each of these summary statistics contains information about past
demographic history (Gutenkunst et al. 2009; Theunert et al. 2012; for a review see
Gattepaille et al. 2013; Harris and Nielsen 2013; Patin et al. 2014) We evaluated the
performance of each category of statistics alone or combined with other categories, by
considering first each category alone in the ABC procedure, then all pairwise

combinations, and then all five categories simultaneously.

Results

Benchmarking ABC routines

We first benchmarked different ABC routines previously developed for parameter estimation and
model selection (Blum et al. 2013; see Materials and Methods; Blum and Francgois 2010; Beaumont

et al. 2002; Beaumont 2008). We considered a sample size of 9 individuals per population,
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because this is the number of sequences we could obtain from high quality public datasets for a
reasonably large number of human populations. In a preliminary analysis, we considered two
demographic models that encompass either one or two exponential expansions in the last 5,000
generations (fig. 1 top, supplementary table S1), comparing the performances of three methods
that estimate the posterior model probabilities for model selection (rejection, multinomial logistic,
neural network) and four methods that estimate the posterior distribution of parameters for the
selected model (rejection, linear regression, ridge regression, neural network). The
misclassification rates for model selection (i.e. the probability of selecting the wrong model among
the two proposed) and prediction errors for parameter inference (i.e. a measure of estimation
accuracy) were computed through cross-validation with 1000 pseudo-observed datasets.

The misclassification rate when combining all categories of statistics, was 31% and 10% lower
when using the neural network than when using the rejection algorithm and the multinomial
regression, respectively (fig. 2A). Similarly, for parameter estimation, for both demographic
models and whatever the combination of summary statistics, we found that using neural networks
lead to the lowest prediction error: from 30 to 54% lower than when using the basic rejection
algorithm (fig. 2B, supplementary table S2). This conclusion is consistent with that of Boitard et al.
(2016), who found that neural network regression significantly improved ABC inference of
population size histories, when these were modelled by piecewise constant processes.

Given these preliminary results we used algorithms based on neural networks both for parameter
estimation and model selection throughout the rest of the study.

In a second phase, we tested the effect of changing the tolerance rate, i.e. the acceptance rate of
pseudo-datasets for which the statistics were the closest from the observed values, from 0.001
(stringent) to 0.01 and 0.1 (less stringent), for different combination of summary statistics
(supplementary fig. 1). Changing the tolerance rate had only a slight impact on the prediction error,
with the rate 0.01 usually giving the most accurate estimations. However, it is striking that for some
combinations of summaries, the 90% credible intervals were not well estimated for a tolerance of
0.001. The empirical coverages indicated that the interval lengths were underestimated, a
non-conservative behavior meaning that they contained the true parameter values less than 90%
of the time. The factor 2 was overall slightly better for tolerance of 0.01 compared to 0.001 while
the bias was not clearly impacted by the tolerance rate. For a tolerance of 0.1 the prediction error
was not consistently lower than for 0.01, and because the running time was longer, we set the

tolerance to 0.01 for all subsequent parameter estimation analyses.

Genotyping errors

The main advantage of NGS data over SNP data is obviously the fact that a large number of
positions are covered along the genome and that we have access to both short and long haplotypic

information. Moreover, whole-genome sequencing allows circumventing the well-known issue of
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SNP ascertainment bias. Nevertheless, the error rate is indisputably higher for NGS than for SNP
data and might blur, if not distort, the picture. Ingenious genotype callers (Martin et al. 2010;
DePristo et al. 2011; Li 2011; Liao et al. 2017) aim at filling this gap but the difference is still
noticeable.

To gauge how these errors impact ABC inference, we generated 1,000 pseudo-observed datasets
simulated under a simple exponential expansion scenario with errors randomly introduced along
chromosomes. We estimated the demographic parameters for each of these pseudo-observed
datasets using an ABC procedure based on 300,000 reference simulations without any sequencing
error. The average prediction error when using all summary statistics was 1.31, which is almost 10
times higher than the average prediction error for 1,000 pseudo-observed datasets without
sequencing errors (0.13) (fig. 2B).

A common practice to reduce the impact of sequencing and genotyping errors is to prune the data
by ignoring singletons, as they are indeed more likely to be the result of errors than alleles
observed at higher frequencies. However, ignoring singletons both in our pseudo-observed
datasets and reference simulations only decreased the prediction error to 1.10 (fig. 2B).

We then approximated the imperfect sequencing, genotyping and phasing processes by artificially
introducing errors in the reference simulations used in the ABC procedure (see M&M). Using these
new reference simulations, we could infer simultaneously the error rate and the demographic
parameters. Doing so, we decreased the prediction error rate to 0.21, only 1.6 times higher than
the ideal case without errors (fig. 2B). Moreover, when the pseudo-observed data contained no
error but the reference simulations did, the average prediction error was relatively close to the ideal
case (0.18).

Five demographic scenarios

We defined five demographic scenarios of interest for human populations but also for other species
that might have experienced expansion processes in the past: One expansion, Two expansions,
Bottleneck (+instant recovery), Bottleneck and one expansion, Bottleneck and two expansions (fig.
1). Prior distributions were either uniform or log-uniform distributions (supplementary table S1), with
maximal values of 5,000 generations before present for the expansion times and of 500,000 for the
population sizes. For the 16 different combinations of summary statistics and two pruning filters
(“no pruning” or “singleton pruning”), we evaluated the model misclassification rates and the
prediction errors in parameter estimation — as well as several quality criteria such as empirical
coverages, estimation biases and factor 2 scores, through intensive cross-validation. For both
pruning filters, the genotyping error was co-estimated.

First, we established that the minimum misclassification rate when comparing simultaneously the
five models was obtained for the combination of all categories of summary statistics computed

once the singletons were removed (supplementary fig. S2, using neural networks and a tolerance
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rate of 0.001). The misclassification rate was of 0.335, much lower than the 0.8 expected by
chance. When trying an easier task, assigning to A: “One or Two expansions” or B: “Bottleneck” or
C: “Bottleneck with one or two expansions”, this rate decreased to 0.134. These values partly
reflect the fact that some models are nested and that differences between scenarios under two
distinct models can be extremely subtle (see next section).

Second, we identified the combination of statistics leading to the best parameter estimation for
each of the five scenarios independently. This was done by minimizing the prediction error
averaged over all demographic parameters (i.e. all parameters but the genotyping error rate). No
combination provided systematically the most accurate estimations, although the AFIBS category
was almost always part of the best combination (table 2). Using the best subsets, the prediction
error was on average 0.219 (across the five models). Chosen subsets performed well according to
other performance criteria, such as empirical coverages, factor2, and estimation biases
(supplementary fig. S3).

Interestingly the genotyping error rate could be estimated quite accurately along with the
demographic parameters. For almost all scenarios and tolerance rates, combining SFS and AFIBS
provided the most accurate estimation of this error rate. The only exception was the Bottleneck
scenario for which AFIBS+IBS performed slightly better when the tolerance rate was 0.01. For this
genotyping error rate parameter, the prediction error averaged across the five scenarios was of

0.11 when the tolerance was set to 0.01.

Detecting two subsequent expansions

When trying to assign a pseudo-observed dataset generated under a two-expansion scenario, to
either the one-expansion or the two-expansion model, there is a risk of misclassification inherent to
the fact that these models are nested. As depicted on Figure 3 (left), the probability of identifying
the model One expansion while in fact Two expansions occurred increased when the ancient and
recent growth rates were very similar and when the old expansion was too weak compared to the
recent expansion. More generally two expansions were identified when the ancient growth rate was
larger than 1x1073, or between ~3.5x10*and 1x1072if the recent rate was larger (supplementary fig.
4, top left). Under scenarios with bottleneck, the bottleneck strength had an additional impact on
misclassification: datasets generated under a Bofttleneck and two expansions scenario were more
commonly assigned to Bottleneck and one expansion if the bottleneck was strong and recent
(coefficient less than ~0.2 and time more recent than ~1000 generations) (fig. 3 middle).
Interestingly, even when followed by two expansions, a bottleneck was detectable as long as its

coefficient was smaller than ~0.5 (fig. 3 right).



Application to human data

We applied the ABC analysis to individuals across two datasets: Complete Genomics (CG) and the
1000 Genomes Project (1000g), randomly sampled from multiple groups across Western Africa
(Gambian, Mende), Western/Central Africa (Esan, Yoruba), East Africa (Luhya), Europe (Utah
residents of European ancestry, Iberian, Tuscan), South Asia (Bengali, Gujarati, Punjabi), and East
Asia (Han Chinese, CHB; Kinh, KHV; Japanese, JPT).

Demography in European, South and East Asian groups.

We first performed model selection on all populations and systematically identified the bottleneck
followed by two expansions as the most likely scenario for non-African populations. Posterior
probabilities associated with this model ranged from 0.78 to 1 (table 3). Overall, the reconstructed
demographic histories were quite similar across European, South Asian and East Asian
populations sequenced by 1000g. We found evidence for a strong bottleneck, with an estimated
reduction in size ranging between 0.0027 and 0.0126 (average 0.006), starting around 1869
generations ago on average across all populations. The bottleneck was followed by an ancient mild
expansion with a population size reaching on average 84,205 (average growth rate = 0.003), and
by a very recent and strong expansion that led to a current effective population size of 460,392
(ave. growth rate = 0.031). The drastic change in growth rate occurred around 106 generations ago
(fig. 4 and table 3). We also inferred the parameters using the smaller tolerance rate of 0.001,
which was found to give similar prediction errors but less accurate bounds for the 90% credible
intervals (based on cross-validations, see above). In that case, the estimated timing of the recent
expansion and the bottleneck were slightly older (166 and 2322 gen. ago respectively, while the
estimated current population size was lower (105,239 individuals). We stress out that even if the
point estimates for the current population size differ to some extent, a recent strong expansion was
found in both cases (recent growth rate of 0.020 versus ancient rate of 0.003).

When inferring the scenario with the combination of summary statistics that ranked second in term
of prediction error, results were similar (recent expansion 193 gen ago, bottleneck 1575 gen ago,
recent growth rates usually larger than the old ones) (supplementary table S3). Recent growth
rates were estimated to be higher for East Asians [0.023-0.057], then West Asians [0.012-0.02],
and finally Europeans [0.002-0.011]).

We then evaluated the goodness-of-fit of the inferred scenarios using a posterior predictive check
approach by checking if the observed summary statistics were in the range of the summary
statistics computed from the posterior predictive simulations (ie from data generated under the
inferred demographic scenario, see Method). We found that the fit was excellent in most of the
European and Asian populations: posterior predictive summary statistics encompassed the

observed value for at least 97% of the summary statistics used for parameter inference and at least



76 % the summary statistics not used for parameter inference (eg. SFS, LD, Tajima D, ...) (table 4).
The fit was slightly poorer in the Iberian, Punjabi and Gujarati populations, where these numbers
dropped to 80% for the used summary statistics and 62% for the new ones (averaged over the
three populations).

Demographic inference for African groups.

When analysing each African population independently, we found that the model selected via ABC
for each of these populations was the model assuming a bottleneck and a single expansion
(probabilities 0.55-0.99). Moreover, for all five populations, we found that the bottleneck was very
recent and strong (409 generations ago on average, effective population size reduced by a factor
0.0095 on average), and was followed by a drastic expansion (average exponential growth rate
0.036) (supplementary table S4). In addition, the bottleneck was systematically estimated to have
lasted five generations, which corresponds to the lower bound of the prior distribution. Again,
posterior predictive check was performed to further validate the estimated histories. For the Mende,
Luhya and Yoruba populations the number of statistics that could be correctly predicted was
extremely low: respectively 46%, 96% and 93% of the statistic used for parameter inference, but
only 19%, 34% and 36% of the remaining ones (table 4). The fit was slightly better for the Gambian
(75% and 68%) and for the Esan (88% and 64%) but still lower than for most Eurasian populations.
Among the five African populations, the Gambian and Esan had the most ancient estimates of
expansion time (971 and 471 generations ago respectively) and slower growth rates (0.008 and
0.016 resp.).

Estimating the genotyping error rate

Using the combination of statistics that provided the best estimation of the genotyping error rate
(SFS + AFIBS), we estimated that it was larger in the Complete Genomics than in the
1000genomes dataset for both the Utah residents of European ancestry (CEU) and the Yoruba
(YRI) (resp. 8.81 x10° and 20 x10° in CG versus 5.88 x10° and 18.2 x10® in 1000G). Another
striking result was that, while the estimated error rates were reasonably low for all non African
populations (below 8.81x10°), they were systematically larger for the African datasets
(supplementary fig. S5). While genotyping procedures might differ slightly across populations, such
a large discrepancy is unlikely to reflect only a higher rate of errors in the genotype calling for
African versus non-African samples. Additionally, this discrepancy cannot result from differences in
inference accuracy between demographic models. Indeed, the prediction error of this parameter,
as computed using cross-validations, is of the same order of magnitude for both Bottleneck and
one expansion and Bottleneck and two expansions scenarios (0.025 and 0.04). On the other
hand, it could reflect the fact that the assumed demographic scenarios fit better the Eurasian than
the African data. In the case of poor fit, increasing the error rate offers extra flexibility to explain the

data by increasing the noise.



Discussion

ABC, neural network, and dimension

The algorithm based on neural networks was the best of all investigated methods. Thanks to its
non-linear approach, this method emerges as the best method for handling a large number of
summary statistics. This is quite important, since when using a very large number of summary
statistics it is fundamental to handle the different kind of information provided by NGS data (such
as SFS, LD, length of IBS tracts) to perform valid inferences of both ancient and recent events.
Even when taking into account only one category of summary statistics (eg. LD or SFS), we were
still considering simultaneously dozens of statistics, and this number reached hundreds when
combining all statistics.

ABC suffers from the curse of dimensionality (Blum 2010), so using more and more statistics does
not necessarily increase its performance (in particular if these statistics provide redundant
information) because we cannot generate an infinite number of pseudo-datasets. The neural
network method proposed by Blum and Francois (2010) acts mainly as a dimension reduction step
applied to the high dimensional summary statistics sets. It allows us to increase the tolerance rate
and thus to accept many more simulations, alleviating the curse. The large number of accepted
simulations is corrected by learning the non-linear relationships that link summary statistics and
parameters. In this process, the summary statistics are projected into a space (the hidden layer of
the net) of dimension equal to the number of parameters; in this study, this yields a severe
reduction in dimension as the parameter space is much smaller than the summary space. Other
techniques of dimension reduction have been proposed as a step of ABC (Blum et al. 2013 for
review; Pudlo et al. 2016). In a recent paper Sheehan and Song (2016) implemented a deep neural
network to bypass the ABC rejection step and detect selective signals in 100kb-regions, which
corresponds somehow to setting the tolerance rate to 1 in our method, although the neural network
architecture, summary statistics, scenarios of interest and inference algorithms differ. It will be

interesting to compare these techniques in future work.

Sequencing, genotyping, and phasing errors
To reduce the impact of sequencing and genotyping errors we pruned the data by removing
singletons but observed that it was not a satisfying solution. This is consistent with findings

that “minor-allele-frequency filters — usual practice for genotype-by-sequencing data —
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negatively affected nearly all estimates” (Shafer et al. 2014). On the other hand, our strategy
of modeling genotyping errors via an extra parameter that we estimated together with the
demographic parameters provided enough flexibility to estimate correctly the demographic

histories of populations, based on samples of variable and unknown quality.

Moreover, we found in our cross-validation study that the error rate could be correctly estimated
provided that appropriate summary statistics were used, especially the site-frequency-spectrum
along with the allele-frequency IBS statistics (Theunert et al. 2012). It is thus tempting to compare
the rates estimated for Complete Genomics (CG) and 1000 genomes (1000g). Yet, the
interpretation is not trivial. CG data have a much higher coverage than the 1000g (~ 51-89x versus
~ 2-4x), however this might not necessarily translate into a higher quality of CG data for several
reasons: (1) The genotypes are called based on likelihoods that take into account other individuals
in the dataset. Therefore, the large sample size of the 1000g should counterbalance somehow its
low coverage; (2) The same reasoning holds for phasing, which will be more accurate for large
datasets, such as 1000g, than for small ones, such as CG and, (3) The sequencing platforms differ
between datasets (CG versus lllumina) and are known to have different error rates. For all these
reasons, predicting which dataset would have the higher estimated error rate might be dubious.
Nevertheless, we found that error rates were generally low and that CG data had higher error rates
than 1000g, in concordance with Wall et al. (2014) that estimated the genotype error rates to be

higher for sequences obtained by the Complete Genomics technology than by lllumina.

European and Asian histories. Bottleneck and two successive expansions

For all populations of European and Asian ancestry we detected the Out-Of-Africa bottleneck
followed by two successive expansions, an ancient and mild one followed by a recent and stronger
one. The ancient expansion was estimated to have started on average 1,190 generations ago (ie
35,700 ya assuming a generation length of 30 years, 95% CI ave. upper bound: 81,728 ya), and
the recent expansion 106 generations ago (i.e 3,180 years ago, 95% CI ave. upper bound: 8,460
ya). The most ancient expansion appears thus as a signal of a Paleolithic expansion, while the
more recent expansion is consistent with the Neolithic transitions that emerged from 11,500 to
3,500 years ago across the world (Bellwood et al 2005).

This is of interest as only few studies had been able to detect simultaneously both expansions. For
example, Aimé et al. (2013; 2014; 2017) used independent datasets (mitochondrial and autosomal
short sequences, Y-chromosome and autosomal microsatellite loci) to capture two different time
scales and show evidence for expansions before and after the emergence of farming. Palamara et
al. (2012) inferred several growth phases in Ashkenazi Jews history using IBD tract lengths,
however they focused only on very recent history (less than 200 generations). Following on, Carmi

et al. (2014) inferred separately ancient (paleolithic) and recent (medieval) expansions by applying
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independently a method based on SFS for ancient times and the one based on IBD tract lengths
for recent times. Among the few model-based studies that infer simultaneously both expansions,
one relies on the SFS-based method dadi (Gutenkunst et al. 2009) but uses more than 1000
individuals and all the parameters linked to events preceding the expansions, such as ancient
bottlenecks and sizes, were fixed (Tennessen et al. 2012). Similarly, Gazave et al. (2014) used a
very large sample of high quality to estimate the very recent growth rate of human populations.
Compared to these studies, our approach focuses on datasets with lower sample sizes and quality,
and enables reconstructing the broad picture of bottlenecks and growths from a limited amount of
data. Remarkably our estimate of the recent growth rate (0.031 averaged across Eurasian
populations) is similar to the ones inferred by Tennessen et al. (2012) and Gazave et al. (2014)
(0.0307 and 0.0338).

Unlike in African populations, the posterior predictive checks (PPC) performed well for a wide
range of summary statistics observed for European and Asian populations. Although there is likely
extra complexity in Eurasian demographic histories, the out-of-Africa bottleneck was probably so
strong that it wiped out part of the ancient demographic signals in non-African populations
compared to African populations. The assumption of a single ancestral population of constant size
may thus have a smaller impact on non-African population demographic inference, although we
expect some parameter estimates to be biased. For example, the inferred bottleneck could be a
compromise between two events identified previously as causing bottlenecks: the Out-Of-Africa
migration and the split between European and Asian populations (Keinan et al. 2007; Schaffner et

al. 2005). This would lead to an underestimation of the Out-Of-Africa timing.

Demographic histories in Africa and model-based approach

Our study highlighted that the simple demographic scenarios, still often used to depict African
populations, were not able to explain the observed data. Interestingly, it showed that the
co-estimated genotyping error rate provides a convenient flag to detect models with poor fit even
before performing the posterior predictive check. This rate was indeed consistently larger for
datasets that could not be fitted by any proposed model. Note that when we estimated the
parameters of the Bottleneck and one expansion scenario based on classical statistics
(heterozygosity, Tajima's D, ...) and the site-frequency-spectrum, we identified a weak bottleneck
(average coefficient 0.75) around 3714 generations ago followed by a mild expansion (average
growth rate = 4.4x10*) (supplementary table S5). This history is more similar to what is usually
inferred for African populations, such as the Yoruba. Yet, this scenario is not favored when
exploiting numerous linkage-informed statistics. We suggest that although this scenario is useful to
have a broad picture of past African histories, there is an additional demographic signal that can be
picked when extending the summary statistics sets. Part of this complexity was highlighted by

various studies based on more comprehensive data (see Schlebusch and Jakobsson 2018 for a
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recent review). This complexity might encompass additional bottlenecks in the ancient past,
complex fluctuations in size or admixture between populations.

Our results advocate for checking thoroughly the goodness-of-fit of inferred models based on
posterior checks, and for investigating more complex scenarios that could fit the numerous
summary statistics of African data. In particular ancient structure in Africa might be one of the
causes, and previous studies (e.g. Sjodin et al. 2012) could be revisited with these new summary
statistics in future work.

More generally, the goodness-of-fit of the demographic histories inferred from SMC, IBD or AFS
based approaches is too rarely investigated, although the outcome of these approaches is known
to be strongly affected by past population structure or complex migration scenarios (see Mazet et
al. 2016 for the case of PSMC). Several recent studies illustrated that a demographic scenario
proposed based on one specific subset of summary statistics, could be clearly rejected when
considering another one (Chikhi et al. 1/2018; Beichman et al. 2017; Lapierre et al. 2017). As
demonstrated in this study, ABC is a promising approach in this context, because it provides a

natural framework to perform such goodness-of-fit tests.

Possible methodological extensions
Mutation and recombination

In this study we used fixed mutation and recombination rates, set to values commonly assumed in
human genetics (see Ségurel et al. 2014 for review) Although it would be hard to co-estimate the
mutation rate because mutational effect balances out with the population size (but additional
ancient DNA samples could help to disentangle both), the average recombination rate could be
co-estimated as done by Boitard et al. (2016). Pseudo-datasets could also be simulated with
recombination rates varying along the chromosome, since such maps have been established for
human populations with some degree of uncertainty (Kong et al. 2002; Frazer et al. 2007; Hinch et
al. 2011). The first solution should be beneficial mostly for non-model species for which even a
rough average rate is unknown, while the second solution could be tested for humans. However,
adjusting the recombination maps according to the population of interest and simulating data
tailored for each genomic region would lead to a substantial increase in the number of simulations
required.

Neutrality

When studying human demography, given the current knowledge of the genetic map composition,
it is possible to discard presumed non-neutral regions such as protein-coding regions, human
accelerated regions (HAR), DNA hypersensitive sites (DHS), and others (see Schraiber and Akey
2015 for review). However doing so would prevent us from extracting continuous 2-MB long
regions from the real data. As it is assumed in most demographic inference methods (PSMC,

MSMC, IBS-based approaches, ...), given that such non-neutral regions are uncommon, we
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considered here that their impact on the overall demographic signal would be limited. However,
several studies have demonstrated the strong confounding effects of background selection. Future
developments are needed to address the challenging task of co-estimating selection and
demography (Bank et al., 2014; Ewing and Jensen, 2016; Hernandez et al., 2011; McVicker et al.,
2009; Sheehan and Song, 2016) .

Conclusion

We implemented an ABC method that infers population demography from sequencing
data, while accounting for the specificities of these data (correlation between close SNPs,
genotyping errors ...). We demonstrated that this method allows inferring demographic
histories consisting of successive bottleneck and expansions from a limited number of
individuals. We successfully applied this method to human populations from Eurasia,
inferring the out-of-Africa bottleneck and two successive expansions corresponding to the

Paleolithic and Neolithic periods.

An additional goal of our study was to understand what commonly used population genetic
summary statistics should an ABC for sequencing data framework rely on. We conclude that it
depends on the investigated demographic model, but that the allele-frequency identity-by-state

(Theunert et al, 2012) is a key statistic that consistently increased prediction accuracy.

Even though more and more sequences are available, it is likely that dataset will remain of limited
size in the coming years for most non-model species. Therefore, methods that make the best of a
sample of intermediate size are much needed, and our approach will be useful for studying

populations in many species.

Material and methods

Simulated data

We simulated sequences of length 2Mbp using fastsimcoal 2.1 (Excoffier et al. 2013). This
program generates quickly long neutral sequences with recombination based on the Sequential
Markov coalescent (McVean and Cardin 2005; Marjoram and Wall 2006). For each parameter set,
we simulated 100 independent tracts, with a constant mutation rate of 1.25x10® per site per
generation, and a constant recombination rate of 1x10® per site per generation (Scally and Durbin
2012; Schiffels and Durbin 2014). We generated around 300,000 pseudo-datasets for each of the

five demographic models displayed on Figure 1. They consist in one optional bottleneck followed
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either by an instant recovery, or by one or two expansions. These exponential expansions happen
in the last 5,000 generations, and the population sizes can range from 100 to 500,000 (see
supplementary table S1 for detailed information on parameters and priors).

For preliminary analyses, simulations were generated under models of constant size followed by
either one or two exponential expansions with narrower priors (the sizes were constrained to be
under 70,000).

When taking sequencing errors into account, we introduced an extra parameter, the error rate,
associated with a uniform prior distribution with bounds [0, 2x10°]. At each position in the initial
sample (even monomorphic positions) and for each haplotype, the allele was switched from

derived to ancestral — or from ancestral to derived — with a probability equal to this error rate.

Summary statistics

For each dataset of 100 independent 2Mb-long regions sequenced for n diploid individuals we
computed the following statistics, grouped into five categories.
Classic:
1. Proportion of segregating sites over the genome (total number of SNPs S divided by the
total sequencing length = 200 Mb)
Tajima's D statistic averaged over regions
Expected heterozygosity at a segregating site computed

Average haplotypic heterozygosity along the genome. Haplotypic heterozygosities were

2n—1

Ky
computed for non-overlapping windows of size 50-kb as 52 (1 - ka2) ,
k=1

where K, is the number of unique haplotypes in a given window w, and f, is the frequency
of the k-th haplotype.
SFS

5. Unfolded site-frequency-spectrum (percentage of segregating sites for which the derived
allele frequency is i, for all i in [1, ..., 2n-1]), and the total proportion of segregating sites
(already used in “Classic”). 2n summary statistics.

6. Statistics linked to the variability of these counts at each bin [1,..., 2n-1]. These were
computed for each allele frequency bin, as the standard deviation of the distances
separating two adjacent SNPs at frequency i . 2n-1 summary statistics.

LD

7. The linkage disequilibrium is computed as the average r? for pairs of SNPs. Values were
stratified by the physical distance separating SNPs. Following Boitard et al (2016), we
considered 19 bins of distances (for which the mean ranged from 282 bp to 1.4 Mb). 19
summary statistics.

IBS
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8. The length distributions of identical-by-state segments shared between m haplotypes were
summarized by 10 percentiles. Those were computed for m=2, 4, 8 and 16 haplotypes. IBS
segments were defined as regions of the genome completely identical across haplotypes.
40 summary statistics.

AF-IBS

9. At each SNP, the AF-IBS segment is identified as the region extending around this SNP
and identical across all haplotypes carrying the derived allele at the focal SNP (Theunert et
al. 2012). The lengths of AF-IBS segments are stratified by the frequency at their focal
SNP, leading to a distribution for each frequency [2/n,... (2n-1)/n]. We summarize each

distribution by its mean and variance. 2*(2n-1) summary statistics.

All summary statistics were computed using our custom python scripts that will be available online.

Approximate Bayesian Computation (ABC)

ABC is a Bayesian framework designed for models with unknown likelihood but under which one
can generate data through computer simulations. It aims at selecting the model that best explains
the observed data among several possible scenarios, as well at estimating the parameters of this
model. Given a distribution a priori of the parameters, ABC approximates their posterior distribution
via two simplifying steps: (1) the full dataset is reduced to a set of summary statistics, (2) the new
posterior given these summary statistics is obtained through the inspection of numerous
pseudo-datasets. Those pseudo-datasets are simulated using the generative model with parameter
values drawn from specified prior distributions. Pseudo-datasets for which summary statistics are
close enough to the observed ones are accepted and their corresponding parameter values are
considered as a sample of the approximate posterior distribution (standard rejection algorithm). In
refined ABC algorithms these accepted pseudo-datasets are used to learn a local relation linking
the summary statistics to the model parameters, this assumed relation being: a linear model
(Beaumont et al. 2002), a linear model penalizing large coefficients to better account for collinearity
between summary statistics (ridge regression, Blum et al. 2013), or a non-linear model (calibrated
using feed-forward neural networks, Blum and Frangois 2010). Formally, given S the observed
summary statistics, 6 the true parameter, S, the summary statistics of pseudo-dataset / generated
with parameter values 0;, and n the tolerance error, a model f is learned from accepted
simulations so that for all i, 6, =f(S;) +¢, withe, a random variable with mean zero and constant
variance (in homoscedastic models). Accepted parameter values are then adjusted as followed,
91.“"]' =0, +?(S) —?(Sl.) and weighted by the Euclidean distance between § and §;, to
approximate the posterior distribution. For more details and formal descriptions of heteroscedastic

models (where the variance is not constant) see Blum and Francois (2010).
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As recommended by Blum and Frangois (2010), before learning the different models, we applied a
logit transformation to the parameters with bounds corresponding to the bounds of their prior

distribution.

When running the leave-one-out cross-validations, the prediction error was calculated as

¥(0,"0))

n,q,>xvar(9) ?
where 8 is the true parameter value, 0" is the predicted parameter value, and nval is the number

of points where true and predicted values are compared (Csilléry et al. 06/2012).

We also computed the relative bias as

where m = @ the average of the absolute values of 6.

and the factor 2 as the proportion of test datasets for which the point estimate is at least half and at

most twice the true value, i.e.

Myal

- X Ind (0.50,<6,"<26),

where Ind denotes the indicator function (Cornuet et al. 2008).

All ABC analyses were performed with the R package 'abc' (Csilléry et al. 2012) and we tested four
methods for parameter estimation: rejection, linear regression, ridge regression, neural network,
and three methods for model selection that compute posterior model probabilities (rejection,

multinomial logistic regression, neural network).

Publicly available genomes
Complete Genomics

We used a dataset of 54 unrelated individuals present in the panel “69 Genomes” from Complete
Genomics (Drmanac et al. 2010). The data phased by Rasmussen et al (2014) using SHAPEIT2
(Delaneau et al. 2013) are available at compgen.cshl.edu/ARGweaver/CG_results/download/. Our
ABC procedure was applied independently to nine individuals of European ancestry (Utah
residents, CEU) and 9 individuals from the African Yoruba population (YRI). Applied filters are
described in the supplementary material.

1000 genomes

The latest version of the 1000g phase 3 data was downloaded from ftp.1000genomes.ebi.ac.uk

(release 20130502, file date 20140730). These genomes were already phased using an improved
version of SHAPEIT2 (Delaneau et al. 2014; Consortium 2015) Once again we applied our ABC

approach to nine individuals chosen randomly from each of the following groups: African (Esan,
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ESN; Gambian, GWD; Luhya, LWK; Mende, MSL; Yoruba, YRI), European (Utah residents of
European ancestry, CEU; Iberian, IBS, Tuscan, TSI), South Asian (Bengali, BEB; Gujarati, GIH;
Punjabi, PJL), and East Asian (Han Chinese, CHB; Kinh, KHV; Japanese, JPT). Applied filters are

described in the supplementary material.
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Figure captions
Figure 1. Schemes of the five demographic scenarios considered in this study. The expansions

are depicted on a log scale, hence they are all exponential. Details about parameters and prior
bounds are described in Supplementary Materials.

Figure 2. ABC algorithms benchmarked using cross-validation. A. ABC routines. Left:
Misclassification rates for model selection procedure using rejection, multinomial logistic regression
or neural networks. Right: Prediction error for parameter estimation using rejection, local linear
regression, ridge logistic regression or neural networks. Errors were averaged over scenarios and
parameters. B. Impact of genotyping error on previous (ABC neuralnet assuming no error) and
new algorithm (ABC neuralnet co-estimating the error rate). Parameter inference was performed on
data sets with or without errors, pruned of singletons or not. Prediction errors were averaged over
all demographic parameters for the scenario with one expansion.

Figure 3. Model selection with nested models. Each of the 2500 validation datasets was
assigned to one of the five models using ABC (Fig 1). Misclassification rates were interpolated
across different demographic parameters. Left and middle: models with two expansions identified
as models with one expansion. Right: models with a bottleneck identified as models without
bottleneck. Red denotes highest rates of misclassification and blue lowest rates of
misclassification. Interpolations were made using kriging models (R package fields).

Figure 4. Demographic history inferred with ABC for nine human populations. From Left to right:
European (CEU, TSI, IBS), Central Asian (BEB, GIH, PJL), East Asian (CHB,KHV, JPT). For each
population, our ABC was run on a randomly subsampled dataset of nine individuals from the 1000
Genomes database. Bottleneck and two expansions was independently identified as the best
model for each of these populations. The summaries giving the best performance within this model
were used (AF-IBS + IBS).

Table Captions

Table 1. Summary statistics used in our study, grouped into five classes.

Table 2. Best combinations of summary statistics for five demographic models. For each model,
prediction errors were evaluated on a validation set of 500 pseudo-datasets and averaged over all
demographic parameters. Best combinations were identified as the ones with the smallest

prediction error. Minimal values are given in the right column. no singl = singletons were pruned.
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Table3. Parameter estimations for Eurasian populations. The column Proba displays the posterior
probability of the selected model (Bottleneck and two expansions). For each model parameter, the
median of the posterior distribution is given on the first line and the 95% confidence interval on the
second line.

Table 4. Goodness-of-fit scores of inferred demographic scenarios evaluated through posterior
predictive checks. For each population of the 1000g subset, we report the percentage of observed
summary statistics that are in the range of the newly simulated summary statistics, for (a) the

statistics already used in the ABC for parameter inference, (b) the remaining summary statistics.
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Fig. 1. Schemes of the five demographic scenarios considered in this study. The expansions are depicted on a log
scale, hence they are all exponential. Details about parameters and prior bounds are described in Supplementary
Materials.
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Fig. 2. ABC algorithms benchmarked using cross-validation. A. ABC routines. Left: Misclassification
rates for model selection procedure using rejection, multinomial logistic regression or neural networks. Right:
Prediction error for parameter estimation using rejection, local linear regression, ridge logistic regression or
neural networks. Errors were averaged over scenarios and parameters. B. Impact of genotyping error on previous
(ABC neuralnet assuming no error) and new algorithm (ABC neuralnet co-estimating the error rate). Parameter
inference was performed on data sets with or without errors, pruned of singletons or not. Prediction errors were
averaged over all demographic parameters for the scenario with one expansion.
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Fig. 3. Model selection with nested models. Each of the 2500 validation datasets was assigned to one
of the five models using ABC (Fig 1). Misclassification rates were interpolated across different demographic
parameters. Left and middle: models with two expansions identified as models with one expansion. Right: models
with a bottleneck identified as models without bottleneck. Red denotes highest rates of misclassification and blue
lowest rates of misclassification. Interpolations were made using kriging models (R package fields).
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Fig. 4. Demographic history inferred with ABC for nine human populations. From Left to right: European (CEU,
TSI, IBS), Central Asian (BEB, GIH, PJL), East Asian (CHB,KHV, JPT). For each population, our ABC was
run on a randomly subsampled dataset of nine individuals from the 1000 Genomes database. Bottleneck and two
expansions was independently identified as the best model for each of these populations. The summaries giving
the best performance within this model were used (AF-IBS + IBS).



2 Main Tables

Abbrev. Full Details Nb stat. *
Classical Several statistics S0k Taplotype hetes ot 7
widely used in ABC pOWD YEOSILY;
Tajima D [1], ...
. Relative counts (mean, sd)
SFS Site frequency spectrum Total number of SNPs 35
LD Linkage disequilibrium r2 for pairs of SNPs for 38
(decay) bins of distance [2-4]
. Distribution of IBS lengths across
IBS Identity-by-state 2, 4 or 8 chromosomes [5,6] 44
IBS lengths conditional on the
AFIBS |Allele frequency identity-by-state frequency of a focal SNP 32
(binned per AF) [7]

* Number of statistics for a dataset of 9 diploid individuals [1] Tajima ; [2] Hayes ; [3] Patin ; [4] Boitard et al.,
2016 ; [5] Harris and Nielsen, 2013 ; [6] MacLeod et al., 2013 ; [7] Developped by Theunert et al 2012

Table 1. Summary statistics used in our study, grouped into five classes.

Table 2. Best combinations of summary statistics for five demographic models. For each model, prediction errors
were evaluated on a validation set of 500 pseudo-datasets and averaged over all demographic parameters. Best
combinations were identified as the ones with the smallest prediction error. Minimal values are given in the right

Model Tolerance 0.01
1Expansion SFS +AF-IBS (no singl)|0.052
2Expansions ALL (no singl) 0.165
Bottleneck IBS +AF-IBS (no singl)|0.428

Bottleneck-+1Expansion

IBS +AF-IBS (no singl) | 0.17

Bottleneck+2Expansions

IBS +AF-IBS (no singl)| 0.28

column. no singl = singletons were pruned.




Group Proba Ncurrent Ninterm Nbot Nancient TExp2 TExpl BotLength

9ceu 80.22 495332 76818 449 77158 2266 16 8
[448359-499963] [19406-241768] [171-1109] [25490-244044] [1134-3716] [10-35]  [5-119]

9ceu (cg) 80.88 404771 31436 409 43033 1102 139 55
[93082-499461] [8101-120087] [152-964] [14934-136573] [611-1907] [20-675] [7-573]

9ibs 80.84 430168 77825 257 55385 1757 110 12
[291768-496457] [11781-320305] [150-415] [39227-94394] [1172-2568] [20-328]  [5-150]

9tsi 90.53 488413 109249 357 61102 2020 40 6
[456170-499279] [13774-398672] [177-628] [46413-98430] [1364-2897] [14-98] [5-35]

9beb 81.47 430211 65723 277 62235 1837 241 10
[300411-495760] [10444-287389] [158-445] [45571-113025] [1197-2708] [49-605]  [5-122]

9gih 89.75 470886 108597 207 61699 2168 89 6
[402494-498581] [12801-402973] [128-331] [44120-93798] [1612-2897] [18-290]  [5-49]

9pjl 87.93 480991 150249 204 58050 2227 106 6
[434242-498928] [10335-466931] [135-301] [43074-94029] [1675-2947] [29-244] [5-16]

9chb 99.98 466477 107072 227 83764 1550 28 6
[341564-499405] [12830-428199] [131-382] [62277-138013] [1071-2180] [12-83] [5-39]

9khv 80.08 464162 31415 703 54837 1384 235 80
[321692-499175] [9127-118543] [299-1213] [38927-86244] [608-2800] [98-391] [7-685]

9jpt 78.07 416894 30899 632 52185 1243 90 61
[182297-499126] [4429-214447] [247-1214] [25774-140741] [872-1805] [13-499] [6-613]

Table 3. Parameter estimations for Eurasian populations. The column Proba displays the posterior probability
of the selected model (Bottleneck and two expansions). For each model parameter, the median of the posterior
distribution is given on the first line and the 95% confidence interval on the second line.

Group esn gwd lwk msl yri || ceu ibs tsi | beb gih pjl | chb khv jpt
Used Stats (a) ||0.88 0.75 0.96 0.46 0.93|/1.00 0.83 1.00|1.00 0.79 0.79|1.00 1.00 1.00
New Stats (b) ||0.64 0.68 0.34 0.19 0.36|/0.87 0.64 0.87|0.82 0.56 0.68|0.83 0.97 0.99

Table 4. Goodness-of-fit scores of inferred demographic scenarios evaluated through posterior predictive checks.
For each population of the 1000g subset, we report the percentage of observed summary statistics that are in the
range of the newly simulated summary statistics, for (a) the statistics already used in the ABC for parameter
inference, (b) the remaining summary statistics.



