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EXISTENCE AND REGULARITY OF OPTIMAL SHAPES FOR ELLIPTIC

OPERATORS WITH DRIFT

EMMANUEL RUSS, BAPTISTE TREY, BOZHIDAR VELICHKOV

Abstract. This paper is dedicated to the study of shape optimization problems for the first
eigenvalue of the elliptic operator with drift L = −∆+V (x)·∇ with Dirichlet boundary conditions,
where V is a bounded vector field. In the first instance, we prove the existence of a principal
eigenvalue λ1(Ω, V ) for a bounded quasi-open set Ω which enjoys similar properties to the case
of open sets. Then, given m > 0 and τ ≥ 0, we show that the minimum of the following
non-variational problem

min
{
λ1(Ω, V ) : Ω ⊂ D quasi-open, |Ω| ≤ m, ‖V ‖L∞ ≤ τ

}
.

is achieved, where the box D ⊂ Rd is a bounded open set. The existence when V is fixed, as well
as when V varies among all the vector fields which are the gradient of a Lipschitz function, are
also proved.

The second interest and main result of this paper is the regularity of the optimal shape Ω∗

solving the minimization problem

min
{
λ1(Ω,∇Φ) : Ω ⊂ D quasi-open, |Ω| ≤ m

}
,

where Φ is a given Lipschitz function on D. We prove that the optimal set Ω∗ is open and that
its topological boundary ∂Ω∗ is composed of a regular part, which is locally the graph of a C1,α

function, and a singular part, which is empty if d < d∗, discrete if d = d∗ and of locally finite

Hd−d
∗

Hausdorff measure if d > d∗, where d∗ ∈ {5, 6, 7} is the smallest dimension at which there
exists a global solution to the one-phase free boundary problem with singularities. Moreover, if
D is smooth, we prove that, for each x ∈ ∂Ω∗ ∩ ∂D, ∂Ω∗ is C1,1/2 in a neighborhood of x.
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1. Introduction and main results

Let D be a bounded connected open set in Rd, d ≥ 2. For any bounded vector field V : D → Rd
and any connected open set Ω ⊂ D, we consider the elliptic operator with drift L = −∆+V (x)·∇ .
In this paper we study variational optimization problems in which the variables are both the
domain Ω and the drift V , and the cost functional is defined through the operator L. The
aim of the present paper is twofold. From one side, we develop an existence theory for shape
optimization problems for operators with drift. On the other hand, we study the regularity of
the optimal shapes for vector fields V that are gradients of potentials Φ : D → R. We focus on
the model problem

min
{
λ1(Ω, V ) : Ω ⊂ D, |Ω| ≤ m, ‖V ‖L∞ ≤ τ

}
, (1.1)

where m > 0 and τ ≥ 0 are fixed constants, and λ1(Ω, V ) is the principal eigenvalue of the
operator L. Our main results are the following.

Theorem 1.1. Let D ⊂ Rd be a bounded open set, and 0 < m < |D| and τ ≥ 0 be fixed constants.
Then, there exist a quasi-open set Ω ⊂ D and a vector field V : D → Rd such that the couple
(Ω, V ) is a solution to the shape optimization problem (1.1).

In particular, we prove in Theorem 3.3 below, that the principal eigenvalue λ1(Ω, V ) of the (non-
self-adjoint) operator L is well-defined on any quasi-open set Ω ⊂ D. Preciesly, we will show
that for any quasi-open set Ω, there is a real eigenvalue λ1(Ω, V ) of the operator L such that
λ1(Ω, V ) ≤ Reλ, for any other eigenvalue λ ∈ C of L.

Theorem 1.2. Let D ⊂ Rd be a bounded open set, and 0 < m < |D| and τ ≥ 0 be fixed constants.
Then the shape optimization problem

min
{
λ1(Ω,∇Φ) : Ω ⊂ D quasi-open, |Ω| ≤ m, Φ ∈W 1,∞(D), ‖∇Φ‖L∞(D) ≤ τ

}
(1.2)

admits a solution (Ω∗,∇Φ∗). Moreover, if D is connected, then any optimal set Ω∗ has the
following properties:

(1) Ω∗ is an open set;
(2) Ω∗ has finite perimeter;
(3) Ω∗ saturates the constraint, that is, |Ω∗| = m;

The free boundary ∂Ω∗∩D can be decomposed in the disjoint union of a regular part Reg(∂Ω∗∩D)
and a singular part Sing(∂Ω∗ ∩D), where:

(4) Reg(∂Ω∗ ∩D) is locally the graph of a C1,α-regular function for any α < 1;
(5) for a universal constant d∗ ∈ {5, 6, 7} (see Definition 5.39), Sing(∂Ω∗ ∩D) is:

• empty if d < d∗;
• discrete if d = d∗;
• of Hausdorff dimension at most (d− d∗) if d > d∗.

If the boundary ∂D is C1,1, then the boundary ∂Ω∗ can be decomposed in the disjoint union of a
regular part Reg(∂Ω∗) and a singular part Sing(∂Ω∗), where:
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(6) Reg(∂Ω∗) is an open subset of ∂Ω∗ and locally the graph of a C1,1/2 function; moreover,
Reg(∂Ω∗) contains both Reg(∂Ω∗ ∩D) and ∂Ω∗ ∩ ∂D;

(7) Sing(∂Ω∗) = Sing(∂Ω∗ ∩D).

In fact, our result is more general. Precisely, we prove the regularity of the optimal sets for
λ1(·,∇Φ) with fixed vector field ∇Φ (see Theorem 1.5 and Remark 1.7).

For m, τ,Ω and V as in (1.1), Hamel, Nadirashvili and Russ [29], proved the lower bound

λ1

(
B, τ

x

|x|

)
≤ λ1(Ω, V ), (1.3)

where B is the ball of Lebesgue measure m centered in zero; moreover, there is an equality in
(1.3), if and only if, up to translation, Ω = B and V (x) = τ x

|x| . In other words, the couple(
B, τ x

|x|
)

is (up to translation) the unique solution of the shape optimization problem

min
{
λ1(Ω, V ) : Ω ⊂ Rd, |Ω| = m, ‖V ‖L∞ ≤ τ

}
. (1.4)

We notice that a symmetrization technique in the spirit of [29] cannot be applied to the problem
(1.1). In fact, the presence of the constraint D makes impossible to determine explicitly the shape
of the optimal domains or the precise analytic expression of the optimal vector fields, except in
the trivial case when a ball of measure m fits into D. Thus, we first establish the existence
of an optimal domain Ω in the larger (relaxed) class of quasi-open sets and we then study the
regularity of the optimal shapes through variational free boundary techniques. We stress that, in
the case of a generic vector field V , the principal eigenvalue λ1(Ω, V ) does not have a variational
formulation but is only determined trough the solution of a certain PDE on Ω. In particular, the
shape cost functional in (1.1) cannot be written in terms of a variational minimization problem
involving integral cost functionals on Ω. This makes the extension of the functional λ1(·, V ) to a
(γ-)continuous functional on the class of quasi-open sets a non trivial problem.

In the case τ = 0, (1.1) and (1.2) are reduced to the classical shape optimization problem

min
{
λ1(Ω) : Ω ⊂ D, |Ω| ≤ m

}
, (1.5)

where λ1(Ω) is the first eigenvalue of the Dirichlet Laplacian on Ω. For the problem (1.5), the
existence of an optimal (quasi-open) set was proved by Buttazzo and Dal Maso in [13], the fact
that the optimal sets are open (Theorem 1.2 (1)) was proved by Briançon and Lamboley in [6],
the estimate on the perimeter of the optimal set (Theorem 1.2 (2)) is due to Bucur (see [8]),
the regularity of the free boundary Reg(∂Ω∗ ∩ D) was again proved in [6]; the estimate on the
dimension of the singular set Sing(∂Ω∗ ∩D) was obtained in [34]. Even for the classical problem
(1.5) the regularity up to the boundary of the box D (Theorem 1.2 (6) and (7)) is new.

Remark 1.3 (On the regularity of the optimal shapes for spectral functionals). The regularity
of the optimal shapes for the eigenvalues of the Laplacian was an object of an intense study in the
last years. As mentioned above, a regularity result, for the optimal sets for the first eigenvalue of
the Laplacian, was proved Briançon and Lamboley in [6]. The regularity of the optimal sets for
more general spectral functionals was studied in [10], [34], [?] and [?]. An alternative approach in
dimension two, based on the epiperimetric inequality from [38], was recently introduced in [37],
where Theorem 1.2 (6) is proved in the case τ = 0 and d = 2. We notice that the method from
[37] can be applied to give an alternative proof of Theorem 1.2 (6) in the case τ > 0, but the
restriction on the dimension is required by the epiperimetric inequality and for now cannot be
removed.

Remark 1.4 (On the existence of optimal shapes). The existence of optimal shapes in a bounded
open set (box) D ⊂ Rd is a consequence of the theory of Buttazzo and Dal Maso (see [13] and
the books [9] and [30]) for general shape optimization problems of the form

min
{
F(Ω) : Ω ⊂ D quasi-open , |Ω| ≤ m

}
, (1.6)

for shape cost functionals F with the following properties:
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• F is decreasing with respect to the set inclusion;
• F is lower semi-continuous with respect to the (γ-)convergence of sets.

We notice that in the case when F is a function of the spectrum of the Dirichlet Laplacian on
Ω, the existence of an optimal set can be obtained directly (see for instance [39]). In fact, if
F(Ω) = λ1(Ω), then given a minimization sequence of quasi-open sets Ωn for (1.6), and setting
un to be the first eigenfunction of the Dirichlet Laplacian on Ωn, it is not hard to check that, up to
a subsequence, un converges weakly in H1

0 (D) to a function u ∈ H1
0 (D) and that the (quasi-open)

set Ω := {u > 0} is a solution to (1.6). This elementary argument works not only for λ1, but can
also be reproduced for general spectral functionals of the form F(Ω) = F

(
λ1(Ω), . . . , λk(Ω)

)
, and

also for most of the shape cost functionals present in the literature. We stress that this is not
the case of the functional F(Ω) = λ1(Ω, V ). Even if λ1(·, V ) is still monotone and γ-continuous
(as we will prove in Section 4), its non-variational nature does not allow to use the elementary
argument described above; thus, the only way to obtain the existence of an optimal set is through
the Buttazzo-Dal Maso theory.

Optimal shapes for a fixed vector field. In this paper, we also study the case in which
only the shape Ω is variable, while the vector field V is fixed. Precisely, we consider the shape
optimization problem

min
{
λ1(Ω, V ) : Ω ⊂ D, |Ω| ≤ m

}
, (1.7)

where both the upper bound m of the Lebesgue measure of the domain Ω and the vector field V are
fixed. In this case the geometry of the optimal sets is affected both by the geometric constraint
Ω ⊂ D and the vector field V . We notice that in this case it is the inclusion constraint that
provides the compactness necessary for the existence of an optimal set. We show that the shape
functional Ω 7→ λ1(Ω, V ) is lower semi-continuous with respect to the so-called γ-convergence of
sets and then we obtain the existence of optimal sets by the general result discussed in Remark 1.4.
Furthermore, when the vector field is the gradient of a Lipschitz function, we prove a regularity
result for the optimal sets. Our main result is the following.

Theorem 1.5 (Existence and regularity of optimal shapes for a fixed vector field). Let D be
a bounded open set in Rd. Let m ∈ (0, |D|) and let the vector field V : D → Rd be such that
‖V ‖L∞ = τ < +∞. Then the shape optimization problem

min
{
λ1(Ω, V ) : Ω ⊂ D quasi-open, |Ω| ≤ m

}
(1.8)

admits a solution Ω∗ ⊂ D. Moreover, if D is connected and the vector field V is of the form
V = ∇Φ, where Φ : D → R is a given Lipschitz function, then any solution Ω∗ of (1.8) has the
following properties:

(1) Ω∗ is an open set;
(2) Ω∗ has finite perimeter;
(3) Ω∗ saturates the constraint, that is, |Ω∗| = m;

The free boundary ∂Ω∗∩D can be decomposed in the disjoint union of a regular part Reg(∂Ω∗∩D)
and a singular part Sing(∂Ω∗ ∩D), where:

(4) Reg(∂Ω∗ ∩D) is locally the graph of a C1,α-regular function for any α < 1;
(5) for a universal constant d∗ ∈ {5, 6, 7} (see Definition 5.39), Sing(∂Ω∗ ∩D) is:

• empty if d < d∗;
• discrete if d = d∗;
• of Hausdorff dimension at most (d− d∗) if d > d∗.

If the boundary ∂D is C1,1, then the boundary ∂Ω∗ can be decomposed in the disjoint union of a
regular part Reg(∂Ω∗) and a singular part Sing(∂Ω∗), where:

(6) Reg(∂Ω∗) is an open subset of ∂Ω∗ and locally the graph of a C1,1/2 function; moreover,
Reg(∂Ω∗) contains both Reg(∂Ω∗ ∩D) and ∂Ω∗ ∩ ∂D;

(7) Sing(∂Ω∗) = Sing(∂Ω∗ ∩D).
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Remark 1.6 (On the optimal regularity of the free boundary). The regularity of the boundary
of an optimal set Ω∗ to the problem (1.8) at contact points of the free boundary with the box

cannot exceed C1,1/2 even if the vector field is smooth. Indeed, Chang-Lara and Savin proved
in [18] that the boundary of Ωu, where u is a solution of the free boundary problem (5.40) in

Ωu = Ω∗, is at most C1,1/2 regular.

Remark 1.7 (Regularity of the optimal shapes for variable vector field). We notice that if
the couple (Ω, V ) is a solution to the shape optimization problem (1.1) or (1.2), then fixing V ,
we obtain that Ω is a solution to (1.8). In particular, the regularity part of Theorem 1.2 is a
consequence of Theorem 1.5.

Outline of the proof and plan of the paper. Throughout the paper the bounded open set
D ⊂ Rd is fixed and is assumed to be (at least C1,1) smooth.

In the sections 2, 3 and 4, we prove our main existence results (Theorem 1.1) and the existence
of an optimal domain for a fixed vector field (Theorem 1.5), as well as the existence of an optimal
domain in Theorem 1.2.

In Section 2 we recall several central definitions and results in the γ-convergence theory of
quasi-open sets. In particular, we show that the (classical) γ-convergence of a sequence of quasi-
open sets is equivalent to the strong convergence of the sequence of resolvent operators for L =
−∆ + V (x) · ∇ on each of the sets.

In Section 3, Theorem 3.3 and Corollary 3.9, we prove that the principal eigenvalue is well-
defined on every quasi-open set Ω ⊂ D, that is, there exists a (real) eigenvalue λ1(Ω, V ) ∈ R of
the operator L = −∆ + V (x) · ∇, such that for any other (complex) eigenvalue λ ∈ C we have
λ1(Ω, V ) ≤ Reλ. In the same section, we establish the continuity of the functional Ω 7→ λ1(Ω, V )
with respect to the γ-convergence (Proposition 3.7) and the fact that the principal eigenvalue is
decreasing with respet to the set inclusion (Remark 3.2).

In Section 4 we prove our main existence results. The existence of the optimal set for a fixed
vector field V (Theorem 1.5) follows by the classical Buttazzo-Dal Maso theorem (Theorem 2.5).
We give the precise statement in Theorem 4.1. The proof of Theorem 1.1 requires a more refined
argument. The reason is the following: consider a (minimizing) sequence (Vn,Ωn) of vector fields
Vn and quasi-open sets Ωn with eigenfunctions un ∈ H1

0 (Ωn) of Ln = −∆ + Vn · ∇, solutions of

−∆un + Vn · ∇un = λ1(Ωn, Vn)un in Ωn,

∫
D
u2
n dx = 1, un ∈ H1

0 (Ωn).

Let us suppose for simplicity that: Ωn γ-converge to a quasi-open set Ω; un converge to a function
u ∈ H1

0 (Ω) both strongly L2(D) and weakly H1
0 (D); Vn converge weakly (in L2(D)) to some

V ∈ L∞(D;Rd). Now, the limit function u solves a PDE in Ω, which involves the (weak) limit of
the term Vn ·∇un, but a priori this might be different from V ·∇u. In order to solve this issue, in
Section 4, we first prove that, on any fixed quasi-open set Ω, there exists an optimal vector field
(see Theorem 4.2). We then replace the vector fields Vn of the minimizing sequence (Vn,Ωn) by
the optimal vector field V ∗n on each domain. Finally, we use the precise expression of V ∗n to prove
that the limit function u is an eigenfunction of −∆ + V · ∇ on Ω and we obtain that λ1(Ωn, V

∗
n )

converges to λ1(Ω, V ∗), which concludes the proof (see Theorem 4.3). We cannot apply the same
argument for Theorem 1.2, since the optimal vector field might not be a gradient. On the other
hand, for gradient vector fields the first eigenvalue is a variational functional, namely

λ1(Ω,∇Φ) = min
u∈H1

0 (Ω)\{0}

∫
D e
−Φ|∇u|2 dx∫

D e
−Φu2 dx

,

and the existence of an optimal set can be obtained directly (see Theorem 4.5).

In Section 5, for a fixed drift V = ∇Φ, we prove the regularity of the optimal sets for λ1(·,∇Φ)
(Theorem 1.5). In particular, this implies the regularity of the optimal sets in the case when both
the set Ω and the vector field ∇Φ may vary (see Theorem 1.2). Our argument relies in an essential
way on the variational formulation of λ1(Ω, V ). More precisely, we show (see Lemma 5.1) that,
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if V = ∇Φ is fixed and Ω ⊂ D is a solution of (1.8), then the corresponding eigenfunction solves
the free boundary problem

min
{∫

D
e−Φ|∇u|2 dx : u ∈ H1

0 (D), u ≥ 0,
∣∣{u 6= 0}

∣∣ ≤ m, ∫
D
e−Φu2 dx = 1

}
. (1.9)

This is a one-phase free boundary problem, similar to the one studied in the seminal paper of Alt
and Caffarelli [2] on the local minimizers of the one-phase functional

u 7→
∫
|∇u|2 dx+ |{u > 0}|.

Nevertheless, there are four differences with repect to the classical one-phase problem [2].

(i) the presence of the variable coefficient e−Φ in the functional;

(ii) the presence of the integral constraint

∫
e−Φu2 dx = 1;

(iii) the presence of the measure constraint |{u > 0}| ≤ m;

(iv) the presence of the inclusion constraint {u > 0} ⊂ D (equivalent to u ∈ H1
0 (D)).

The variable coefficient e−Φ introduces several technical difficulties, but does not have an
influence on the overall strategy. The issues with the integral constraint are of similar nature. In
fact, we are able to deal with this term (see Subsection 5.3 and Remark 5.9) by reformulating the
free boundary problem (1.9) in terms of the functional

J(v) :=

∫
D
|∇v|2e−Φdx− λm

∫
D
v2e−Φdx,

where λm is the value of the minimum in (1.9). In fact, one easily checks that, if u is a solution
of (1.9), then u is also a solution to the free boundary problem

J(u) ≤ J(v) for every v ∈ H1
0 (D) such that |Ωv| ≤ m, (1.10)

where, for any function v, we set Ωv := {v > 0} = {x ∈ Ω : v(x) > 0}.
The measure constraint in free boundary problems first appeared in the work of Aguilera, Alt

and Caffarelli [1]. In fact, it is not hard to check that, at least formally, the solution u should
satisfy the optimality condition

|∇u| =
√

ΛueΦ on the free boundary ∂Ωu ∩D,
where Λu is a Lagrange multiplier formally arising in the minimization of the functional J(u)
under the constraint |Ωu| = m (see Subsection 5.4). Thus, at least formally, there is no differ-
ence between the classical one-phase free boundary problem and the problem with a measure
constraint. In practice, dealing with the measure constraint is an hardeous task. In fact, the
Lagrange multiplier Λu arises by applying internal variation to the function u, which by itself
cannot be used to deduce even the basic qualitative properties of the solution u as, for instance,
the Lipschitz continuity and the non-degeneracy (in other words, at the moment, the regularity
of the stationary free boundaries is not known). Our approach is different from the one in [1] and
is inspired by the works of Briançon-Lamboley [6] and Briançon [7]. In fact, we aim to tranform
the problem (1.10) into

J(u) + Λu|Ωu| ≤ J(v) + Λu|Ωv| for every v ∈ H1
0 (D). (1.11)

Now, it is not possible to re-write (1.10) precisely in this form. Instead, we prove that

J(u)− J(v) ≤

{
(Λu + ε)

(
|Ωv| − |Ωu|

)
for every v ∈ H1

0 (D) such that |Ωv| ≥ m;

(Λu − ε)
(
|Ωv| − |Ωu|

)
for every v ∈ H1

0 (D) such that |Ωv| ≤ m;
(1.12)

where the constant ε improves at small scales, that is, if we consider competitors v that differ from
u only in a small ball of radius r, then ε can be chosen in a function of r, ε = ε(r), which is such
that ε(r) → 0 as r → 0. In this part of the proof (Subsection 5.5) we follow the analysis of [6],
except in one fundamental point. In fact, the approach of Briançon and Lamboley requires that
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the Lagrange multiplier Λu is not vanishing, which is not a priori known (see Proposition 5.12);
in [6] the issue is solved by the method in [7]. In this paper, we give a different argument to prove
that the Lagrange multiplier is non trivial. Our approach is based on the Almgren monotonicity
formula, and the fact that it implies the non-degeneracy of the solution u. We give the proof
of the appendix, since the argument is very general (based only on the stationarity condition)
and might be of independent interest. We also notice that this simplifies the proof of (1.12) and
reduces it to three fundamental steps (see Theorem 5.16).

Our proof of Theorem 1.5 is general and can be applied to the classical one-phase problem
[2], to the one-phase problem with measure constraint [1] and to shape optimization problems as
for instance the one of [6]. Our approach is different from (and alternative to) the one of [2], [1]
and [6], as we do not use the regularity result of Alt and Caffarelli [2]. In fact, in order to prove
the regularity of the flat free boundaries (Subsection 5.9), we prove that the optimality condition
on the free boundary holds in viscosity sense (see Lemma 5.30) and then we apply the general
results of De Silva [21] (for the regularity of the free boundary ∂Ωu ∩ D) and the recent result
of Chang-Lara and Savin [18] (for the regularity at the contact points ∂Ωu ∩ ∂D). Finally, the
estimate on the dimension of the singular set (Subsection 5.10) is a consequence of the Weiss’
(quasi-)monotonicity formula (Lemma 5.37).

2. Preliminaries

In this section we recall the main definitions and the properties of the quasi-open sets, the
γ-convergence and the weak-γ-convergence.

2.1. Capacity, quasi-open sets and quasi-continuous functions.
The capacity of a set E ⊂ Rd is defined as

cap(E) := inf
{
‖u‖2H1 : u ∈ H1(Rd), u ≥ 1 in a neighborhood of E

}
,

where H1(Rd) is the Sobolev space equipped with the norm ‖u‖2H1 =

∫
Rd

(
|∇u|2 + u2

)
dx.

We say that a property holds quasi-everywhere (q.e.) if it holds on the complementary of a set
of zero capacity.

A set Ω ⊂ Rd is said to be quasi-open if there exists a decreasing sequence (ωn)n≥1 of open
sets such that, for every n ≥ 1, Ω ∪ ωn is an open set and lim

n→∞
cap(ωn) = 0.

A function u : Rd → R is said to be quasi-continuous if there exists a decreasing sequence
(ωn)n≥1 of open sets such that lim

n→∞
cap(ωn) = 0 and the restriction of u to Rd \ωn is continuous.

It is well-known (see for instance [25, Theorem 1, Section 4.8]) that, for every u ∈ H1(Rd),
there exists a quasi-continuous representative ũ of u, which is unique up to a set of zero capacity.
From now on we will identify a function u ∈ H1(Rd) with its quasi-continuous representative. We
note that, by definition of a quasi-open set and a quasi-continuous function, for every u ∈ H1(Rd),
the set Ωu := {u > 0} = {x ∈ Rd | u(x) > 0} is a quasi-open set ([30, Proposition 3.3.41]). On
the other hand, for every quasi-open set Ω, there exists a function u ∈ H1(Rd) such that Ω = Ωu

up to a set of zero capacity that is, the quasi-open sets are superlevel sets of Sobolev functions.

For any set E ⊂ Rd, the Sobolev space H1
0 (E) ⊂ H1(Rd) is defined as

H1
0 (E) :=

{
u ∈ H1(Rd) : u = 0 q.e. in Rd \ E

}
.

Note that, whenever E is open, this definition coincides with the usual definition of H1
0 (E) as

the closure of C∞c (E) with respect to the norm ‖ · ‖H1 , C∞c (E) being the set of smooth functions
compactly supported in E (see for instance [30, Theorem 3.3.42]). For any set E ⊂ Rd there is

a quasi-open set Ẽ ⊂ Rd such that cap(Ẽ \ E) = 0 and H1
0 (Ẽ) = H1

0 (E). Roughly speaking,
the quasi-open sets are the natural domains for the Sobolev space H1

0 . We notice that, for every
quasi-open set E, H1

0 (E) is a closed subspace of H1(Rd) ; if E1 ⊂ E2 are two quasi-open sets,
then H1

0 (E1) ⊂ H1
0 (E2) and the two sets E1 and E2 coincide q.e. if and only if H1

0 (E1) = H1
0 (E2).
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2.2. PDEs on quasi-open sets. Let D ⊂ Rd be a given open set and Ω ⊂ D be a quasi-open
set of finite Lebesgue measure. For every quasi-open set Ω ⊂ D and every function f ∈ L2(Ω),
the Lax-Milgram theorem and the Poincaré inequality ensure that there is a unique solution
u ∈ H1

0 (Ω) of the problem

−∆u = f in Ω, u ∈ H1
0 (Ω),

where the PDE is intended in the weak sense∫
Ω
∇u · ∇ϕdx =

∫
Ω
fϕ dx , for every ϕ ∈ H1

0 (Ω).

In particular, taking u = ϕ, we notice that ‖∇u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω). Now since Ω has
a finite Lebesgue measure, there is a constant CΩ such that ‖u‖H1 ≤ CΩ‖∇u‖L2 for every u ∈
H1

0 (Ω). Thus, we get that ‖u‖H1 ≤ CΩ‖f‖L2 .

The resolvent operator R−∆
Ω : L2(D) → L2(D) is defined as R−∆

Ω (f) := u and is a linear,

continuous, self-adjoint, positive operator such that R−∆
Ω (L2(D)) ⊂ H1

0 (Ω). Moreover, thanks to

the compact embedding H1
0 (Ω) ↪→ L2(Ω), the resolvent R−∆

Ω is also compact.
The usual comparison and weak maximum principles hold in this setting. Precisely, we have:
• if f ∈ L2(D) is a positive function and Ω1 ⊂ Ω2 ⊂ D are two quasi-open sets , then

wΩ1 ≤ wΩ2 .

• if Ω is a quasi-open set and f, g ∈ L2(Ω) are such that f ≤ g in Ω, then R−∆
Ω (f) ≤ R−∆

Ω (g).

In the sequel we denote by wΩ (and sometimes also by R−∆
Ω (1)) the solution of

−∆wΩ = 1 in Ω, wΩ ∈ H1
0 (Ω).

This function is sometimes called torsion or energy function and is useful, in particular, to define
the topology of the γ-convergence on the family of quasi-open sets, which is the purpose of the
next section. In the following proposition we summarize the main properties of the function wΩ

(see for instance [39, Proposition 3.50, Remark 3.53, Lemma 3.125, Proposition 3.72]).

Proposition 2.1 (Properties of the torsion function wΩ).

(1) There is a dimensional constant Cd > 0 such that

‖∇wΩ‖L2 ≤ Cd|Ω|
d+2
2d and ‖wΩ‖L∞ ≤ Cd|Ω|

2/d. (2.1)

(2) Let Ω1,Ω2 ⊂ D be two quasi-open sets. Then we have the estimate∫
D

(wΩ1 − wΩ1\Ω2
) dx ≤ cap(Ω2) ‖wΩ1‖2L∞(Ω1). (2.2)

(3) H1
0 (Ω) = H1

0 ({wΩ > 0}). In particular, Ω = {wΩ > 0} up to a set of zero capacity.

In the sequel we make the convention to extend to D any vector field V ∈ L∞(Ω,Rd) and any
function u ∈ H1

0 (Ω) by letting it equal to 0 on D \ Ω so that V ∈ L∞(D,Rd) and u ∈ H1
0 (D).

We notice that, given a drift V ∈ L∞(Ω,Rd), the bilinear form associated to the operator
L = −∆ + V · ∇ may not be coercive on H1

0 (Ω). Thus, in order to define the resolvent of
L = −∆ + V · ∇, we consider a large enough constant c > 0 (depending only on ‖V ‖L∞(Ω)), for
which there exists a positive constant δ > 0 such that

δ

∫
D

(
|∇u|2 + u2) dx ≤

∫
D

(|∇u|2 + (V · ∇u)u+ c u2
)
dx , for every u ∈ H1

0 (Ω). (2.3)

The bilinear form associated to the operator L′ = L+ c is hence coercive on H1
0 (Ω). Note that

if ‖V ‖L∞ ≤ τ , then we can take any 0 < δ < 1 and c ≥ δ +
τ2

4(1− δ)
.

Therefore, thanks to Lax Milgram theorem, we define the resolvent RL
′

Ω : L2(D)→ L2(D) as the
compact (non self-adjoint) operator, which maps f ∈ L2(Ω) to the unique solution of the problem

L′u = f in Ω , u ∈ H1
0 (Ω),
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which is intended in the weak sense∫
Ω

(
∇u · ∇ϕ+ (V · ∇u)ϕ+ c uϕ

)
dx =

∫
Ω
fϕ dx , for every ϕ ∈ H1

0 (Ω).

2.3. The γ-convergence and the weak-γ-convergence. In this subsection we briefly recall
the definition and the main properties of the γ-convergence of (quasi-open) sets.

Definition 2.2 (γ-convergence and weak-γ-convergence). Let D ⊂ Rd be a given open set of
finite Lebesgue measure, (Ωn)n≥1 be a sequence of quasi-open sets and let Ω be a quasi-open set,
all included in D. We say that

• Ωn γ-converges to Ω, if wΩn converges to wΩ strongly in L2(D);
• Ωn weak-γ-converges to Ω, if there exists w ∈ H1

0 (D) such that Ω = {w > 0} and wΩn

converges to w in L2(D).

Though the γ-convergence is not compact on the family of quasi-open sets (see for instance [19]
and [30, § 3.2.6] for an example), it is easy to see that the weak-γ-convergence is: by (2.1), up to a
subsequence, wΩn weakly converges in H1

0 (D) to some w ∈ H1
0 (D) and hence Ωn weak-γ-converges

to the quasi-open set Ω := {w > 0}. To deal with the non-compactness of the γ-convergence we
will use the following Lemma (see for example [12] and [30, Lemma 4.7.11]).

Lemma 2.3. Let (Ωn)n≥1 ⊂ D be a sequence of quasi-open sets that weak-γ-converges to the

quasi-open set Ω ⊂ D. Then there exists a subsequence of (Ωn)n≥1, still denoted by (Ωn)n≥1, and

a sequence (Ω̃n)n≥1 ⊂ D of quasi-open sets satisfying Ωn ⊂ Ω̃n, such that Ω̃n γ-converges to Ω.

The following lemma is a direct consequence of the definition of the weak-γ-convergence and
the fact that for every quasi-open set Ω = {wΩ > 0} (the detailed proof can be found for example
in [12] and [39, Lemma 2.2.21]).

Lemma 2.4 (Lower semi-continuity of the Lebesgue measure). Let (Ωn)n≥1 be a sequence of
quasi-open sets in D weak-γ-converging to Ω ⊂ D, then |Ω| ≤ lim inf

n→+∞
|Ωn|.

As was shown in [9] and [12], the following theorem, first proved in [13], is an immediate
consequence of Lemma 2.3 and Lemma 2.4.

Theorem 2.5 (Buttazzo-Dal Maso [13]). Let F be a functional on the quasi-open sets, which is:
• decreasing with respect to the inclusion of sets;
• lower semi-continuous with respect to the γ-convergence.

Then, for every bounded open set D ⊂ Rd and every 0 < m ≤ |D|, the shape optimization problem

min
{
F(Ω) : Ω quasi-open, Ω ⊂ D, |Ω| ≤ m

}
has a solution.

We will not be able to apply directly Theorem 2.5 to establish the existence of optimal sets
for both the problems (1.7) and (1.1) in the class of quasi-open sets. Instead, in Section 4, we
will use an argument based only on Lemma 2.3 and Lemma 2.4, but before that we will need to
extend the definition of λ1(Ω, V ) to the class of quasi-open sets. We do this in Section 3, where
we will use several times the following approximation result.

Lemma 2.6 (Approximation with open and smooth sets). Let Ω ⊂ D be a quasi-open set. Then:
(1) there is a sequence of open sets (Ωn)n≥1 that γ-converges to Ω and is such that Ω ⊂ Ωn ⊂ D
and lim

n→+∞
|Ωn| = |Ω|;

(2) there is a sequence (Ωn)n≥1 of smooth (C∞) open sets contained in D, that γ-converges to Ω.

Proof. The result is well-known; here we give the proof for the readers’ convenience.
(1) Let (ωn)n≥1 be a sequence of open sets such that limn→∞ cap(ωn) = 0 and Ωn = (Ω∪ωn)∩D

is an open set. Then, (2.2) applied to the sets Ωn and ωn \ Ω together with the second estimate
in (2.1) show that wΩn converges to wΩ in L1(D). Moreover, up to a subsequence, wΩn weakly
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converges in H1(D) thanks to the first estimate in (2.1). Since the embedding H1
0 (D) ↪→ L2(D)

is compact, there is a subsequence which converges strongly in L2(D). By uniqueness of the limit
in L1(D), it has to be wΩ. Thus, wΩn converges in L2(D) to wΩ and so, Ωn γ-converges to Ω.
Observe also that one has lim

n→+∞
|Ωn| = |Ω| since lim

n→+∞
|ωn| = 0.

(2) Firstly, assume that Ω is an open set. Let (Ωn)n≥1 be an increasing sequence of smooth
open sets included in Ω which Hausdorff converges to Ω. Then, up to a subsequence, wn := wΩn

weakly converges in H1
0 (D) to some w ∈ H1

0 (D). But Ωn,Ω are open sets such that Ωn ⊂ Ω, and
since the convergence of Ωn to Ω is Hausdorff, we can pass to the limit in the equation

−∆wn = 1 in Ωn

to see that w satisfies
−∆w = 1 in Ω.

This also shows that the sequence of norms ‖wn‖H1(D) converges to ‖w‖H1(D), so that the con-

vergence of wn to w is strong in H1(D). Finally, since Ωn ⊂ Ω, we get that w ∈ H1
0 (Ω) and hence

that w = wΩ. Therefore, the sequence of smooth open sets Ωn γ-converges to Ω.
If now Ω is merely a quasi-open set, we can approximate Ω by a sequence of open sets which

γ-converges to Ω thanks to (1). Hence, by approximating these open sets by open smooth sets as
above, we get a sequence of smooth open sets which γ-converges to Ω. Recall that the topology
of the γ-convergence is metrizable (see for example [9]). �

Remark 2.7 (The quasi-open sets cannot be γ−approximated with bigger smooth open sets).
In general, we cannot approximate a quasi-open set (or even an open set) Ω ⊂ D by a sequence
of smooth (say of class C1) open sets (Ωn)n≥1 which γ-converges to Ω and such that Ωn ⊃ Ω.

Indeed, let (ξn)n≥1 be a dense sequence in D = (0, 1)2 ⊂ R2 and pick a sequence (rn)n≥1 of
positive numbers such that

∑
n≥1 πr

2
n < 1. Set Ω := ∪n≥1Brn(ξn) ⊂ D. We now claim that if

Ωn ⊃ Ω is a smooth open set, then necessarily Ωn ⊃ D. To see this, let x0 ∈ D ⊂ Ω ⊂ Ωn.
Then if x0 ∈ ∂Ωn, there exist r > 0 and a smooth, say of class C1, function f : Rd → R such
that, up to reorienting the axis, we have Ωn ∩ Br(x0) =

{
x ∈ Br(x0) : xd > f(x1, · · · , xd−1)

}
.

It follows that Br(x0) \ Ωn ⊂ D is a nonempty open set which does not intersect Ωn. This is in
contradiction with Ωn ⊃ Ω since Ω is a dense open set in D. Hence x ∈ Ωn and this shows that
D ⊂ Ωn. Now, suppose that (Ωn)n≥1 is a sequence of smooth sets such that D ⊃ Ωn ⊃ Ω. Then
Ωn = D for every n ≥ 1. Furthermore, the weak maximum principle implies wΩ < wD = wΩn

in D, where the first inequality is strict since |Ω| < |D| = 1. Therefore, wΩn cannot strongly
converge to wΩ in L2(D).

We now give a characterization of the γ-convergence in terms of convergence of resolvent
operators. The following theorem is a generalization of [30, Lemma 4.7.3] for the operator L.

Theorem 2.8 (γ-convergence and operator convergence). Let D ⊂ Rd be a bounded open set,
(Ωn)n≥1 ⊂ D be a sequence of quasi-open sets and Ω ⊂ D be a quasi-open set. The following
assertions are equivalent :
(1) the sequence (Ωn)n≥1 γ-converges to Ω;

(2) for every sequence (fn)n≥1 ∈ L2(D) weakly converging in L2(D) to f ∈ L2(D), the sequence(
RLΩn(fn)

)
n≥1

converges to RLΩ(f) strongly in L2(D);

(3) the sequence of operators
(
RLΩn

)
n≥1
∈ L(L2(D)) converges to RLΩ in the operator norm ‖ ·

‖L(L2(D)).

Proof. It is plain to see that the equivalence between (2) and (3) holds for all sequence of compact
operators defined on Hilbert spaces. It then remains to prove that (1) and (2) are equivalent.
(1)⇒(2). Let fn ∈ L2(D) be a sequence L2(D)-weakly converging to f ∈ L2(D). Then ‖fn‖L2 is
uniformly bounded. Moreover, writing un = RLΩn(fn) we have∫

D
fnun dx =

∫
D

(
|∇un|2 + (V · ∇un)un + cu2

n

)
dx.
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Thanks to (2.3) this gives

1

2

∫
D

(f2
n + u2

n) dx ≥ δ
∫
D

(|∇un|2 + u2
n) dx,

and therefore ∫
D
f2
n dx ≥ (2δ − 1)

∫
D

(|∇un|2 + u2
n) dx.

Taking δ ∈ (1/2, 1), this shows that the sequence ‖un‖H1(D) is bounded.
Assume now that the conclusion of (2) does not hold. Then there exists ε > 0 such that, up to a

subsequence,
∥∥RLΩn(fn)−RLΩ(f)

∥∥
L2(D)

≥ ε. Moreover, up to a subsequence, un weakly converges

in H1(D) to some u ∈ H1
0 (D), and therefore gn = fn− V · ∇un− cun weakly converges in L2(D)

to g = f − V · ∇u − cu. Theorem 2.8 being true for the Laplacian (see [14, Proposition 3.4]),

we conclude that R−∆
Ωn

(gn) strongly converges in L2(D) to R−∆
Ω (g). Thus RLΩn(fn) = RΩn(gn)

and RLΩ(f) = RΩ(g) imply that RLΩn(fn) strongly converges in L2(D) to RLΩ(f), which yields a
contradiction and therefore proves (2) .
(2)⇒(1). Let (fn)n≥1 ∈ L2(D) be a sequence weakly converging in L2(D) to f ∈ L2(D). Set

wn := R−∆
Ωn

(fn) and w := R−∆
Ω (f). We claim that wn → w strongly in L2(D), which, according

to [14] and [30, Lemma 4.7.3], implies that Ωn γ-converges to Ω. Assume by contradiction that
it is not the case, and pick up ε > 0 and an increasing function ϕ : N∗ → N∗ such that∥∥wϕ(n) − w

∥∥
L2(D)

≥ ε for every n ≥ 1. (2.4)

Since the sequence (wn)n≥1 is bounded in H1
0 (D), up to a subsequence, there exists a function

z ∈ H1
0 (D) such that wϕ(n) converges to z weakly in H1

0 (D) and strongly in L2(D). Now, since

Lwn = fn + V · ∇wn + cwn := gn in Ωn,

and wn ∈ H1
0 (Ωn), wn = RLΩn(gn). But gϕ(n) ⇀ g := f + V · ∇z + cz weakly in L2(D), so that,

by assumption (2), wϕ(n) → RLΩ(g) strongly in L2(D). Then the convergence of wϕ(n) to z yields

that z = RLΩ(g), is a solution of

Lz = f + V · ∇z + cz in Ω, z ∈ H1
0 (Ω),

or, in other words, z = R−∆
Ω (f) = w. Thus, (2.4) provides a contradiction, therefore showing

that wn → w strongly in L2(D), which means that (1) holds. �

3. The principal eigenvalue on quasi-open sets

For a bounded domain Ω ⊂ Rd and V ∈ L∞(Ω,Rd), the principal eigenvalue λ1(Ω, V ), of the
(non self-adjoint) elliptic operator L = −∆ + V · ∇ on Ω with Dirichlet boundary condition on
∂Ω, was defined in [4] by

λ1(Ω, V ) = sup
{
λ ∈ R : ∃φ ∈W 2,d(Ω) such that φ > 0 and − Lφ+ λφ ≤ 0 in Ω

}
,

where it was proved that λ1(Ω, V ) ∈ R has the following properties:

(i) There is a positive eigenfunction u : Ω→ R such that u ∈W 2,p
loc (Ω), for all p ∈ [1,+∞), and

Lu = λ1(Ω, V )u in Ω, u ∈ H1
0 (Ω),

∫
Ω
u2 dx = 1,

(see [4, Theorem 2.1]).
(ii) λ1(Ω, V ) < Re (λ) for every eigenvalue λ 6= λ1(Ω, V ) of L in Ω (see [4, Theorem 2.3]).
(iii) The functional Ω 7→ λ1(Ω, V ) is decreasing with respect to the domain inclusion.

In the sequel we extend the definition of λ1(Ω, V ) to quasi-open sets. We first recall that the
definition can be extended to an arbitrary open set Ω ⊂ D by

λ1(Ω, V ) = inf λ1(Ωn, V ),
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where the infimum is taken over all the connected component Ωn of Ω. Now, in view of property
(iii) above, for any quasi-open set Ω ⊂ D, we define

λ1(Ω, V ) := sup
{
λ1(Ω̃, V ) : Ω̃ open, Ω ⊂ Ω̃ ⊂ D

}
. (3.1)

Remark 3.1. Notice that, these two definitions coincide for open sets.

Remark 3.2. The functional Ω 7→ λ1(Ω, V ), defined on the family of quasi-open sets, is still non-
increasing with respect to the set inclusion, that is λ1(Ω2, V ) ≤ λ1(Ω1, V ), whenever Ω1 ⊂ Ω2.

We will show that λ1(Ω, V ) is finite and is an eigenvalue of L in Ω satisfying the minimality
property (ii). Recall that, for a quasi-open set of finite Lebesgue measure Ω ⊂ D, we say that
λ ∈ C is an eigenvalue of the operator L = −∆+V ·∇ in Ω if there is an eigenfunction u : Rd → C,
(weak) solution to the problem

−∆u+ V · ∇u = λu in Ω, u ∈ H1
0 (Ω;C),

∫
Ω
|u|2 dx = 1. (3.2)

Let now c > 0 be the constant from Subsection 2.2 and L′ = L + c. Note that λ ∈ C is an
eigenvalue of L in Ω, if and only if, λ + c is an eigenvalue of L′ in Ω. By the argument from
Subsection 2.2, we have that the bilinear form associated to the operator L′ is coercive and so,
RL
′

Ω is a compact operator on L2(D). In particular, the spectrum is a discrete set of eigenvalues
with no accumulation points except zero and λ ∈ C is an eigenvalue of L in the sense of (3.2) if

and only if (λ+ c)−1 is an eigenvalue of RL
′

Ω .
The following theorem shows that most of the properties of the principal eigenvalue on an open

set still hold for λ1(Ω, V ) if Ω ⊂ D is merely a quasi-open set.

Theorem 3.3 (Definition of the principal eigenvalue on quasi-open sets). Let D be a bounded
open set, V ∈ L∞(D,Rd) and Ω ⊂ D be a non-empty quasi-open set. Then

(1) λ1(Ω, V ) is well-defined that is, λ1(Ω, V ) < +∞.
(2) λ1(Ω, V ) is an eigenvalue of L in Ω; there is a (non-trivial) real-valued eigenfunction u

such that

Lu = λ1(Ω, V )u in Ω , u ∈ H1
0 (Ω),

∫
Ω
u2 dx = 1.

(3) If λ ∈ C is an eigenvalue of L in Ω, then λ1(Ω, V ) ≤ Re (λ).

In order to prove Theorem 3.3 we will need the following two lemmas. The key estimate for
the proof of Theorem 3.3 (1) is contained in the following lemma inspired by [4, Proposition 5.1].

Lemma 3.4. Let V ∈ L∞(D,Rd) and Ω ⊂ D be an open set. Suppose that there is τ > 0 such

that ‖V ‖L∞(Ω) ≤ τ < 2
√
λ1(Ω, V ). Then

λ1(Ω, 0) ≥ λ1(Ω, V )− τ
√
λ1(Ω, V ). (3.3)

Proof. Let us first suppose that Ω is connected. For convenience, set λ := λ1(Ω, V ). By the
definition of the first eigenvalue of −∆ on domains, it is enough to find some φ > 0 in Ω such that
−∆φ ≥ (λ − τ

√
λ)φ in Ω. Since Ω is an open set, from [4, Theorem 2.1], there exists a positive

eigenfunction φV for the first eigenvalue of L in Ω, that is, φV > 0 in Ω and LφV = λφV . Set
φ := φαV for some α ∈ (0, 1) to be chosen later. Then, in Ω, we have

−∆φ− λφ = −α(∆φV )φα−1
V − α(α− 1)|∇φV |2φα−2

V − λφαV

=

[
λ(α− 1)− αV · ∇φV

φV
+ α(1− α)

|∇φV |2

φ2
V

]
φαV

≥
[
λ(α− 1)− ατ |∇φV |

φV
+ α(1− α)

|∇φV |2

φ2
V

]
φαV .
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The function x 7→ −ατx + α(1 − α)x2 reaches its minimum at x = τ/(2(1 − α)). Therefore, we
get

−∆φ− λφ ≥
[
λ(α− 1)− α τ2

4(1− α)

]
φαV =

[
λ(α− 1)− α τ2

4(1− α)

]
φ.

Since α ∈ (0, 1) is arbitrary, we can choose it so that it maximizes the term in the brackets of

the above estimate, that is, such that 1− α = τ/(2
√
λ). Note that, by hypothesis on τ , we have

α ∈ (0, 1). It follows

−∆φ− λφ ≥
[
−τ
√
λ+

τ2

4

]
φ ≥ −τ

√
λφ,

which proves the claim in the case when Ω is connected.
In the general case, let (Ωn)n≥1 be the connected components of Ω. Then, for every V , we

have
λ1(Ω, V ) = inf

n
λ1(Ωn, V ).

Then, we have, for all n,

λ1(Ωn, 0) ≥ λ1(Ωn, V )− τ
√
λ1(Ωn, V ) ≥ λ1(Ω, V )− τ

√
λ1(Ω, V ),

where the last inequality is due to the fact that x 7→ x− τ
√
x is a non-increasing function on the

interval [λ1(Ω, V ),+∞). �

The next lemma is a direct consequence of the classical result [32, Theorem 3.16] on the
convergence of a spectrum of closed operators with suitable properties. We will use it in the
proof of Theorem 3.3 (3).

Lemma 3.5 (Convergence of the spectra). Let H be a separable Hilbert space and (Tn)n≥1 ∈ L(H)

a sequence of compact operators converging to the compact operator T ∈ L(H) in the operator
norm ‖ · ‖L(H). Suppose that λ ∈ C \ {0} is an (isolated) eigenvalue of T and let r > 0 be such
that Br(λ)∩σ(T ) = {λ}. Then, there is n0 ≥ 1 such that for every n ≥ n0 there is an eigenvalue
λn ∈ σ(Tn) ∩Br/2(λ).

We are now in position to prove Theorem 3.3.

Proof of Theorem 3.3. Consider a maximizing sequence (Ωn)n≥1 for (3.1), that is, a sequence of

open sets (Ωn)n≥1 such that

λ1(Ω, V ) = lim
n→∞

λ1(Ωn, V ) and Ω ⊂ Ωn ⊂ D for every n ≥ 1.

We first show that we can assume that Ωn γ-converges to Ω. Let ωn be a sequence of open sets
such that Ω ∪ ωn is open and cap(ωn) → 0. We set Ω̃n := Ωn ∩ (Ω ∪ ωn) = Ω ∪ (ωn ∩ Ωn). By

(3.1) and the inclusion Ω ⊂ Ω̃n ⊂ Ωn we have λ1(Ωn, V ) ≤ λ1(Ω̃n, V ) ≤ λ1(Ω, V ), so we get

λ1(Ω, V ) = lim
n→∞

λ1(Ω̃n, V ) and Ω ⊂ Ω̃n ⊂ D for every n ≥ 1.

Thus, we may consider Ω̃n in place of Ωn as a maximizing sequence for (3.1). Finally, as in

Lemma 2.6, Ω̃n γ-converges to Ω thanks to the estimate (2.2) applied to the sets Ω̃n and Ωn∩ωn.

We now prove claim (1). Indeed, suppose by contradiction that

λ1(Ω, V ) = lim
n→∞

λ1(Ωn, V ) = +∞.

Then, by Lemma 3.4 we have that

lim
n→∞

λ1(Ωn, 0) = +∞.

Now, since Ω 7→ λ1(Ω, 0) is decreasing and Ω ⊂ Ωn, we get that λ1(Ω, 0) = +∞. By the variational
characterization

λ1(Ω, 0) = min
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|

2 dx∫
Ω u

2 dx
,
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we get that H1
0 (Ω) = {0}, which implies that Ω = ∅ (or, equivalently, cap Ω = 0), which is absurd.

We now prove (2). Let un ∈ H1
0 (Ωn) ⊂ H1

0 (D) be the (normalized) eigenfunction associated to
λ1(Ωn, V ). Then we have

L′un =
(
λ1(Ωn, V ) + c

)
un in Ωn, un ∈ H1

0 (Ωn),

∫
Ωn

u2
n dx = 1.

Multiplying the above equation by un, integrating over Ωn and using the estimate (2.3) we get

δ‖un‖2H1 ≤ λ1(Ωn, V ) + c for every n ≥ 1.

In particular, since λ1(Ω, V ) < ∞, we get that (un)n≥1 is uniformly bounded in H1
0 (D) and so,

up to a subsequence, we may assume that un converges, weakly in H1
0 (D) and strongly in L2(D),

to a function u ∈ H1
0 (D). Moreover, Ωn γ-converges to Ω and so, RL

′
Ωn

converges in norm to RL
′

Ω .
Thus,

u = lim
n→∞

un = lim
n→∞

(λ1(Ωn, V ) + c)RL
′

Ωn(un) = (λ1(Ω, V ) + c)RL
′

Ω (u),

which concludes the proof of (2).

Proof of (3). Suppose that λ ∈ C is an eigenvalue of L on Ω such that Re(λ) < λ1(Ω, V ).

Then, (λ + c)−1 ∈ C is a (non-zero) eigenvalue of the compact operator RL
′

Ω . Applying Lemma
3.5, we can assume that for n large enough, there is an eigenvalue λn of L on Ωn such that
Re(λn) < λ1(Ωn, V ), which is a contradiction with [4, Theorem 2.3] . �

Remark 3.6 (On the sign of the first eigenfunction). In particular, as a consequence of the
proof of Theorem 3.3 (2), there is an eigenfunction u of L on the quasi-open set Ω, which is
non-negative, being the limit of non-negative functions. We notice that u does not need to be
strictly positive as Ω might be disconnected.

We conclude this section with a proposition on the continuity of λ1(·, V ) with respect to the
γ-convergence.

Proposition 3.7 (γ-continuity of λ1(·, V )). Let D ⊂ Rd be a bounded open set, V ∈ L∞(D;Rd)
be a fixed vector field, and (Ωn)n≥1 ⊂ D be a sequence of quasi-open sets that γ-converges to the
quasi-open set Ω ⊂ D. Then

λ1(Ω, V ) =

{
lim
n→∞

λ1(Ωn, V ), if Ω 6= ∅,
+∞, if Ω = ∅.

Proof. Let τ = ‖V ‖L∞(D) and δ and c be as in (2.3). Set L′ = L+ c.
Suppose first that the sequence (λ1(Ωn, V ))n≥1 is bounded. Reasoning as in the proof of Theorem

3.3 (2) we get that, up to a subsequence, λ1(Ωn, V ) converges to an eigenvalue λ ∈ R of L on Ω.
Now, by the argument of Theorem 3.3 (3) and Lemma 3.5, we have that λ satisfies the property
(3) of Theorem 3.3, so λ = λ1(Ω, V ), which concludes the proof since the sequence (λ1(Ωn, V ))n≥1
is bounded .
Next, suppose that the sequence (λ1(Ωn, V ))n≥1 is unbounded. Applying Lemma 3.4, we get

that, up to a subsequence, lim
n→∞

λ1(Ωn, 0) = +∞. Since R−∆
Ωn

are self-adjoint compact operators,

we get that

lim
n→∞

‖R−∆
Ωn
‖L(L2(D)) = lim

n→∞

1

λ1(Ωn, 0)
= 0.

Finally, the γ-convergence gives that R−∆
Ω (Ω) ≡ 0 and so, H1

0 (Ω) = {0} and cap(Ω) = 0. �

Remark 3.8. In view of Proposition 3.7 we set λ1(∅, V ) = +∞.

Putting together Theorem 3.3 and Proposition 3.7 we obtain the following result.
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Corollary 3.9 (Equivalent definition of the principal eigenvalue on quasi-open sets). Let Ω be
a bounded quasi-open set and V ∈ L∞(Ω;Rd). Then, there is an eigenvalue λ1(Ω, V ) ∈ R of
L = −∆ + V · ∇ in Ω such that:

λ1(Ω, V ) = min
{

Reλ : λ ∈ C is an eigenvalue of L on Ω
}

= sup
{
λ1(Ω̃) : Ω̃ is an open set containing Ω

}
= lim
n→∞

λ1(Ωn, V ), where (Ωn)n≥1 is any sequence

of (smooth) open sets γ-converging to Ω.

Proof. The first two inequalities are due to Theorem 3.3. For the third one it is sufficient to note
that for every quasi-open set Ω there is a sequence of smooth open sets γ-converging to Ω and to
apply Proposition 3.7. �

Remark 3.10 (Faber-Krahn with drift for quasi-open sets). As further consequence of Corollary
3.9 we can extend the Hamel-Nadirashvili-Russ inequality to the class of (bounded) quasi-open
sets. Precisely, for every bounded quasi-open set Ω ⊂ Rd with |Ω| > 0 and every τ > 0, we have

λ1

(
B, τ

x

|x|

)
≤ λ1(Ω, V ) for every V ∈ L∞(Ω;Rd) with ‖V ‖L∞ ≤ τ, (3.4)

where B is the ball centered in zero of the same Lebesgue measure as Ω. Indeed, let Ω ⊂ Rd
be a bounded quasi-open set and V ∈ L∞(Ω,Rd) be such that ‖V ‖L∞ ≤ τ (in what follows we
assume that V is extended by zero outside Ω). Let (Ωn)n≥1 be a sequence of bounded open

sets which γ-converges to Ω and such that |Ωn| converges to |Ω| (see Lemmalem approx qo).
Denote by Brn (resp. B) the ball centred at 0 whose Lebesgue measure is |Brn | = |Ωn| (resp.
|B| = |Ω|). Then, since Ωn is an open set, we have λ1(Brn , τer) ≤ λ1(Ωn, v) thanks to [28,
Remark 6.10]. Moreover, Brn γ-converges to B (since |Brn | → |B| and hence Brn converges to
B in the sense of Hausdorff; see [30, Proposition 3.4.2]). Therefore, Corollary 3.9 implies that
λ1(Brn , τer) converges to λ1(B, τer) and similarly, λ1(Ωn, V ) → λ1(Ω, V ). Passing to the limit
we get (3.4).

4. Existence of optimal domains

In this section we prove the existence of optimal domains for the cost functional λ1(Ω, V ). We
first consider the case when the drift V is fixed, for which the existence follows by the result
of the previous section and a classical theorem in shape optimization. The case when both the
domain Ω and the drift V may vary requires more careful analysis and the rest of the section is
dedicated to the proof of Theorem 4.3. In the end of the section (Theorem 4.5) we also prove
that a solution (Ω, V ) exists also in the class of vector fields V obtained as gradients of Lipschitz
continuous functions.

Theorem 4.1 (Existence of optimal sets for a fixed vector field). Let D ⊂ Rd be a bounded open
set and V ∈ L∞(D;Rd). Then, for every 0 < m ≤ |D|, there is an optimal domain, solution of
the problem (1.8).

Proof. By Remark 3.2 and Proposition 3.7 we get that Ω 7→ λ1(Ω, V ) is γ-continuous and de-
creasing with respect to the set inclusion. The claim follows by Theorem 2.5. �

4.1. Optimal drifts on a fixed domain. Let Ω ⊂ Rd be a fixed bounded quasi-open set and
τ > 0 be given. We consider the following variational minimization problem

min
{
λ1(Ω, V ) : V ∈ L∞(Ω,Rd), ‖V ‖L∞ ≤ τ

}
. (4.1)

Theorem 4.2 (Optimal vector field on a fixed quasi-open set). The problem (4.1) has a solution,
which satisfies

V∗(x) = −τ ∇u(x)

|∇u(x)|
if |∇u(x)| 6= 0 ; V∗(x) = 0 if |∇u(x)| = 0 , (4.2)

where u is the eigenfunction of L = −∆ + V∗ · ∇ in Ω, associated to the eigenvalue λ1(Ω, V∗).
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Proof. Let (Ωn)n≥1 be a sequence of smooth, say of class C2,α for some 0 < α < 1, open sets

which γ-converges to Ω (see Remark 2.6). Since Ωn is smooth, we already know (see [29, theorem
1.5]) that the problem (4.1) for the fixed domain Ωn has a solution Vn. Moreover, if un is the
associated eigenfunction of −∆ + Vn · ∇ in Ωn, that is, un is defined by

−∆un + Vn · ∇un = λ1(Ωn, Vn)un in Ωn, un ∈ H1
0 (Ωn),

∫
Ωn

u2
n dx = 1,

then the optimal vector field Vn is unique and is given by

Vn(x) =

 −τ
∇un(x)

|∇un(x)|
if |∇un(x)| 6= 0,

0 if |∇un(x)| = 0.

In particular, un is a solution of

−∆un − τ |∇un| = λ1(Ωn, Vn)un in Ωn, un ∈ H1
0 (Ωn),

∫
Ωn

u2
n dx = 1.

We first claim that the sequence (λ1(Ωn, Vn))n≥1 is bounded. Indeed, by optimality of Vn, one has

λ1(Ωn, Vn) ≤ λ1(Ωn, 0), which is nothing but the principal eigenvalue of −∆ on Ωn with Dirichlet
boundary condition. But since Ωn γ-converges to Ω, Proposition 3.7 yields that λ1(Ωn, 0) →
λ1(Ω, 0) so that the sequence (λ1(Ωn, 0))n≥1 is bounded, proving our claim.

Therefore, up to a subsequence, λ1(Ωn, Vn) converges to some λ ∈ R and un has a uniformly
bounded norm in H1

0 (D), which yields a function u ∈ H1
0 (D) such that, up to a subsequence,

un ⇀ u weakly in H1
0 (D) and un → u strongly in L2(D). (4.3)

Since the sequence |∇un| is bounded in L2(D), up to a subsequence, −τ |∇un| ⇀ z weakly in
L2(D) for some function z ∈ L2(D). Therefore, fn := λ1(Ωn, vn)un + τ |∇un| weakly converges in

L2(D) to f := λu−z. Thanks to theorem 2.8 (applied to −∆), un = R−∆
Ωn

(fn) strongly converges

in L2(D) to R−∆
Ω (f). By (4.3), we have u = R−∆

Ω (f) and hence u ∈ H1
0 (Ω). Furthermore∫

D
|∇u|2 dx =

∫
D

(−zu+ λu2) dx

= lim
n→+∞

∫
D

(τ |∇un|un + λ1(Ωn, Vn)u2
n) dx = lim

n→+∞

∫
D
|∇un|2 dx,

where the first line is due to the fact that u ∈ H1
0 (Ω) and −∆u = λu− z in Ω. This proves that

un converges strongly in H1(D) to u, that |∇un| strongly converges in L2(D) to |∇u|, and hence
that z = −τ |∇u|. Therefore u satisfies

−∆u+ V∗ · ∇u = −∆u− τ |∇u| = λu in Ω, u ∈ H1
0 (Ω),

∫
Ω
u2 dx = 1,

where V∗ ∈ L∞(D,Rd) is given by (4.2). This shows that λ is an eigenvalue of the operator
L = −∆ + V∗ · ∇ in Ω. In particular, we have ‖V∗‖∞ ≤ τ and λ1(Ω, V∗) ≤ λ. On the other hand,
by the minimality of Vn, we have λ1(Ωn, Vn) ≤ λ1(Ωn, V∗). Hence, letting n → ∞, we get that
λ ≤ λ1(Ω, V∗), which yields λ = λ1(Ω, V∗) and concludes the proof of the theorem. �

4.2. Shape optimization problem over domains and vector fields. Let D ⊂ Rd be a
bounded open set, 0 < m ≤ |D| and τ > 0. We consider the shape optimization problem

min
{
λ1(Ω, V ) : Ω ⊂ D quasi-open, |Ω| ≤ m, ‖V ‖L∞ ≤ τ

}
. (4.4)

Theorem 4.3 (Existence of optimal sets and optimal vector fields). Let τ ≥ 0 and m ∈ (0, |D|).
Then the problem (4.4) has a solution (Ω∗, V ∗), where V ∗ is given by (4.2).

Proof. Let (Ωn, Vn) be a minimizing sequence for (4.4) and let

λ := inf
{
λ1(Ω, V ) : Ω ⊂ D quasi-open, |Ω| ≤ m, ‖V ‖L∞ ≤ τ

}
= lim

n→∞
λ1(Ωn, Vn),
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Since the topology of the weak γ-convergence is compact, we can assume that, up to a subsequence,
Ωn weakly γ-converges to a quasi-open set Ω ⊂ D. Then, let Ω̃n be a sequence of quasi-open sets
as in Lemma 2.3. Denote by Ṽn the optimal vector field given by Theorem 4.2 on Ω̃n, and let
un ∈ H1

0 (Ω̃n) be a solution of

−∆un + Ṽn · ∇un = λ1(Ω̃n, Ṽn)un in Ω̃n, un ∈ H1
0 (Ω̃n),

∫
D
u2
n dx = 1.

By the minimality of Ṽn and the inclusion Ωn ⊂ Ω̃n, we have

0 < λ1(Ω̃n, Ṽn) ≤ λ1(Ω̃n, Vn) ≤ λ1(Ωn, Vn) for every n ≥ 1.

Therefore, up to a subsequence, λ1(Ω̃n, Ṽn) converges to some λ̃ such that λ̃ ≤ λ. In particular,
(un)n≥1 is uniformly bounded in H1

0 (D) and so, up to a subsequence, un weakly converges in

H1
0 (D) to some u ∈ H1

0 (D). Now, since Ω̃n γ-converges to Ω, we can argue as in the end of the
proof of Theorem 4.2 to conclude that the convergence of un to u is strong in H1(D). This yields
that u is not identically zero and satisfies

−∆u+ V · ∇u = ∆u− τ |∇u| = λ̃ u in Ω, u ∈ H1
0 (Ω),

∫
D
u2 dx = 1,

where V ∈ L∞(D,Rd) is given by (4.2). Furthermore, thanks to Lemma 2.4, we have that

|Ω| ≤ m. Hence, λ ≤ λ̃. Thus, we get that λ̃ = λ and hence that λ = λ1(Ω, V ), which proves
that the couple (Ω, V ) is a solution of (4.4). �

Remark 4.4. If the box D contains a ball B ⊂ D such that |B| = m, then by Remark 3.10 a
solution of (4.4) is given by λ1(B, τx|x|).

We now consider a shape optimization problem in the more restrictive class of couples (Ω, V ),
in which the vector field V is a gradient of a Lipschitz function. Precisely, given a bounded open
set D ⊂ Rd, τ ≥ 0 and m ∈ (0, |D|), we consider the shape optimization problem

min
{
λ1(Ω,∇Φ) : Ω ⊂ D quasi-open, Φ ∈W 1,∞(D), |Ω| ≤ m, ‖∇Φ‖L∞ ≤ τ

}
. (4.5)

In this case the argument from Theorem 4.3 does not apply since the optimal vector field from
Theorem 4.2 may not be the gradient of a Lipschitz function. On the other hand, the functional
λ1(Ω,∇Φ) is variational so we can use a more direct approach. Indeed, for every λ ∈ R and
u ∈ H1

0 (Ω) we have

−∆u+∇Φ · ∇u = λu in Ω ⇔ −div (e−Φ∇u) = λe−Φu in Ω ,

and since the operator A = −div (e−Φ∇·) is self-adjoint, we get that

λ1(Ω,∇Φ) = min
u∈H1

0 (Ω)\{0}

∫
D e
−Φ|∇u|2 dx∫

D e
−Φu2 dx

. (4.6)

Theorem 4.5 (Existence of optimal sets and optimal potentials). Let D ⊂ Rd be a bounded open
set, τ ≥ 0 and m ∈ (0, |D|). Then the problem (4.5) has a solution.

Proof. Suppose that (Ωn,Φn) is a minimizing sequence for (4.5) and let λn = λ1(Ωn,∇Φn).
Given x0 ∈ D, we may suppose that Φn(x0) = 0 for every n ≥ 1. Thus, up to a subsequence, Φn

converges uniformly in D to a function Φ ∈ W 1,∞(D) such that Φ(x0) = 0 and ‖∇Φ‖L∞ ≤ τ .
Let un be the solution of

−∆un +∇Φn · ∇un = λnun in Ωn, un ∈ H1
0 (Ωn),

∫
D
u2
n dx = 1.

Then, un is uniformly bounded in H1
0 (D) an so, up to a subsequence, un converges weakly in

H1
0 (D) and strongly in L2(D) to a function u ∈ H1

0 (D). Thus, we have∫
D
e−Φu2 dx = lim

n→∞

∫
D
e−Φnu2

n dx and

∫
D
e−Φ|∇u|2 dx ≤ lim inf

n→∞

∫
D
e−Φn |∇un|2 dx.
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Now, choosing Ω := {u > 0} and applying (4.6), we get

λ1(Ω,Φ) ≤
∫
D e
−Φ|∇u|2 dx∫

D e
−Φu2 dx

≤ lim inf
n→∞

∫
D e
−Φn |∇un|2 dx∫
D e
−Φnu2

n dx
= lim inf

n→∞
λ1(Ωn,Φn).

Now, in order to conclude, it is sufficient to notice that by choosing a subsequence, we may assume
that un converges to u pointwise a.e., so we get

|Ω| = |{u > 0}| ≤ lim inf
n→∞

|{un > 0}| ≤ lim inf
n→∞

|Ωn| ≤ m,

which proves that (Ω,Φ) is a solution of (4.5). �

5. Regularity of the optimal sets

In this section we prove Theorem 1.5. We prove the regularity of the boundary ∂Ω of the
optimal sets Ω from Theorem 1.5. We only consider the case V = ∇Φ, with Φ ∈W 1,∞(D), since
in this case the optimization problem (1.8) is equivalent to a free boundary problem for the first
eigenfunction u on the optimal set Ω. The regularity for a generic vector field V ∈ L∞(D) remains
an open problem essentially due to the lack of variational characterization of the eigenvalue
λ1(Ω, V ). We start with the following lemma.

Lemma 5.1 (Reduction to a free boundary problem). Let D ⊂ Rd be a bounded open set,
0 < m < |D|, τ > 0, Φ ∈ W 1,∞(D), with ‖∇Φ‖L∞ ≤ τ , and V = ∇Φ. Suppose that the quasi-
open set Ω ⊂ D is a solution of (1.8). Then every corresponding first eigenfunction uΩ of the
operator −∆ + V · ∇ on Ω is a solution to the variational problem

λm := min
{∫

D
|∇u|2e−Φ dx : u ∈ H1

0 (D),
∣∣{u 6= 0}

∣∣ ≤ m, ∫
D
e−Φu2 dx = 1

}
. (5.1)

Conversely, if u is a solution of (5.1), then the quasi-open set {u 6= 0} is a solution of (1.8).

Proof. The proof is a straightforward consequence of the variational formula (4.6). �

Remark 5.2. It turns out that if u is a solution of (5.1), then u ≥ 0 in D (see Lemma 5.8 below).

The rest of this section is dedicated to the regularity of the free boundary ∂Ωu ∩ D and of
the whole boundary ∂Ωu if D is smooth, of a solution u of (5.1), where we recall that, for any
function v ∈ H1

0 (D) we denote by Ωv the (quasi-open) set {v > 0}.
This section is organized as follows.
In Subsection 5.1 we prove that the solutions of (5.1) are bounded. This is important due to

the fact that u solves the equation

−div (e−Φ∇u) = λ1(Ωu,∇Φ)e−Φu in Ωu,

and in the rest of the section we will often use the fact that the right-hand side is bounded.
In Subsection 5.2, we prove that the solution u is essentially a subharmonic function on D with

respect to the operator div(e−Φ∇) (see Lemma 5.5). In particular, this implies that u and the
set Ωu are well-defined everywhere (not just up to a set of measure zero). The free boundary is
thus defined as the topological boundary of the set Ωu. In the same subsection, in Lemma 5.8,
we prove that the measure constraint |{u > 0}| ≤ m is saturated, that is, |Ωu| = m. This proves
Theorem 1.5 (3).

In Subsection 5.3 we get rid of the integral constraint

∫
e−Φu2 dx = 1 and we rewrite the

problem (5.1) in terms of the functional

J(u) =

∫
D

(
|∇u|2 − λmu2

)
e−Φ dx.

In Subsection 5.4, we write the Euler-Lagrange equation that arises in the minimization of the
functional J under the measure constraint |Ωu| ≤ m. We consdider only internal variations, that
is, test functions of the form ũ(x) = u(x + tξ(x)) for smooth vector fields ξ. In Subsection 5.5,
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we prove that at small scales u is a solution (in the sense of (1.12)) to the minimization problem
for the functional v 7→ J(v) + Λu|Ωv|, where Λu is the Lagrange multiplier from Subsection 5.4.

In Subsection 5.6 and Subsection 5.7, we use the result from Subsection 5.5 to prove that the
solutions of (5.1) are Lipschitz continuous and non-degenerate at the free boundary; we also prove
that the set Ωu has finite perimeter. This proves Theorem 1.5 (1) and (2).

Subsection 5.8 is dedicated to the compactness of the blow-up sequences and the optimality of
the blow-up limits. In Subsection 5.10 we prove a (quasi-)monotoncity formula for (a variant of)
the Weiss’ boundary adjusted energy. As a consequence, we obtain that the blow-up limits are
one-homogeneaous.

In Subsection 5.9, we prove that the solution u satisfies the optimality condition |∇u| =
√

ΛueΦ

on the free boundary ∂Ωu ∩ D in viscosity sense, we deduce the regularity of the regular part
Reg(∂Ωu) and we show that the remaining singular set has zero (d − 1)-dimensional Hausdorff
measure. In this subsection, we complete the proof of Theorem 1.5 (4), (6) and (7). Finally, in
Subsection 5.10, we give some further estimates on the Hausdorff dimension of the singular set,
which complete the proof of Theorem 1.5 (5).

5.1. Boundedness of the eigenfunctions. In this subsection we give a bound on the L∞ norm
of the eigenfunctions on generic bounded quasi-open sets. We first prove that if u is a solution of
a PDE with sufficiently integrable right-hand side, then u is bounded. Then we use and iterate
an interpolation argument to improve the integrability of the eigenfunctions.

Lemma 5.3 (Boundedness of the solutions of PDEs on quasi-open sets). Let D ⊂ Rd be a bounded
open set, Ω ⊂ D be a quasi-open set and Φ ∈ W 1,∞(D). Let f ∈ Lp(D) for some p ∈ (d/2,+∞]
and let u ∈ H1

0 (Ω) be the solution of

− div (e−Φ∇u) = f in Ω, u ∈ H1
0 (Ω). (5.2)

Then, there is a dimensional constant Cd such that

‖u‖L∞ ≤
Cd e

max Φ

2/d− 1/p
|Ω|2/d−1/p‖f‖Lp ,

where max Φ = ‖Φ‖L∞(D).

Proof. We first assume that f is a non-negative function. We notice that u ≥ 0 on Ω and that u
is a minimum in H1

0 (Ω) of the functional

J(u) :=
1

2

∫
Ω
e−Φ|∇u|2 dx−

∫
Ω
fu dx.

The rest of the proof follows precisely as in [39, Lemma 3.51]. For every 0 < t < ‖u‖L∞ and
ε > 0, we consider the test function ut,ε = u ∧ t + (u − t − ε)+. The inequality J(u) ≤ J(ut,ε)
gives that

1

2

∫
{t<u≤t+ε}

e−Φ|∇u|2 dx ≤
∫
Rd
f (u− ut,ε) dx ≤ ε

∫
{u>t}

f dx ≤ ε‖f‖Lp |{u > t}|
p−1
p ,

and, using the co-area formula and passing to the limit as ε→ 0, we get∫
{u=t}

|∇u| dHd−1 ≤ 2emax Φ‖f‖Lp |{u > t}|
p−1
p . (5.3)

Now, setting ϕ(t) := |{u > t}| and using the co-area formula again as well as the Cauchy-Schwarz
inequality, we obtain

ϕ′(t) = −
∫
{u=t}

1

|∇u|
dHd−1 ≤ −

(∫
{u=t}

|∇u| dHd−1

)−1

Per({u > t})2,
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which, together with the isoperimetric inequality |{u > t}|
d−1
d ≤ CdPer({u > t}) and (5.3), gives

ϕ′(t) ≤ − Cd
emax Φ‖f‖Lp

ϕ(t)
d−2
d

+ 1
p ,

where we recall that the dimensional constant Cd may change from line to line.
Setting α = d−2

d + 1
p < 1 and C = Cd‖f‖−1

Lp e
−max Φ, we have ϕ′ ≤ −Cϕα. If

tmax := sup {t > 0; ϕ(s) > 0 for all s ∈ [0, t)} ≤ +∞,
then ϕ′(t)ϕ(t)−α ≤ −C for all t ∈ [0, tmax), so that

0 ≤ ϕ(t) ≤
(
|Ω|1−α − (1− α)Ct

) 1
1−α for all t ∈ [0, tmax).

This shows that tmax < +∞ and that

‖u‖L∞ ≤ tmax ≤
1

C

|Ω|2/d−1/p

2/d− 1/p
,

which concludes the proof when f is non-negative. For a general function f , the proof now follows
by applying the estimate in Lemma 5.3 to both the positive and the negative parts of f . �

Lemma 5.4 (Boundedness of the eigenfunctions). Let D ⊂ Rd be a bounded open set, Ω ⊂ D be
a quasi-open set, Φ ∈ W 1,∞(D) and V = ∇Φ. Let R : L2(Ω) → L2(Ω) be the resolvent operator
of −∆+V ·∇ on Ω. Then, there are constants n ∈ N, depending only on d, and C ∈ R, depending
on d, |Ω| and ‖Φ‖L∞, such that

Rn(L2(Ω)) ⊂ L∞(Ω) and ‖Rn‖L(L2(Ω);L∞(Ω)) ≤ C.

In particular, if u is a first eigenfunction of −∆ + V · ∇ on Ω normalized by ‖u‖L2 = 1, then
u ∈ L∞(Ω) and

‖u‖L∞ ≤ Cλn1 (Ω, V ).

Proof. Let us first notice that if d ≤ 3, then d/2 < 2 and so, taking n = 1, the claim follows
directly by Lemma 5.3. If d > 3, then setting 2∗ = 2d

d−2 , we have

R : L2(Ω)→ L2∗(Ω) and R : Ld(Ω)→ L∞(Ω).

Thus, interpolating between 2 and d, we get

‖R‖L(Lp;Lq) ≤ C, where p ∈ [2, d] and q =
pd

d− p
≥ pd

d− 2
, (5.4)

where C depends only on d, |Ω| and ‖Φ‖L∞ . Now, it is sufficient to notice that Rk ∈ L(L2;Lqk),

where qk = 2
( d

d− 2

)k
. For k big enough we have that qk > d/2 and so, Rk+1 ∈ L(L2;L∞), which

proves the first part of the claim. Finally, in order to get the estimate on u, it is sufficient to
notice that R(u) = λ−1

1 (Ω, V )u and Rn(u) = λ−n1 (Ω, V )u. �

5.2. Pointwise definition of the solutions. When we deal with Sobolev functions we usually
reason up to a choice of certain representative of the function. Even if this representative is defined
quasi-everywhere, there still might be a set of zero capacity where the function is not defined.
Of course, this interferes with the notion of a free boundary in the sense that we cannot just
consider the topological boundary of Ωu without specifying the representative of u that we work
with. Fortunately, the eigenfunctions of the quasi-open sets are defined pointwise everywhere,
that is every point is a Lebesgue point.

Lemma 5.5 (Subharmonicity and a mean-value formula for positive solutions of PDEs). Let
D ⊂ Rd be a bounded open set, Ω ⊂ D a quasi-open set and Φ ∈ W 1,∞(D) a given Lipschitz
function. Let f ∈ L∞(D) and u ≥ 0 be a solution to the problem (5.2) in Ω.

(1) Then, div(e−Φ∇u)+f ≥ 0 in Rd, in the sense of distributions. In particular, div(e−Φ∇u)
is a (signed) Radon measure on Rd.



EXISTENCE AND REGULARITY OF OPTIMAL SHAPES 21

(2) For any x0 ∈ Rd, we can define the value of u at x0 by

u(x0) = lim
r→0
−
∫
∂Br(x0)

u(x) dHd−1(x) = lim
r→0
−
∫
Br(x0)

u(x) dx.

Moreover, we have the identity

−
∫
∂Br(x0)

ue−ΦdHd−1 − u(x0)e−Φ(x0) =
1

dωd

∫ r

0
s1−d div(e−Φ∇u)(Bs(x0)) ds

− 1

dωd

∫ r

0
s1−d ds

∫
∂Bs

(∇Φ · ν)u e−Φ dHd−1, (5.5)

where ν denotes the normal to ∂Bs pointing outwards.
(3) Let x0 ∈ Rd and R > 0. Suppose that there is a constant C > 0 such that∣∣div (e−Φ∇u)(Br(x0))

∣∣ ≤ Crd−1 for every 0 < r ≤ R. (5.6)

Then we have the estimate∣∣∣u(x0)−−
∫
∂Br(x0)

u dHd−1
∣∣∣ ≤ eMΦ

(
C

dωd
+ 2LΦMue

MΦ

)
r for every 0 < r ≤ R, (5.7)

where LΦ := ‖∇Φ‖L∞(D), Mu := ‖u‖L∞(D) and MΦ := ‖Φ‖L∞(D).

Proof. (1) For n ∈ N define pn : R→ R by

pn(s) = 0, for s ≤ 0; pn(s) = ns, for s ∈ [0, 1/n]; pn(s) = 1, for s ≥ 1/n.

Since pn is Lipschitz continuous, we have pn(u) ∈ H1
0 (Ω) and ∇pn(u) = p′n(u)∇u. Let ϕ ∈

C∞0 (D), ϕ ≥ 0 in D. Using ϕpn(u) as a test function in (5.2), we get∫
D
pn(u)∇u · ∇ϕe−Φdx ≤

∫
D

(
pn(u)∇u · ∇ϕ+ ϕp′n(u)|∇u|2

)
e−Φdx =

∫
D
fϕpn(u) dx.

which, letting n→∞, gives the first claim.
In order to prove (2), we suppose that x0 = 0 and we calculate

d

ds
−
∫
∂Bs

ue−ΦdHd−1 =
d

ds
−
∫
∂B1

u(sξ)e−Φ(sξ)dHd−1

= −
∫
∂B1

[
ξ · ∇u(sξ)− u(sξ)ξ · ∇Φ(sξ)

]
e−Φ(sξ)dHd−1

=
s1−d

dωd
div(e−Φ∇u)(Bs)−

s1−d

dωd

∫
∂Bs

(∇Φ · ν)u e−Φ dHd−1.

Then, integrating from ρ to r (ρ < r), using the inequality from (1) and the fact that u ∈ L∞(D)
by Lemma 5.4, we get

−
∫
∂Br

ue−ΦdHd−1 −−
∫
∂Bρ

ue−ΦdHd−1 =
1

dωd

∫ r

ρ
s1−d div(e−Φ∇u)(Bs(x0)) ds (5.8)

− 1

dωd

∫ r

ρ
s1−d ds

∫
∂Bs

(∇Φ · ν)u e−Φ dHd−1

≥ − 1

2d
‖f‖L∞

(
r2 − ρ2

)
− e−min Φ‖u‖L∞ ‖∇Φ‖L∞(r − ρ)

:= −A
(
r2 − ρ2

)
−B(r − ρ),

where A,B > 0. This shows that the function r 7→ −
∫
∂Br

ue−ΦdHd−1 +Ar2 +Br is non-decreasing.

In particular, the limit `(x0) = lim
r→0
−
∫
∂Br(x0)

ue−ΦdHd−1 exists and we set u(x0) := eΦ(x0)`(x0).
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Now, (5.5) follows by letting ρ → 0 in (5.8). Finally, in order to prove the claim (3), we notice
that (5.5) implies∣∣∣−∫

∂Br(x0)
ue−Φ dHd−1 − u(x0)e−Φ(x0)

∣∣∣ ≤ ( C

dωd
+ LΦMue

MΦ

)
r for every 0 < r ≤ R,

(5.9)
Now, by the triangular inequality we have∣∣∣−∫

∂Br(x0)
u dHd−1 − u(x0)

∣∣∣ = eΦ(x0)
∣∣∣−∫
∂Br(x0)

ue−Φ(x0) dHd−1 − u(x0)e−Φ(x0)
∣∣∣

≤ eΦ(x0)
∣∣∣−∫
∂Br(x0)

ue−Φ dHd−1 − u(x0)e−Φ(x0)
∣∣∣

+ eΦ(x0)−
∫
∂Br(x0)

u
∣∣∣e−Φ(x0) − e−Φ(x)

∣∣∣ dHd−1.

Thus, the claim follows since, by the Lipschitz continuity of Φ, we have that for every x ∈ ∂Br(x0),∣∣∣e−Φ(x0) − e−Φ(x)
∣∣∣ ≤ e‖Φ‖L∞(D)‖∇Φ‖L∞(D)|x− x0|.

(5.7) is a direct consequence of (5.5). �

As a direct consequence of Lemma 5.5 and (5.5) we get the following strong maximum principle.

Lemma 5.6 (Strong maximum principle). Let D ⊂ Rd be an open connected set and u ∈ H1
0 (D)

satisfy u ≥ 0. Assume that div(e−Φ∇u) ∈ L∞(D) satisfies div(e−Φ∇u) ≤ 0. Then, if u is not
identically vanishing in D, then u is strictly positive in D.

Proof. Set A := {x0 ∈ D; u(x0) = 0}. If x0 ∈ A, then (5.5) implies that u(x) = 0 for almost
every x ∈ Br(x0) whenever Br(x0) ⊂ D. Therefore, for all x ∈ Br(x0), since x is a Lebesgue
point for u, u(x) = 0. Thus, A is open.
Consider now a sequence (xn)n≥1 ∈ A converging to x0 ∈ D. For some n large enough, there
exists a ball Br(xn) ⊂ D containing x0. Since u vanishes everywhere in Br(xn), u(x0) = 0, which
proves that A is closed in D. We conclude by the connectedness of D. �

A consequence of Lemma 5.5 is the fact that the set Ωu = {u > 0} and the (topological) free
boundary ∂Ωu∩D are well defined. Below we prove that the topological boundary coincides with
the measure theoretic one.

Lemma 5.7 (The topological boundary coincides with the measure-theoretic one). Let u ∈
H1

0 (D), u ≥ 0 in D, be a solution of (5.1), x0 ∈ ∂Ωu and let r > 0 be such that Dr(x0) :=
Br(x0) ∩D is connected. Then we have 0 < |Ωu ∩ Br(x0)|. Moreover, if x0 ∈ ∂Ωu ∩D, we have
|Ωu ∩Br(x0)| < |Dr(x0)|.

Proof. In order to prove the first inequality, suppose that x0 ∈ ∂Ωu and |Br(x0) ∩ Ωu| = 0 for
some r > 0. Since every point x ∈ Br(x0) is a Lebesgue point for u and u = 0 almost everywhere
in Br(x0) we have that u ≡ 0 in Br(x0), but this contradicts the fact that x0 ∈ ∂Ωu.

In order to show the second inequality, we assume by contradiction that |Ωu∩Br(x0)| = |Dr(x0)|
for some r > 0. We claim that u is a solution of

−div(e−Φ∇u) = λmue
−Φ in Dr(x0), where λm :=

∫
D
|∇u|2e−Φ dx.

Indeed, let v be the solution of

−div(e−Φ∇v) = λmue
−Φ in Dr(x0), v = u in D\Br(x0).

Then Lemma 5.6 implies that v > 0 in Dr(x0). Since |Ωv| = |Ωu|, the optimality of u gives∫
D |∇v|

2e−Φ dx∫
D v

2e−Φ dx
≥
∫
D
|∇u|2e−Φ dx =

∫
D |∇u|

2e−Φ dx∫
D v

2e−Φ dx
+ λm

(
1−

∫
D u

2e−Φ dx∫
D v

2e−Φ dx

)
,



EXISTENCE AND REGULARITY OF OPTIMAL SHAPES 23

which implies

0 ≥
∫
D

(
|∇u|2 − |∇v|2

)
e−Φdx+ λm

∫
D

(
v2 − u2

)
e−Φdx =

∫
D

(
|∇(u− v)|2 + λm(u− v)2

)
e−Φdx,

where the last equality follows by the definition of v and the fact that v − u ∈ H1
0 (Dr(x0)).

This implies that u = v almost everywhere and hence, by Lemma 5.5, that u = v everywhere.
Therefore, we have u > 0 in Br(x0), which is in contradiction with x0 ∈ ∂Ωu ∩D. �

Lemma 5.8 (Saturation of the constraint). Let D ⊂ Rd be an open connected set, Φ ∈W 1,∞(D),
m and τ be as in Lemma 5.1. Then every solution u of (5.1) is such that u ≥ 0 on D and |Ωu| = m
(up to a change of sign). In particular, every solution Ω of (1.8) is such that |Ω| = m.

Proof. Let u be a solution of (5.1) and set

u1 =
u+(∫

D
u2

+e
−Φ

)1/2
and u2 =

u−(∫
D
u2
−e
−Φ

)1/2
.

We first prove that either u1 or u2 is a solution of (5.1). It is obvious if u = u+ or u = u−.
Otherwise, we have u+ 6= 0 and u− 6= 0, and the claim follows from the estimate

inf

(∫
D |∇u+|2 e−Φdx∫
D u

2
+e
−Φdx

,

∫
D |∇u−|

2 e−Φdx∫
D u

2
−e
−Φdx

)
≤

∫
D

(
|∇u+|2 + |∇u−|2

)
e−Φdx∫

D

(
u2

+ + u2
−
)
e−Φdx

=

∫
D |∇u|

2 e−Φdx∫
D u

2e−Φdx
.

Up to changing u into −u, we assume that u1 is a solution of (5.1). Now, suppose by contradiction
that |Ωu| < m. Then, for every ball Br(x0) ⊂ D such that |Ωu|+ |Br| ≤ m, writing that∫

D
|∇u1|2 e−Φdx ≤

∫
D
|∇(u1 + tϕ)|2 e−Φdx

for all functions ϕ ∈ H1
0 (Br(x0)) and all t ∈ R, we easily get that u1 is a solution of

−div(e−Φ∇u1) = λme
−Φu1 in Br(x0).

By the strong maximum principle, we get u > 0 in Br(x0), which is a contradiction. This proves
both the saturation of the constraint and the positivity of u. �

5.3. A free-boundary problem with measure constraint. We now follow the strategy
adopted in [6, 7]. In particular, the proof of Theorem 5.16 below is very close to the one of
Theorem 1.5 in [6]. Note that the approach is local and that a result analogous to Theorem 5.16
with perturbations in D is vain (see Remark 1.6 in [6]).

Let u ∈ H1
0 (D) be a solution of (5.1). For any v ∈ H1

0 (D) we set

J(v) :=

∫
D
|∇v|2e−Φdx− λm

∫
D
v2e−Φdx, (5.10)

where it is recalled that λm =

∫
D
|∇u|2e−Φ dx.

Remark 5.9 (Removal of the integral constraint). It is plain to see that, when u ∈ H1
0 (D) is a

solution of (5.1),
J(u) = min

{
J(v) : v ∈ H1

0 (D), |Ωv| ≤ m
}
. (5.11)

For a ball Br(x0) ⊂ Rd we define the admissible set

A(u, x0, r) :=
{
v ∈ H1

0 (D) : u− v ∈ H1
0 (Br(x0))

}
.

Remark 5.10 (Coercivity of J). We notice that the set {v ∈ A(u, x0, r) : J(v) < C} is weakly
compact in H1

0 (D). Precisely, if u ∈ H1
0 (D), Φ ∈ W 1,∞(D) and J be given by (5.10), then there

is a constant r0 > 0, depending on d, Φ, λm and D such that for all r ≤ r0,∫
Br(x0)

|∇v|2 dx ≤ 2emax ΦJ(v) +
(
1 + 4λme

max Φ−min Φ
)
‖u‖2H1(D), ∀v ∈ A(u, x0, r). (5.12)
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Indeed, let v ∈ A(u, x0, r) with r ≤ r0. We have∫
D
v2 dx ≤ 2

∫
D

(v − u)2 dx+ 2

∫
D
u2 dx ≤ 2

λ1(Br(x0))

∫
|∇(v − u)|2dx+ 2

∫
D
u2dx

≤ 4r2
0

λ1(B1)

∫
D

(
|∇v|2 + |∇u|2

)
dx+ 2

∫
D
u2 dx,

where the last inequality is due to the (−2)-homogeneity of λ1(Br) and the fact that r ≤ r0.
Choosing r0 small enough (depending only on d, λm, ‖∇Φ‖L∞ and the diameter of D) we get∫

Br(x0)
|∇v|2 dx ≤ emax ΦJ(v) + λme

max Φ−min Φ

∫
D
v2 dx

≤ emax ΦJ(v) +
1

2

∫
Br(x0)

(
|∇v|2 + |∇u|2

)
dx+ 2λme

max Φ−min Φ

∫
D
u2 dx.

which concludes the proof of (5.12).

As a consequence, we obtain the following result, which gives us the existence of a solution to
a local version of the minimization problem (5.11) with some different measure constraint.

Lemma 5.11 (Existence of local minimizers). Let u ∈ H1
0 (D) be a solution of the problem (5.11).

Let Br(x0) ⊂ Rd be a fixed ball and let m̃ be a real constant such that m̃ > |Ωu \Br(x0)|. Then:

(1) the problem

min
{
J(v) : v ∈ A(u, x0, r), |Ωv| ≤ m̃

}
(5.13)

has a solution provided that r ≤ r0 with r0 given by Remark 5.10,
(2) if Dr(x0) := Br(x0) ∩D is connected and |Ωu ∪Dr(x0)| > m̃, then |Ωv| = m̃;
(3) there exists r0 > 0 such that, for every r < r0, every solution v of (5.13) is non-negative.

Proof. For 1, it is enough to notice that, by Remark 5.10, J is bounded from below in A(u, x0, r).
Then, if (vn)n≥1 is a minimizing sequence for (5.13), by (5.12) vn is bounded in H1 For 2, if
Dr(x0) is connected and |Ωu ∪Dr(x0)| > m̃, we argue as in the proof of Lemma 5.8 to conclude
that |Ωv| = m̃. For 3, let v be a solution of (5.13). Then, by the optimality of v and the fact
that v+ ∈ A(u, x0, r) and Ωv+ ⊂ Ωv, one has

J(v+) + J(v−) = J(v) ≤ J(v+),

which means that J(v−) ≤ 0. Therefore,∫
Br(x0)

|∇v−|2e−Φ dx ≤ λm
∫
Br(x0)

|v−|2e−Φ dx

≤ λme2rτCdr
2

∫
Br(x0)

|∇v−|2e−Φ dx,

where the second inequality is due to the fact that maxBr(x0) Φ − minBr(x0) Φ ≤ 2rτ and the

variational characterization and the scaling of λ1(Br, 0) = Cdr
−2. Thus, for r small enough

(r ≤ r0 with r0 depending only on τ , λm and d), v− = 0.
�

5.4. An internal variation optimality condition. Let D ⊂ Rd be a bounded open set, u ∈
H1

0 (D) and ξ ∈ C∞c (D;Rd). The first variation δJ(u)[ξ], of J at u in the direction ξ, is given by

δJ(u)[ξ] := lim
t→0

J(ut)− J(u)

t
, where ut(x) := u(x+ tξ(x)).

A straightforward computation gives that

δJ(u)[ξ] :=

∫
D

[
2Dξ(∇u) · ∇u+ (|∇u|2 − λmu2)(∇Φ · ξ − div ξ)

]
e−Φ dx. (5.14)
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We prove in Proposition 5.12 the existence of an Euler-Lagrange multiplier for every solution u
of (5.11). This, using a local internal variation of the boundary of the optimal set Ωu, we derive
an optimal boundary condition for u (see Lemma 5.30).

Proposition 5.12 (Euler-Lagrange equation). Let u be a solution of (5.11). Then, there exists
Λu > 0 such that

δJ(u)[ξ] = Λu

∫
Ωu

div ξ dx for every ξ ∈ C∞c (D;Rd). (5.15)

Moreover, for every x0 ∈ ∂Ωu ∩ ∂D and every r > 0, we have

δJ(u)[ξ] ≥ Λu

∫
Ωu

div ξ dx,

for every ξ ∈ C∞c (Br(x0),Rd) such that (Id+ ξ)−1(Dr(x0)) ⊂ Dr(x0).

Proof. Let ξ ∈ C∞c (D;Rd) and ut(x) = u(x+ tξ(x)). Then we have

|Ωut | = |Ωu| − t
∫

Ωu

div ξ dx+ o(t). (5.16)

Step 1. We first notice that if Br(x0) ⊂ Rd is a ball such that

Dr(x0) := Br(x0) ∩D is connected and 0 < |Dr(x0) ∩ Ωu| < |Dr(x0)|,

then there is a vector field ξ0 ∈ C∞c (Dr(x0);Rd) such that

∫
Ωu

div ξ0 dx = 1. Indeed, if this is not

the case, then we have∫
Ωu

div ξ dx = 0 for every ξ ∈ C∞c (Dr(x0);Rd).

For every ball Bρ(x1) ⊂ Dr(x0), take a vector field of the form ξ(x) = (x − x1)φε(x) with
0 ≤ φε ≤ 1 on Bρ(x1), φ radially decreasing in Bρ(x1) with |∇φε| ≤ C(ρε)−1, φε = 1 on

Bρ(1−ε)(x1) and φε = 0 on ∂Bρ(x1). Then we have

∫
Ωu

(
dφε(x) + (x− x1) · ∇φε(x)

)
dx = 0 and,

passing to the limit as ε→ 0, we get

d|Ωu ∩Bρ(x1)| − ρHd−1
(
Ωu ∩ ∂Bρ(x1)

)
= 0.

In particular, we get that the map ρ 7→ ρ−d|Ωu ∩ Bρ(x1)| is constant. Since the above identity
holds for all balls Bρ(x1) ⊂ Dr(x0), we get that |Ωu ∩Dr(x0)| = 0 or |Ωu ∩Dr(x0)| = |Dr(x0)|,
which concludes the proof of the claim.
Step 2. We now prove the first statement of the proposition. Let ξ0 ∈ C∞c (D;Rd) be as in Step
1 and ξ ∈ C∞c (D;Rd). There are two cases:

If

∫
Ωu

div ξ dx = 0, define ξ1 = ξ + ηξ0 with η > 0 so that

∫
Ωu

div ξ1 dx = η.

Set ut(x) = u(x+ tξ1(x)). Then, for t small enough, ut ∈ H1
0 (D), |Ωut | ≤ |Ωu| = m and

J(ut) = J(u) + t δJ(u)[ξ1] + o(t).

By the minimality of u we have J(u) ≤ J(ut) and so, δJ(u)[ξ1] ≥ 0. Therefore,

δJ(u)[ξ] ≥ −η δJ(u)[ξ0] for every η > 0,

and hence, we get δJ(u)[ξ] ≥ 0. Taking −ξ instead of ξ we have that δJ(u)[ξ] = 0, and hence
(5.15) holds for any Λu ≥ 0.

If

∫
Ωu

div ξ dx 6= 0, define ξ2 := ξ−ξ0

∫
Ωu

div ξ dx. Then

∫
Ωu

div ξ2 dx = 0 and, by the preceding

case, we have δJ(u)[ξ2] = 0. On the other hand,

δJ(u)[ξ2] = δJ(u)[ξ]− δJ(u)[ξ0]

∫
Ωu

div ξ dx,
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which proves (5.15) with Λu := δJ(u)[ξ0]. Moreover, for t small enough, ut(x) = u(x + tξ(x)) ∈
H1

0 (D) and, by the minimality of u, we have

J(u) ≤ J(ut) = J(u) + tΛu + o(t),

which proves that Λu ≥ 0. The strict inequality follows by a general result (Proposition A.1) for
minimizers of J with respect to internal perturbations.
Step 3. Let x0 ∈ ∂Ωu ∩ ∂D, r > 0 and ξ0 ∈ C∞c (D;Rd) be as in Step 1 so that we have
δJ(u)[ξ0] = Λu. For any ξ ∈ C∞c (Br(x0),Rd) such that (Id + ξ)−1(Dr(x0)) ⊂ Dr(x0), we set
ξ1 = ξ − (1− η)ξ0

∫
Ωu

div ξ dx where η is some positive constant. Note that the vector field ξ1 is

such that ut(x) = u(x + tξ1(x)) ∈ H1
0 (D) for small t > 0 and

∫
Ωu

div ξ1 dx = η > 0. Therefore,
using the minimality of u, we have for every t > 0 small enough

J(u) ≤ J(ut) = J(u) + tδJ(u)[ξ1] + o(t),

so that we get δJ(u)[ξ1] ≥ 0. It follows that δJ(u)[ξ] ≥ (1−η)Λu for every η > 0, which concludes
the proof. �

In the following lemma we show that the Lagrange multipliers, associated to the solutions of
variational problems with measure constraint in a fixed ball Br(x0), are continuous with respect
to variations of the measure constraint around m. This lemma will be used several times in the
proof of the optimality of the blow-up limits.

Lemma 5.13 (Convergence of the Lagrange multipliers). Let D ⊂ Rd be a bounded open set,
u ∈ H1

0 (D) be a solution of (5.11) and Λu be the constant from (5.15). Let Br(x0) ⊂ Rd be a ball
such that

Dr(x0) := Br(x0) ∩D is connected and 0 < |Dr(x0) ∩ Ωu| < |Dr(x0)|.
Let the sequence (mn)n≥1 be such that lim

n→∞
mn = m. Then, for n big enough, there is a solution

un ∈ A(u, x0, r) of the problem

min
{
J(v) : v ∈ A(u, x0, r), |Ωv| ≤ mn

}
. (5.17)

Moreover, up to a subsequence, we have:

(a) for every n there is a Lagrange multiplier Λun > 0 for which (5.15) holds for un in Dr(x0);
(b) for every n there is a vector field ξn ∈ C∞c (Dr(x0);Rd) such that

d

dt

∣∣∣
t=0

J(utn) = Λun and
d

dt

∣∣∣
t=0
|Ωutn
| = −1 where utn(x) := un(x+ tξn(x)); (5.18)

(c) un converges strongly in H1
0 (D) and pointwise almost everywhere to a function u∞ ∈ A(u, x0, r)

which is a solution of (5.13);
(d) the sequence of characteristic functions 1Ωun converges to 1Ωu∞ pointwise almost everywhere

and strongly in L2(D);
(e) if we have 0 < |Ωu \Br(x0)| < |D \Br(x0)|, then lim

n→∞
Λun = Λu.

Furthermore, if D is of class C1,1 and mn < m for every n large enough, then all these properties
still hold even if the assumption |Ωu ∩Dr(x0)| < |Dr(x0)| is not satisfied.

Proof. First of all, we notice that since |Ωu \Dr(x0)| < m < |Ωu ∪Dr(x0)|, we may assume that
the same holds for every mn, for n large enough. Thus, by Lemma 5.11, the problem (5.17) has
a solution un such that |Ωun | = mn. Then, it follows that un satisfies

0 < |Ωun ∩Dr(x0)| < |Dr(x0)|. (5.19)

Therefore, by step 1 in the proof of Proposition 5.12, there exists a vector field ξn ∈ C∞c (Dr(x0);Rd)

such that

∫
Ωun

div ξn dx = 1, and, reasoning as in Proposition 5.12, there exists Λun > 0 such that

δJ(un)[ξ] = Λun

∫
Ωun

div ξ dx for every ξ ∈ C∞0 (Dr(x0),Rd). (5.20)



EXISTENCE AND REGULARITY OF OPTIMAL SHAPES 27

Moreover, taking utn(x) = un(x + tξn(x)), we obtain (5.18). This proves (a) and (b). We notice
that the only difference with Proposition 5.12 is that in the present case, un is only a solution of
a variational problem in Br(x0).

Let now n be fixed and ξ0 ∈ C∞c (Br(x0);Rd) be the vector field, from the proof of Proposition
5.12, associated to u. Then, taking ut(x) := u(x+ tξ0(x)), we have that

d

dt

∣∣∣
t=0
|Ωut | = −

∫
Ωu

div ξ0 dx = −1,

and so, for n large enough, there is a unique tn ∈ R such that |Ωun | = mn = |Ωutn |. In particular,
there are constants C and n0, depending on u and ξ0, but not on n, such that

J(un) ≤ J(utn) ≤ C for every n ≥ n0.

Then, by Remark 5.10, (un)n≥1 is uniformly bounded in H1
0 (D), so up to a subsequence, un

converges weakly in H1, strongly in L2 and pointwise a.e. to a function u∞ ∈ A(u, x0, r). Now,
since the pointwise convergence implies 1Ωu∞ ≤ lim inf 1Ωun , we get that |Ωu∞ | ≤ lim inf mn = m.

In particular, J(u) ≤ J(u∞). On the other hand, the weak H1 convergence of un gives that

J(u∞) ≤ lim inf
n→∞

J(un) ≤ lim inf
n→∞

J(utn) = J(u),

so, we get J(u∞) = J(u), u∞ is a solution of (5.13), |Ωu∞ | = m (by the saturation of the
constraint). Moreover, J(un)→ J(u∞) since we have

lim sup
n→∞

J(un) ≤ lim sup
n→∞

J(utn) = J(u) ≤ J(u∞) ≤ lim inf
n→∞

J(un).

But un strongly converges in L2(D) to u∞ so that it gives
∫
D e
−Φ|∇un|2 dx→

∫
D e
−Φ|∇u∞|2 dx,

which means that the convergence of un to u is strong in H1
0 (D).

We now check that the convergence of 1Ωun to 1Ωu∞ is strong in L2. Indeed, for all non-negative

function ϕ ∈ L2(D), the Fatou lemma shows that∫
D
1Ωu∞ϕ ≤

∫
D

lim1Ωunϕ ≤ lim

∫
D
1Ωunϕ. (5.21)

Up to a subsequence, there exists h ∈ L2(D) such that 1Ωun ⇀ h weakly in L2(D). Thus, (5.21)

yields 1Ωu∞ ≤ h. Moreover, ‖h‖2 ≤ lim
∥∥1Ωu∞

∥∥
2
. As a consequence, ‖h‖2 = m1/2, which entails

that 1Ωun → h strongly in L2(D). Since 1Ωu∞ ≤ h, we conclude that 1Ωun → 1Ωu∞ strongly in

L2(D), and so, up to a subsequence 1Ωun converges to 1Ωu∞ pointwise almost everywhere. This
proves (c) and (d).

In order to prove (e), we first notice that u and u∞ are both solutions of (5.11) since J(u∞) =
J(u). Therefore, there is a Lagrange multiplier Λ∞ such that

δJ(u∞)[ξ] = Λ∞

∫
Ωu∞

div ξ dx for every ξ ∈ C∞c (D;Rd), (5.22)

Moreover, by (c) and (d), we get that

δJ(u∞)[ξ] = lim
n→∞

δJ(un)[ξ] and

∫
Ωu∞

div ξ dx = lim
n→∞

∫
Ωun

div ξ dx,

for every ξ ∈ C∞c (Dr(x0);Rd). Now, choosing ξ ∈ C∞c (Dr(x0);Rd) such that

∫
Ωu∞

div ξ dx 6= 0 and

using (5.22) and (5.20) we get that Λun converges to Λ∞. Finally, if we have 0 < |Ωu \Br(x0)| <
|D \ Br(x0)|, there exists ξ ∈ C∞c (D \ Br(x0);Rd) such that

∫
Ωu∞

div ξ dx 6= 0, so that Λ∞ = Λu

since u = u∞ outside the ball Br(x0).
The proof of the last statement of the Proposition is very similar. We have |Ωu\Dr(x0)| < m =

|Ωu∪Dr(x0)| so that, since mn < m, we have |Ωu\Dr(x0)| < mn < |Ωu∪Dr(x0)| for every n large
enough. It follows from Lemma 5.11 that the problem (5.17) has a solution un with |Ωun | = mn

and such that (5.19) holds. Note also that there exists a vector field ξ0 ∈ C∞0 (Br(x0),Rd) such
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that (Id+tξ0)−1(Dr(x0)) ⊂ Dr(x0) for every small t > 0 and
∫

Ωu
div ξ0 dx = 1 (consider a smooth

extension of the normal to the boundary of D on ∂D∩Br/2(x0)). Moreover, we have tn > 0 (since

mn < m) and hence utn ∈ H1
0 (D). The rest of the proof is unchanged. �

5.5. Almost optimality of u at small scales. Let u be a solution of (5.1) in D ⊂ Rd. For
x0 ∈ Rd and h > 0, we define the upper and the lower Lagrange multipliers, µ−(h, x0, r) ≥ 0 and
µ+(h, x0, r) ≥ 0, by

µ+(h, x0, r) = inf{µ ≥ 0 : J(u) + µ|Ωu| ≤ J(v) + µ|Ωv|, ∀v ∈ A(u, x0, r), m ≤ |Ωv| ≤ m+ h},
µ−(h, x0, r) = sup{µ ≥ 0 : J(u) + µ|Ωu| ≤ J(v) + µ|Ωv|, ∀v ∈ A(u, x0, r), m− h ≤ |Ωv| ≤ m}.

Remark 5.14 (µ− ≤ Λu ≤ µ+). We notice that if Br(x0) ⊂ Rd is a ball such that Dr(x0) :=
D ∩Br(x0) is connected and 0 < |Dr(x0) ∩ Ωu| < |Dr(x0)|, then

µ−(h, x0, r) ≤ Λu ≤ µ+(h, x0, r) for every h > 0.

Indeed, by Step 1 of the proof of Proposition 5.12, there is a vector field ξ ∈ C∞c (Dr(x0);Rd)

such that

∫
Ωu

div ξ dx = 1. Let ut(x) = u(x + tξ(x)). Then for |t| small enough ut ∈ A(u, x0, r)

and m− h < |Ωut | < m+ h. Moreover, for every µ ≥ 0 we have

J(ut) + µ|Ωut | = J(u) + tΛu + µ(|Ωu| − t) + o(t). (5.23)

Now, if t > 0 is small enough and Λu < µ, then m > |Ωut | and, by (5.23), J(ut) + µ|Ωut | <
J(u) + µ|Ωu|, which proves that Λu ≥ µ−(h, x0, r). Analogously, if t < 0 and Λu > µ, then
m < |Ωut | and again J(ut) + µ|Ωut | < J(u) + µ|Ωu|, which gives that Λu ≤ µ+(h, x0, r).

Remark 5.15 (Monotonicity of µ+ and µ−). We notice that the following inclusion holds:

A(u, x, r) ⊆ A(u, x0, r0) for every Br(x) ⊂ Br0(x0).

In particular, for every 0 < h ≤ h0 and every Br(x) ⊂ Br0(x0), we have

µ−(h0, x0, r0) ≤ µ−(h, x, r) and µ+(h, x, r) ≤ µ+(h0, x0, r0).

Theorem 5.16 (Convergence of the upper and the lower Lagrange multipliers). Let u be a
solution of (5.1) in the bounded open set D ⊂ Rd and let Λu be given by Proposition 5.12. Then
there exists a constant r0 > 0, which depends only on τ, λm and d, with the following property:
for every ball Br(x0) ⊂ Rd centred at x0 ∈ ∂Ωu with r ≤ r0 and such that

Dr(x0) := Br(x0) ∩D is connected and 0 < |Ωu ∩Dr(x0)| < |Dr(x0)|, (5.24)

we have
lim
h→0

µ+(h, x0, r0) = lim
h→0

µ−(h, x0, r0) = Λu.

If, moreover, D is of class C1,1, then there exists a constant r1 > 0, which depends only on
τ, λm, d and D, such that, for every ball Br(x0) centred at x0 ∈ ∂Ωu ∩ ∂D with r ≤ r1, we have

lim
h→0

µ−(h, x0, r0) = Λu.

Proof of Theorem 5.16: Let x0 ∈ ∂Ωu be such that (5.24) holds and let h > 0 be small. We set
for simplicity r = r0, Br(x0) = Br, µ+(h) := µ+(h, x0, r) and µ−(h) := µ−(h, x0, r). We proceed
in three steps.
Step 1. We first prove that µ+(h) is finite. Let, for any n ∈ N, vn ∈ A(u, x0, r) be a solution of
the variational problem

min
{
J(v) + n(|Ωv| −m)+ : v ∈ A(u, x0, r), |Ωv| ≤ m+ h

}
. (5.25)

If there exists n such that |Ωvn | ≤ m, then µ+(h) ≤ n and hence µ+(h) is finite. Indeed,
by the minimality of u and the definition of vn, we have for every v ∈ A(u, x0, r) such that
m ≤ |Ωv| ≤ m+ h

J(u) + n|Ωu| ≤ J(vn) + n|Ωu| ≤ J(v) + n|Ωv|,
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so that µ+(h) ≤ n and the inequality µ+(h) <∞ holds.
Suppose, by contradiction, that |Ωvn | > m for every n. First notice that since J(vn) is bounded
from below (see Remark 5.10) and J(vn) + n(|Ωvn | − m) ≤ J(u), we have that |Ωvn | → m as
n→∞. Since vn is a solution of (5.17) with mn := |Ωvn |, there is a Lagrange multiplier Λvn such
that (5.15) holds for vn and a vector field ξn such that (5.18) holds for vtn(x) = vn(x + tξn(x)).
For t > 0 small enough, vtn ∈ A(u, x0, r) and m < |Ωvtn

| < m+ h. Then, by the minimality of vn
we have

J(vn) + n(|Ωvn | −m) ≤ J(vtn) + n(|Ωvtn
| −m) = J(vn) + tΛvn + n(|Ωvn | − t−m) + o(t),

which implies n ≤ Λvn , in contradiction with lim
n→∞

Λun = Λu from Lemma 5.13.

Step 2. lim
h→0

µ+(h) = Λu. Let (hn)n≥1 be a decreasing sequence such that hn → 0. Since

Λu ≤ µ+(h) and h 7→ µ+(h) is non-decreasing, it is sufficient to prove that lim
n→∞

µ+(hn) = Λu.

Fix ε ∈ (0,Λu) and let 0 < αn := µ+(hn)− ε < µ+(hn). Let un be the solution of the problem

min
{
J(v) + αn(|Ωv| −m)+ : v ∈ A(u, x0, r), |Ωv| ≤ m+ hn

}
.

Notice that |Ωun | > m, since otherwise we would have J(u) ≤ J(un) + αn(|Ωun | −m)+, which
contradicts the definition of µ+(hn). For n large enough, (5.24) holds with un, and since un is
solution of (5.17) with mn = |Ωun |, by Proposition 5.12, there is a Lagrange multiplier Λun ≥ 0
and a vector field ξn such that (5.18) holds for utn(x) := un(x+ tξn(x)). By the minimality of un,
for t > 0 small enough, we have

J(un) + αn(|Ωun | −m) ≤ J(utn) + αn(|Ωutn
| −m) = J(un) + tΛun + αn(|Ωun | − t−m) + o(t),

which shows that Λun ≥ αn. By Lemma 5.13 we have

lim
n→∞

µ+(hn)− ε = lim
n→∞

αn ≤ lim
n→∞

Λun = Λu,

which proves the claim since ε > 0 is arbitrary.
Step 3. lim

h→0
µ−(h) = Λu. We prove this result for any x0 ∈ ∂Ωu, which will conclude the proof

of the Theorem. Note that the smoothness of D implies that there exists a constant cD > 0 such
that Dr(x0) is connected for every r ≤ rD and every x0 ∈ ∂Ωu ∩ ∂D.

Let ε > 0 and (hn)n∈N be a decreasing infinitesimal sequence. We will show that Λu − ε ≤
lim
n→∞

µ−(hn). Let un be a solution of the problem

min
{
J(v) + (µ−(hn) + ε)(|Ωv| − (m− hn))+ : v ∈ A(u, x0, r), |Ωv| ≤ m

}
. (5.26)

Up to replacing un by u+
n , we can assume that un ≥ 0 in Br (the argument is similar to the proof

of Lemma 5.11). We claim that

m− hn ≤ |Ωun | < m. (5.27)

Suppose that |Ωun | = m. By the minimality of u and un we get

J(u) + (µ−(hn) + ε)|Ωu| ≤ J(un) + (µ−(hn) + ε)|Ωun | ≤ J(v) + (µ−(hn) + ε)|Ωv|,

for every v ∈ A(u, x0, r) such that m−hn ≤ |Ωv| ≤ m, which contradicts the definition of µ−(hn).
Now, if |Ωun | < m− hn, we have J(un) ≤ J(un + tϕ) for every ϕ ∈ C∞c (Dr(x0)) with sufficiently
small compact support. Thus un solves the PDE −div(e−Φ∇un) = λme

−Φun in Dr(x0). Since
un ≥ 0 in Dr(x0), by the strong maximum principle, we have that either un ≡ 0 or un > 0 in
Dr(x0), in contradiction with (5.19). Thus, we proved (5.27).

We have that un is solution of (5.17) with mn := |Ωun | which converges to m as n → ∞.
By Lemma 5.13, we have an Euler-Lagrange equation for un in Br for some Λun . Let ξn ∈
C∞c (Dr(x0);Rd) be the vector field from Lemma 5.13 (b) and let utn(x) = un(x + tξn(x)). For
negative t < 0 and |t| small enough, utn ∈ A(u, x0, r) and |Ωun | ≤ |Ωutn

| < m. Thus, by the
minimality of un, we get

J(un)+(µ−(hn)+ε)(|Ωun |− (m−hn)) ≤ J(un)+Λunt+(µ−(hn)+ε)(|Ωun |− t− (m−hn))+o(t),
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which implies that Λun ≤ µ−(hn) + ε. Now, by Lemma 5.13, we get

Λu = lim
n→∞

Λun ≤ lim
n→∞

µ−(hn) + ε,

which conclude the proof. �

Remark 5.17 (Quasi-minimality at small scales). Suppose that D ⊂ Rd is just a bounded open
set. By the monotonicity of µ+ and µ− with respect to the inclusion (Remark 5.15) and a covering
argument we get that for every compact set K ⊂ D there is r(K) > 0 such that: for every ε > 0
there is h > 0 such that

µ+(h, x, r)− ε ≤ Λu ≤ µ−(h, x, r) + ε for every x ∈ K ∩ ∂Ωu and every 0 < r ≤ r(K).

If, moreover, D is of class C1,1, then then exists rD > 0 such that, for every ε > 0 there exists
h > 0 such that: for every 0 < r ≤ rD and every x0 ∈ ∂Ωu we have

µ+(h, x, r)− ε ≤ Λu ≤ µ−(h, x, r) + ε if |Ωu ∩Dr(x0)| < |Dr(x0)|,
Λu ≤ µ−(h, x, r) + ε otherwise.

5.6. Lipschitz continuity of the eigenfunctions on the optimal sets. In this subsection
we prove that the solutions of (5.1) are (locally) Lipschitz continuous in D. For δ > 0 we set
Dδ = {x ∈ D : d(x, ∂D) > δ} and let µ > 0 be fixed. By Theorem 5.16 and Remark 5.17 we get
that if u is a solution of (5.1) and µ > Λu, then there is r0 > 0 such that, for every x0 ∈ ∂Ωu∩Dδ,
we have

J(u) + µ|Ωu| ≤ J(v) + µ|Ωv| for every v ∈ A(u, x0, r0) such that |Ωv| ≥ |Ωu|. (5.28)

Note that the condition |Ωv| ≤ |Ωu|+ h can be dropped by choosing r0 such that |Br0 | ≤ h. We
will prove that if u ∈ H1(Br0) is bounded, nonnegative and satisfies (5.5) and (5.28), then u is
Lipschitz in Dδ.

Proposition 5.18 (Lipschitz continuity of the eigenfunctions on the optimal sets). Let D ⊂ Rd
be a bounded open set. Let τ ≥ 0, m ∈ (0, |D|) and Φ ∈W 1,∞(D). Then, every solution of (5.1)
is locally Lipschitz continuous in D. More precisely, it is Lipschitz in Dδ for all δ > 0. Moreover,
if the box D is of class C1,1, then u (extended by 0 outside D) is Lipschitz in Rd.

The proof is based on the following lemma, whose (more general) two-phase counterpart can
be found for instance in [3], [5] and [10].

Lemma 5.19 (A bound on the measure div (e−Φ∇u)). Let u be a solution of (5.11) and let
r0 > 0 be such that u satisfies (5.28) for some µ > Λu. Then, there is a constant C > 0 such that
for every x0 ∈ ∂Ωu ∩Dδ we have

|div(e−Φ∇u)|(Br(x)) ≤ Crd−1 for every ball B2r(x) ⊂ Br0(x0). (5.29)

Proof. Let x = 0 and η ∈ C∞c (B2r) be such that

0 ≤ η ≤ 1 in B2r , η = 1 in Br , ‖∇η‖L∞ ≤
Cd
r
.

Using u+ tη as a test function for J , and setting 〈f, g〉 :=

∫
D
fg dx, we get

2〈div(e−Φ∇u) + λmue
−Φ, η〉 ≤ tJ(η) +

µ

t
|B2r| ≤ C

(
t‖∇η‖2L2 +

rd

t

)
where the constant C > 0 depends on d, Φ and µ. Now, minimizing over t > 0 and using the

estimate ‖∇η‖L2 ≤ Cdr
d
2
−1, we get

〈div(e−Φ∇u) + λmue
−Φ, η〉 ≤ Crd−1.
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By Lemma 5.5, we have that div(e−Φ∇u) + λmue
−Φ is a positive Radon measure. Thus, the

inequality η ≥ 1Br and the boundedness of u imply

|div(e−Φ∇u)|(Br) ≤ λm
∫
Br

ue−Φ dx+ 〈div(e−Φ∇u) + λmue
−Φ,1Br〉 ≤ Crd−1. �

The main ingredients of the proof of Proposition 5.18 will be Lemma 5.19 and the classical
gradient estimate that we recall in the lemma below.

Lemma 5.20 (Gradient estimate). Let p > d. Let U be an open subset of Rd and let u ∈
W 2,p
loc (U) ∩ Lp(U) be a (strong) solution to the equation

d∑
i,j=1

aij(x)∂iju+

d∑
i=1

bi(x)∂iu = f in U ,

where f ∈ Lp(U) and we suppose that:

(a) the functions aij : U → R are Hölder continuous, that is, there are constants Ca > 0 and
δa > 0 such that

|aij(x)− aij(y)| ≤ Ca|x− y|δa for every x, y ∈ U ;

(b) there is a constant M > 0 such that

‖aij‖L∞(U) ≤M and ‖bi‖L∞(U) ≤M for every 1 ≤ i, j ≤ d ;

(c) the matrix is (aij)ij is uniformly elliptic, that is, there is a constant ca > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ ca|ξ|2 for every x ∈ U and ξ = (ξ1, . . . , ξd) ∈ Rd .

Then, for any domain U ′ ⊂⊂ U , we have

‖u‖C1,γ(U ′) ≤ C
(
‖u‖Lp(U) + ‖f‖Lp(U)

)
where γ = 1− d

p
,

and C is a constant depending on d, p, M , Ca, δa, ca, U ′ and U .

Proof. First notice that by [27, Theorem 9.11], there is a constant C ′ such that

‖u‖W 2,p(U ′) ≤ C ′
(
‖u‖Lp(U) + ‖f‖Lp(U)

)
.

Now, the claim follows by the Sobolev inequality (see [24, Section 5.6, Theorem 6]). �

Proof of Proposition 5.18. Let u be a solution of (5.1). We proceed in four steps.
Step 1. Ωu is open. Let x̄ ∈ ∂Ωu ∩ D. We will prove that u(x̄) = 0. Let r1 > 0 be such that
Br1(x̄) ⊂ D and let xn ∈ Br1/2(x̄) be a sequence converging to x̄ such that u(xn) = 0 (such a
sequence exists by Lemma 5.7). By Lemma 5.19 and Lemma 5.5 (5.7), for every n and every
r ≤ r1/2 we have

−
∫
∂Br(xn)

u dHd−1 ≤ u(xn) + Cr = Cr,

where the constant C does not depend on n. Passing to the limit as n→∞, we get that

−
∫
∂Br(x̄)

u dHd−1 ≤ Cr for every r ≤ r1/2,

which, passing to the limit as r → 0, proves that u(x̄) = 0.
Step 2. Gradient estimate in Ωu. We claim that, for every ball Br(x̄) ⊂ Ωu, there is a constant
C2, depending only on Φ, d and λm, such that

‖∇u‖L∞(Br/2(x̄)) ≤
C2

r
‖u‖L∞(Br(x̄)). (5.30)
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Indeed, suppose that x̄ = 0 and set Φr(x) := Φ(rx) and ur(x) = u(rx). Then ur is a solution of

div(e−Φr∇ur) + λme
−Φrur = 0 in B1,

which can be re-written as

∆ur −∇Φ · ∇ur = −λmur in B1.

Applying Lemma 5.20 with U = B1, U ′ = B1/2, aij = δij , b = ∇Φ, M = 1 + ‖∇Φ‖L∞ , f = −λmu
and any p > d, we get

‖∇ur‖L∞(B1/2) ≤ ‖ur‖C1,α(B1/2) ≤ C2‖ur‖L∞(B1),

which, after rescaling, is precisely (5.30).
Step 3. Proof of the local Lipschitz continuity. Let x̄ ∈ Ωu ∩Dδ and set r := dist(x̄, ∂Ωu). Let
r0 ∈ (0, δ/2) be such that u satisfies (5.28) for every point x0 on ∂Ωu ∩Dδ/2 (such an r0 exists by
a standard covering argument). We now consider two cases

Case 1. If r ≥ r0/6, then the estimate (5.30) gives |∇u(x̄)| ≤ Cr0 .
Case 2. If r ≤ r0/6, let ȳ be the projection of x̄ on ∂Ωu, that is, ȳ ∈ ∂Ωu and r = |x̄− ȳ|. Notice

that in this case we have that ȳ ∈ ∂Ωu ∩Dδ/2. Now, take any z̄ ∈ Br(x̄). By Lemma 5.19 and by
the estimate (5.7) of Lemma 5.5, we have

u(z̄) ≤ −
∫
∂Bs(z̄)

u dHd−1 + Cs for every 0 < s ≤ r,

where C is the constant in the right-hand side of (5.7). Now, multiplying by sd−1 and then
integrating from 0 to r the above inequality, we get

u(z̄) ≤ −
∫
Br(z̄)

u dx+ Cr ≤ 3d−
∫
B3r(ȳ)

u dx+ Cr

=
d

rd

∫ 3r

0
sd−1 ds−

∫
∂Bs(ȳ)

u dHd−1 + Cr.

Using again (5.7), this time for ȳ (at which u(ȳ) = 0 by Step 1 of the proof), we get that

u(z̄) ≤ 3d+1Cr for every z̄ ∈ Br(x̄).

Finally, using the estimate (5.30) this gives

|∇u(x̄)| ≤ ‖∇ū‖L∞(Br/2(x̄)) ≤
C2

r
‖u‖L∞(Br(x̄)) ≤ 3d+1C2C. (5.31)

This proves that |∇u| is bounded in Dδ without assuming any regularity of D.
Step 4. Global Lipschitz estimate. We first notice that since D is C1,1 regular, the radius r0

for which (5.28) holds does not depend on the point x0 ∈ ∂Ωu. Now, let x̄ ∈ Ωu \ Dr0 and set
r := dist(x̄, ∂Ωu ∩D). We consider the projection ȳ of x̄ on ∂Ωu and we distinguish two cases.
If 6r ≤ dist(x̄, ∂D), then we apply the estimate from Step 3 and we get that |∇u(x̄)| ≤ C. If
6r ≥ dist(x̄, ∂D), we consider the solution w to the problem

−div(e−Φ∇w) = 1 in D, w ∈ H1
0 (D),

which is Lipschitz continuous in Rd since D is of class C1,1 (see for example [27, Theorem 9.13]).
Moreover, by the strong maximum principle, we have that u ≤ Cw for some constant C depending
on λm, d and Φ. Therefore, setting r1 = dist(x̄, ∂D), we have for every z̄ ∈ Br1(x̄),

u(z̄) ≤ Cw(z̄) ≤ C|z̄ − ȳ| ≤ Cr1,

and we conclude by the gradient estimate (5.30). �
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5.7. Non-degeneracy of the eigenfunctions and finiteness of the perimeter of Ωu. Let
u be a solution of (5.1) in the bounded open set D ⊂ Rd. Let x0 ∈ ∂Ωu and r0(x0) be such that
for every 0 < r ≤ r(x0) the set Dr(x0) := Br(x0) ∩ D is connected. Notice that such an r(x0)
trivially exists if x0 ∈ ∂Ωu ∩D, while in the general case it is sufficient to assume some a priori
regularity of the box D. Then, by Remark 5.17, for every µ < Λu there is some r0 > 0 such that,
for every x0 ∈ ∂Ωu, we have

J(u) + µ|Ωu| ≤ J(v) + µ|Ωv| for every v ∈ A(u, x0, r0) such that |Ωv| ≤ |Ωu|. (5.32)

This property was first exploited by Alt and Caffarelli to prove the non-degeneracy of the solu-
tions. More recently, it was exploited by Bucur who introduced the notion of a shape subsolution
which found application to several shape optimization problems (see for example [8] and [11]).

Lemma 5.22 below is a fundamental step in the proof of the regularity of the free boundary
since it allows to prove that the blow-up limits (see Subsection 5.8) are non trivial. It is the
analogue of the non-degeneracy estimate from [2] and the proof is based on the same idea. Before
we state it, we recall the following boundary estimate for solutions to elliptic PDEs.

Lemma 5.21 (Boundary gradient estimate). Let p > d. Let U be a bounded connected open
subset of Rd with C1,1 boundary. Let T1, . . . , Tk be the connected components of the boundary
∂U and let c1, . . . , ck are given constants. Let u ∈ W 2,p

loc (U) ∩ Lp(U) be a (strong) solution to the
problem

d∑
i,j=1

aij(x)∂iju+

d∑
i=1

bi(x)∂iu = f in U , u = ci in Ti , i = 1, . . . , k ,

where f ∈ Lp(U) and we suppose that A = (aij)ij and b = (b1, . . . , bd) satisfy the conditions (a),
(b) and (c) of Lemma 5.21. Then, we have

‖u‖C1,γ(U) ≤ C
(
‖u‖Lp(U) + ‖f‖Lp(U)

)
where γ = 1− d

p
,

and C is a constant depending on d, p, M , Ca, δa, ca (defined in Lemma 5.20), and U .

Proof. By [27, Theorem 9.13], there is a constant C ′ such that

‖u‖W 2,p(U) ≤ C ′
(
‖u‖Lp(U) + ‖f‖Lp(U)

)
.

The claim follows by the Sobolev inequality (see for instance [24, Section 5.6, Theorem 6]). �

Lemma 5.22 (Non-degeneracy of the eigenfunctions on the optimal sets). Let u be a solution of
(5.1) in the bounded open set D ⊂ Rd. Suppose that x0 ∈ ∂Ωu, 0 < µ < Λu and r0 > 0 are such
that (5.32) holds. Then there are constants c > 0 and r1 > 0 which depend only on τ, λm, µ and
d, such that for every ball B2r(x) ⊂ Br0(x0) with r ≤ r1, we have that:

If ‖u‖L∞(B2r(x)) ≤ cr , then u = 0 in Br(x).

Proof. Let r, x be such that B2r(x) ⊂ Br0(x0) and ‖u‖L∞(B2r(x)) < cr. Assume for simplicity that

x = 0. Let η ∈ H1(B2r) be the solution of the problem

−div(e−Φ∇η) = βe−Φ in B2r\Br, η = 0 in Br, η = cr in D\B2r,

where β > 0 will be chosen later. Consider the test function ũ ∈ H1
0 (D) defined as

ũ = u ∧ η in B2r, ũ = u in D\B2r.

By (5.32), we get∫
D
|∇u|2e−Φdx− λm

∫
D
u2e−Φdx+ µ|Ωu| ≤

∫
D
|∇ũ|2e−Φdx− λm

∫
D
ũ2e−Φdx+ µ|Ωũ|. (5.33)
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Let E(u, r) :=

∫
Br

|∇u|2e−Φdx+ µ|Ωu ∩Br|. Since ũ ≡ 0 in Br we have |Ωu| − |Ωũ| = |Ωu ∩Br|

and

∫
Br

ũ2 dx =

∫
Br

|∇ũ|2 dx = 0. Thus, we can rewrite (5.33) in the form

E(u, r) ≤
∫
B2r\Br

(
|∇ũ|2−|∇u|2

)
e−Φdx+4crλm

∫
B2r\Br

(u− ũ)e−Φdx+λm

∫
Br

u2e−Φdx, (5.34)

where in the estimate of the second term we used that in Br

u2 − ũ2 = (u+ ũ)(u− ũ) ≤ 2u(u− ũ) ≤ 2cr(u− ũ).

Next, we estimate the first term of the right-hand side of (5.34). We have

|∇ũ|2 − |∇u|2 = −|∇(ũ− u)|2 + 2∇ũ · ∇(ũ− u) ≤ 2∇ũ · ∇(ũ− u). (5.35)

Integrating by parts and using that (u− η)+ = 0 on ∂B2r, we get∫
B2r\Br

∇ũ · ∇(ũ− u)e−Φdx = −
∫
B2r\Br

∇η · ∇[(u− η)+]e−Φdx (5.36)

≤ −β
∫
B2r\Br

(u− η)+e
−Φdx+ ‖∇η‖L∞(∂Br)

∫
∂Br

ue−ΦdHd−1.

We now set β = 2crλm so that, combining (5.34), (5.35) and (5.36) we have

E(u, r) ≤ 2‖∇η‖L∞(∂Br)

∫
∂Br

ue−ΦdHd−1 + λm

∫
Br

u2e−Φdx.

Now, for every s ∈ (0, r], we have by the W 1,1 trace inequality in Bs∫
∂Bs

ue−ΦdHd−1 ≤ e−min ΦCd

(∫
Bs

|∇u| dx+
1

s

∫
Bs

u dx

)
≤ e−min ΦCd

(
1

2

∫
Bs

|∇u|2dx+
1

2
|Ωu ∩Bs|+ c|Ωu ∩Bs|

)
≤ C

(∫
Bs

|∇u|2e−Φdx+ µ|Ωu ∩Bs|
)
≤ CE(u, s) ≤ CE(u, r),

where we have set C = e−min ΦCd max
{
emax Φ, 1

µ(1 + 2c)
}

. Moreover, since the above inequality

holds for every s ∈ (0, r], we have∫
Br

ue−Φdx =

∫ r

0
ds

∫
∂Bs

ue−ΦdHd−1 ≤ rCE(u, r).

Finally, using the bound (5.37), we get

E(u, r) ≤
(
2‖∇η‖L∞(∂Br) + r2cλm

)
CE(u, r).

Thus, the claim will follow, if we can choose c such that(
2‖∇η‖L∞(∂Br) + r2cλm

)
C < 1.

We now estimate ‖∇η‖L∞(∂Br). Notice that in B2r \Br

η(x) = r2w(x/r) + crh(x/r),

where w : B2 \B1 → R and h : B2 \B1 → R are the solutions to

−∆h+∇Φr · ∇h = 0 in B2\B1, h = 0 on ∂B1, h = 1 on ∂B2,

−∆w +∇Φr · ∇w = β in B2\B1, w = 0 on ∂B1 ∪ ∂B2,

where Φr(x) = Φ(rx). Thus, we have

‖∇η‖L∞ ≤ r‖∇w‖L∞ + c‖∇h‖L∞ ,
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and so, it is sufficient to estimate ∇w and ∇h. First, applying Lemma 5.21 to h, we have

‖∇h‖L∞(B2\B1) ≤ C‖h‖L∞(B2\B1) ≤ C,

where the last inequality follows by the maximum principle (0 ≤ h ≤ 1 in B2\B1). Next, applying
Lemma 5.21 to w, we get

‖∇w‖L∞(B2\B1) ≤ C
(
‖w‖L∞(B2\B1) + β

)
≤ Cβ,

where the last inequality follows by Lemma 5.3. Combining the above estimates, we get

‖∇η‖L∞(Br) ≤ C (rβ + c) , (5.37)

which, for c and r small enough, implies that E(u, r) = 0 and concludes the proof. �

Another consequence of property (5.32) is that the optimal sets have finite perimeter. This
fact is of independent interest but it can also be used to estimate the dimension of the singular set
of the free boundary (see Subsection 5.9). The local finiteness of the perimeter was also obtained
in [2] in the case of the Laplacian by a different argument. Here we use the more direct approach
from [35], which is also the local version of an estimate that was used in [8] to prove that some
optimal shapes have finite perimeter.

Lemma 5.23 (Local finiteness of the perimeter). Let D ⊂ Rd be a bounded open set and u a
solution of (5.1). Then Ωu is a set of locally finite perimeter in D. Moreover, if D is of class
C1,1, then Ωu is a set of finite perimeter.

Proof. Let x0 ∈ ∂Ωu and 0 < µ < Λu be fixed. Let r > 0 be such that (5.32) holds in Dr(x0) :=
Br(x0) ∩D. Assume x0 = 0 and r0 = r. In the sequel we denote by C > 0 any constant, which
does not depend on t or x0. Let t ∈ (0, 1) and η ∈ C∞c (Br) be such that

0 ≤ η ≤ 1, η = 1 in Br/2, η = 0 in Rd\Br, |∇η| ≤ C

r
.

We set

ut := η(u− t)+ + (1− η)u =

{
(1− η)u, if u < t,

u− tη, if u ≥ t.

We can now compute on {u ≥ t}

|∇u|2 − |∇ut|2 = |∇u|2 − |∇(u− tη)|2 = t
(
2∇u · ∇η − t|∇η|2

)
;

u2 − u2
t = u2 − (u− tη)2 = t

(
2uη + tη2

)
.

Next, on the set {u < t}, we compute

u2 − u2
t = (2η − η2)u2 ≤ t2(2η − η2);

|∇u|2 − |∇ut|2 = |∇u|2 − |∇(u− uη)|2 = 2∇u · ∇(uη)− |∇(uη)|2

= (2η − η2)|∇u|2 + 2u(1− η)∇u · ∇η − |∇η|2u2

≥ 1{η=1}|∇u|2 − 2t(1− η)|∇u · ∇η|.

Notice that ut ∈ A(u, x0, r). Thus, by the optimality of u, we have∫
Br

(
|∇u|2 − λmu2

)
e−Φdx+ µ|Ωu ∩Br| ≤

∫
Br

(
|∇ut|2 − λmu2

t

)
e−Φdx+ µ|Ωut ∩Br|.
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By the above estimates, there is a constant C, depending only on µ, r, λm =

∫
D
|∇u|2e−Φ dx and

‖Φ‖L∞(D) such that, for every t ≤ 1, we have∫
{0<u<t}∩Br/2

|∇u| dx ≤
∫
{0<u<t}∩Br/2

(
|∇u|2 + 1

)
dx ≤ max{1, 1/µ}

∫
{0<u<t}∩Br/2

(
|∇u|2 + µ

)
dx

= max{1, 1/µ}
(∫

Br/2

(
|∇u|2 − |∇ut|2

)
dx+ µ

(
|Ωu ∩Br| − |Ωut ∩Br|

))
≤ Ct.

We now use the co-area formula to rewrite the above inequality as

1

t

∫ t

0
Per

(
{u > s};Br/2

)
ds ≤ C.

Hence, there is a sequence tn → 0 such that Per
(
{u > tn};Br/2

)
ds ≤ C, which implies that

Per
(
Ωu;Br/2

)
ds ≤ C. The last claim of the lemma follows by a standard covering argument. �

5.8. Blow-up sequences and blow-up limits. Let u be a solution of (5.1) in the bounded
open set D ⊂ Rd. For r > 0 and x0 ∈ ∂Ωu, we define the rescaled function

ux0,r(x) :=
1

r
u(x0 + rx).

Now since u is Lipschitz continuous in some ball Br0(x0) (assume some regularity of the box if
x0 ∈ ∂D) we get that every sequence (ux0,rn)n≥1 such that rn → 0 admits a subsequence (still

denoted by rn) that converges to a function u0 : Rd → R uniformly on every compact set K ⊂ Rd.
We say that u0 is a blow-up limit of u at x0 and we use the notation BUu(x0) for the family of
all blow-up limits of u at x0. We notice that, due to the non-degeneracy of u, the blow-up limits
are non-trivial. Precisely, u0 6= 0 and there is a constant c > 0 such that ‖u0‖L∞(Br) ≥ cr.

The following proposition is standard. For a detailed proof we refer for example to [34, Propo-
sition 4.5].

Proposition 5.24 (Convergence of the blow-up sequences). Let u be a solution of (5.1) and
let x0 ∈ ∂Ωu. Assume moreover that D is of class C1,1 if x0 ∈ ∂D. Let u0 ∈ BUu(x0) and
un := ux0,rn be a blow-up sequence such that un → u0 locally uniformly in Rd as n→∞. Then

(1) The sequence (un)n≥1 converges to u0 strongly in H1
loc(Rd).

(2) The sequence of characteristic functions
(
1Ωun

)
n≥1

converges to 1Ωu0
in L1

loc(Rd).
(3) The sequences of closed sets

(
Ωn

)
n≥1

and (Ωc
n)n≥1 Hausdorff converge locally in Rd to Ω0

and Ωc
0, respectively.

(4) If x0 ∈ ∂Ωu ∩D, then u0 is a non-trivial global minimizer of the one-phase Alt-Caffarelli

functional with Λ = Λue
Φ(x0) (see Definition 5.25 below).

If x0 ∈ ∂Ωu ∩ ∂D, then, up to a rotation, u0 is a non-trivial global minimizer of the
one-phase constrained Alt-Caffarelli functional with Λ = Λue

Φ(x0).

Definition 5.25 (Global minimizers of the one-phase problem). Let Λ > 0 and u ∈ H1
loc(Rd) be

a non-negative function.

• We say that u is a global minimizer of the one-phase Alt-Caffarelli functional with Λ, if∫
B
|∇u|2dx+ Λ|{u > 0} ∩B| ≤

∫
B
|∇v|2dx+ Λ|{v > 0} ∩B|, (5.38)

for every ball B ⊂ Rd and every function v ∈ H1(B) such that u− v ∈ H1
0 (B).

• We say that u is a global minimizer of the one-phase constrained Alt-Caffarelli functional
with Λ, if Ωu ⊂ {xd > 0} and (5.38) holds for every ball B ⊂ Rd and every function
v ∈ H1(B) such that u− v ∈ H1

0 (B) and Ωv ⊂ {xd > 0}.
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The optimality of the blow-up limit at points x0 ∈ D (Proposition 5.24, claim (4)) follows by
a standard argument based on our analysis in Subsection 5.5. Below, we give the proof in the
case when x0 lies on the boundary of D. The idea is to straighten out the boundary of the box
and to show that the function u in the new coordinates satisfies an almost-minimality condition.
We only give the proof of Proposition 5.24 (4) in order to show how to deal with the fact that on
different scales r the inclusion constraint on the set Ωur changes and that at the limit the box D
becomes the half-space {xd > 0}.

Let x0 = 0 ∈ ∂Ωu ∩ ∂D. Since D is C1,1 regular, there exist δ > 0 and a function g :
(−δ, δ)d−1 → R such that

D ∩ SQδ = {(x′, xd) ∈ SQδ : g(x′) < xd},
where SQδ = (−δ, δ)d ⊂ Br0 . Moreover, up to a rotation, we can assume that the differential
Dg0 of g at 0 is zero. Let ψ : SQδ ⊂ Rd → Rd be the function that straightens out the boundary
of D and let φ := ψ−1 : ψ(SQδ) ⊂ Rd → Rd be its inverse:

ψ(x′, xd) = (x′, xd − g(x′)), φ(x′, xd) = (x′, xd + g(x′)).

We define the matrix-valued function A = (aij)ij : SQδ → Sym+
d (R) by

Ax = (Dφx)−1(tDφx)−1, for every x ∈ SQδ,
where tDφx stands for the transpose of the Jacobian matrix of φ at x. Note that the coefficients
aij are Lipschitz continuous functions and that Ax are symmetric positive definite matrices since

they are small variations of A0 = Id. For v ∈ H1(Rd) and r > 0 we define the functional

J̃(v, r) =

∫
Br

(
aij(x)

∂v

∂xi

∂v

∂xj
− λmv2

)
e−Φ̃ dx,

where we have set Φ̃ = Φ ◦ φ. Moreover, we set H = {(x′, xd) ∈ Rd : xd > 0}. With an
elementary change of variables we get the following result.

Lemma 5.26 (Minimality of u in the straightened coordinates). Let u be a solution of (5.1) and
x0 = 0 ∈ ∂Ωu ∩ ∂D. Let h > 0. There exist c > 0 and r0 > 0 such that B2r0 ⊂ ψ(SQδ) and the
function ũ = u ◦ Φ satisfies the minimality condition: for every r ∈ (0, r0) we have

J̃(ũ, r) + µ|Ωũ ∩Br| ≤ J̃(ṽ, r) + µ|Ωṽ ∩Br|
for every ṽ ∈ H1(B2r0) such that ũ = ṽ on B2r0 \Br, Ωṽ ⊂ H and where

µ =

{
µ+(h, 0, cr) if |Ωũ ∩Br| ≤ |Ωṽ ∩Br| ≤ |Ωũ ∩Br|+ h,

µ−(h, 0, cr) if |Ωũ ∩Br| − h ≤ |Ωṽ ∩Br| ≤ |Ωũ ∩Br|.
(5.39)

Proof. Let r0 > 0 be such that B2r0 ⊂ ψ(SQδ), r ∈ (0, r0) and ṽ such that ũ = ṽ on B2r0 \ Br,
Ωṽ ⊂ H. Assume that |Ωũ ∩Br| ≤ |Ωṽ ∩Br| ≤ |Ωũ ∩Br|+ h. We define v ∈ H1

0 (D) by v = ṽ ◦ ψ
in φ(B2r0) and v = u otherwise. Let c be a positive constant depending only on φ such that
φ(Br) ⊂ Bcr. Then, it follows that u = v on D \ Bcr. Moreover, since det(Dφx) = 1 we have
|Ωu| ≤ |Ωv| ≤ |Ωu|+ h. Therefore, up to chosing r0 > 0 smaller (depending on c), we get

J(u) + µ+(h, 0, cr)|Ωu| ≤ J(v) + µ+(h, 0, cr)|Ωv|.
Since we have u = v on φ(Br(x0)), this can rewrite as∫

φ(Br)

(
|∇u|2 − λmu2

)
e−Φ dx+ µ|Ωu ∩ φ(Br)| ≤

∫
φ(Br)

(
|∇v|2 − λmv2

)
e−Φ dx+ µ|Ωv ∩ φ(Br)|,

where we have set µ = µ+(h, 0, cr). Now, a change of variables gives

J̃(ũ, r) + µ|Ωũ ∩Br| =
∫
φ(Br)

(
|∇u|2 − λmu2

)
e−Φ dx+ µ|Ωu ∩ φ(Br)|

≤
∫
φ(Br)

(
|∇v|2 − λmv2

)
e−Φ dx+ µ|Ωv ∩ φ(Br)| = J̃(ṽ, r) + µ|Ωṽ ∩Br|.
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This concludes the proof. �

The next Lemma states that ũ is an almost-minimizer also of the functional J .

Lemma 5.27. Let u be a solution of (5.1) and x0 = 0 ∈ ∂Ωu∩∂D. Let h > 0 be a given constant
and let c > 0 and r0 > 0 be as in Lemma 5.26. Then there exists a constant C > 0 such that
ũ = u ◦ φ satisfies the following almost-minimality condition: for every r ∈ (0, r0) we have

J(ũ, r) + µ|Ωũ ∩Br| ≤ (1 + Cr)J(ṽ, r) + µ|Ωṽ ∩Br|+ Cr

∫
Br

ṽ2 dx+ Crd+1

for every ṽ ∈ H1(B2r0) such that ũ = ṽ on B2r0 \Br, Ωṽ ⊂ H and where µ is as in (5.39).

Proof. Using the Lipschitz continuity of A and Φ, we estimate

J(ũ, r) = J̃(ũ, r) +

∫
Br

(aij(x0)− aij(x))
∂ũ

∂xi

∂ũ

∂xj
e−Φ dx

+

∫
Br

(aij(x)
∂ũ

∂xi

∂ũ

∂xj
− λmũ2)(e−Φ − e−Φ̃) dx ≤ J̃(ũ, r) + Crd+1,

for some positive constant C that does not depend on r. Analogously, we get the following
estimate from below

J(ṽ, r) = J̃(ṽ, r) +

∫
Br

(aij(x0)− aij(x))
∂ṽ

∂xi

∂ṽ

∂xj
e−Φ dx

+

∫
Br

(aij(x)
∂ṽ

∂xi

∂ṽ

∂xj
− λmṽ2)(e−Φ − e−Φ̃) dx

≥ J̃(ṽ, r)− Cr
(∫

Br

aij(x)
∂ṽ

∂xi

∂ṽ

∂xj
e−Φ dx+

∫
Br

ṽ2 dx
)

≥ (1− Cr)J̃(ṽ, r)− Cr
∫
Br

ṽ2 dx.

Now, using Lemma 5.26 and then combining the above estimates we get

J(ũ, r) + µ|Ωũ ∩Br| ≤ J̃(ũ, r) + µ|Ωũ ∩Br|+ Crd+1 ≤ J̃(ṽ, r) + µ|Ωṽ ∩Br|+ Crd+1

≤ 1

1− Cr

(
J(ṽ, r) + Cr

∫
Br

ṽ2 dx
)

+ µ|Ωṽ ∩Br|+ Crd+1,

which concludes the proof. �

We are now in position to prove the claim (4) of Proposition 5.24 in the constrained case.

Proof of Proposition 5.24 (4). Let x0 = 0 ∈ ∂Ωu ∩ ∂D and let u0 ∈ BUu(x0) be the blow-up
limit of the sequence un(x) = r−1

n u(rnx), where (rn)n is some fixed sequence decreasing to 0. Let
v ∈ H1(Br) be such that u0 − v ∈ H1

0 (Br) and Ωv ⊂ H. We define vn = v + ũn − u0 ∈ H1(Rd),
where we have set ũn(x) = r−1

n ũ(rnx). Note that the sequence (un)n and (ũn)n converge to the
same limit u0 since the function φ is C1,1 regular. Moreover, since u0 − v ∈ H1

0 (Br) we have
ũn − vn ∈ H1

0 (Br) and hence ũ − vrnn ∈ H1
0 (Brrn), where we write vrnn (x) = rnvn(x/rn). Note

that we have Ωvrnn ⊂ H. We set hn = |Brrn | and assume that |Ωũ ∩ Brrn | ≤ |Ωvrnn ∩ Brrn | ≤
|Ωũ ∩Brrn |+ hn. Now we set µ = µ+(hn, 0, r) and Φn(x) = Φ(rnx) and we apply Lemma 5.27 to
the test function vrnn to estimate∫
Br

(|∇ũn|2 − r2
nλmũ

2
n)e−Φn(x) dx+ µ|Ωũn ∩Br| =

1

rdn

(
J(ũ, rrn) + µ|Ωũ ∩Brrn |

)
≤ 1

rdn

(
(1 + Crrn)J(vrnn , rrn) + µ|Ωvrnn ∩Brrn |+ Crrn

∫
Brrn

(vrnn )2 dx+ C(rrn)d+1
)

= (1 + Crrn)

∫
Br

(|∇vn|2 − r2
nλmv

2
n)e−Φn(x) dx+ µ|Ωvn ∩Br|+ Crr3

n

∫
Br

v2
n dx+ Crd+1rn.
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By Proposition 5.24 (1) the sequence ũn (resp. vn) strongly converges in H1(Br) to u0 (resp.
v) and the sequence of characteristic functions

(
1Ωũn

)
n≥1

(resp.
(
1Ωvn

)
n≥1

) converges to 1Ωu0

(resp. 1Ωv). Moreover, µ = µ+(hn, 0, r) tends to Λu as rn → 0 by Theorem 5.16. Therefore,

passing at the limit in the above inequality and then multiplying by eΦ(x0) gives the claim. �

Remark 5.28 (Lebesgue density on the free boundary). For every γ ∈ [0, 1] we define

Ω(γ)
u :=

{
x ∈ Rd : lim

r→0

|Ωu ∩Br(x)|
|Br|

= γ
}
.

We notice that, as a consequence of Proposition 5.24, we get that

∂Ωu ∩D ∩ Ω(0)
u = ∅ and ∂Ωu ∩D ∩ Ω(1)

u = ∅.
The first equality follows by the non-degeneracy of u, while the second one follows from the fact
that all the blow-up limits vanish in zero and are global solutions of the Alt-Caffarelli problem.

5.9. Regularity of the free boundary. In this section we prove Theorem 1.5 (4) and (6), and
Theorem 1.2 (4) and (6). We first show that the optimality condition |∇u|2 = Λue

Φ on the free
boundary ∂Ωu ∩D and |∇u|2 ≥ Λue

Φ on ∂Ωu ∩ ∂D holds in the viscosity sense (Lemma 5.30).
We will then decompose the free boundary into regular and singular parts (Definition 5.34) and
we will show that the regular part is C1,α regular (Proposition 5.35).

Definition 5.29 (Optimality condition in viscosity sense). Let D be an open set and u : D → R
be continuous, that is, u ∈ C(D).
• We say that ϕ ∈ C(D) touches u by below (resp. by above) at x0 ∈ D if ϕ(x0) = u(x0) and

ϕ ≤ u (resp. ϕ ≥ u) in a neighborhood of x0.
• Let Λ be a non-negative function on D and assume that u is non-negative. We say that u

satisfies the boundary condition

|∇u| =
√

Λ on ∂Ωu ∩D
in viscosity sense if, for every ϕ ∈ C2(D) such that ϕ+ touches u by below (resp. by above) at

some x0 ∈ ∂Ωu ∩D, we have |∇ϕ|(x0) ≤
√

Λ (resp. |∇ϕ|(x0) ≥
√

Λ)).
Analogously, we say that u satisfies the boundary condition

|∇u| ≥
√

Λ on ∂Ωu ∩ ∂D
in viscosity sense if, for every ϕ ∈ C2(D) such that ϕ+ touches u by above at some x0 ∈ ∂Ωu∩∂D,

we have |∇ϕ|(x0) ≥
√

Λ.

Lemma 5.30 (Optimality condition on the free boundary). Let D ⊂ Rd be a bounded open set
of class C1,1 and let u be a solution of (5.1). Then u is a solution of the problem

− div(e−Φu) = λmue
−Φ in Ωu,

|∇u| =
√

ΛueΦ on ∂Ωu ∩D,

|∇u| ≥
√

ΛueΦ on ∂Ωu ∩ ∂D,

(5.40)

where the boundary conditions hold in viscosity sense.

To prove the optimality condition we will need the following result.

Lemma 5.31. Let u ∈ H1(Rd) be a non-trivial, continuous and one-homogeneous function (in
the sense that u(tx) = tu(x) for every t > 0) such that u(0) = 0. Assume moreover that u is
harmonic in the set Ωu. If Ωu ⊂ {xd > 0} then Ωu = {xd > 0}, while if Ωu ⊃ {xd > 0} then
either Ωu = {xd > 0} or Ωu = {xd 6= 0}.

Proof. Set S = Ωu ∩ ∂B1 and denote by CS = {rθ : θ ∈ S, r > 0} the cone generated by S.
Since u is a one-homogeneous function and is solution of

∆u = 0 in CS , u = 0 on ∂CS ,
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it follows that the trace ϕ = u|∂B1
is a solution of

−∆Sd−1ϕ = (d− 1)ϕ in S, ϕ = 0 on ∂S.

Therefore ϕ is a first eigenfunction of −∆Sd−1 in S (because ϕ > 0 in S) and hence λ1(S) = d−1.
Note also that ϕ1 = (xd)+ is the first eigenfunction on the set S+ = {xd > 0} ∩ ∂B1 with
eigenvalue λ1(S+) = d− 1.

Firstly, assume that S ⊂ S+. Then u ∈ H1
0 (S+) and by the variational characterization of

λ1(S+) we have ∫
∂B1
|∇ϕ|2 dHd−1∫

∂B1
ϕ2 dHd−1

= λ1(S) = λ1(S+) ≤
∫
∂B1
|∇(ϕ+ tψ)|2 dHd−1∫

∂B1
(ϕ+ tψ)2 dHd−1

for every ψ ∈ H1
0 (S+) and t ∈ R. This gives that ϕ is solution of

−∆Sd−1ϕ = λ1(S+)ϕ in S+, ϕ = 0 on ∂S+,

that is, ϕ is the first eigenfunction on S+. Since λ1(S+) is simple (because S+ is connected) is
follows that ϕ = c(xd)+ for some c > 0. In particular, {ϕ > 0} = S+ and hence Ωu = {xd > 0}
by one-homogeneity of u.

Assume now that S ⊃ S+ and write S = S0 t S1, where S0 is the connected component of
S which contains S+. If S1 6= ∅, then it follows by the preceding step that S1 = S− := {xd <
0} ∩ ∂B1; hence S = S+ ∪ S− and Ωu = {xd 6= 0}. Now, if S1 = ∅, then S = S0 is connected.
Moreover, ϕ1 ∈ H1

0 (S) and using the variational characterization of λ1(S) it follows that ϕ1 is the
first eigenfunction in S. Then ϕ1 > 0 in S (since S is connected) which proves that S = S+. �

Proof of Lemma 5.30. From Proposition 5.18 it follows that u is continuous in D. We only have
to prove that u satisfies the two boundary conditions in the viscosity sense. We first show that

|∇u| =
√

ΛueΦ holds on ∂Ωu ∩D. Let ϕ ∈ C2(D) a function such that ϕ+ touches u by below
at x0 ∈ ∂Ωu ∩D. Let rn be an infinitesimal sequence and

un(x) =
1

rn
u(x0 + rnx) and ϕn(x) =

1

rn
ϕ(x0 + rnx). (5.41)

Up to a subsequence, un converges locally uniformly to some u0 ∈ BUu(x0), while ϕn converges to
ϕ0(x) := x·∇ϕ(x0). Up to a change of coordinates, we may suppose that∇ϕ(x0) = |∇ϕ(x0)|ed. If

|∇ϕ(x0)| = 0, then |∇ϕ(x0)| ≤
√

Λ, where we have set Λ = Λue
Φ(x0), and we are done. Otherwise,

we have u0 > 0 in the half-space {xd > 0} since u0 ≥ ϕ0. Moreover, u0 is a one-homogeneous
function by Lemma 5.38 and it follows that Ωu0 = {xd > 0} by Lemma 5.31, because the case
Ωu0 = {xd 6= 0} is ruled out (by (4) in Proposition 5.24 or Remark 5.28). Moreover, u0 is a local
minimizer of the Alt-Caffarelli functional for Λ by Proposition 5.24 and hence satisfies (in the
classical sense) the optimality condition

|∇u0| =
√

Λ on {xd = 0}

(see [2, Theorem 2.5]). This implies that u0 =
√

Λx+
d . To see this, note that the boundary

condition implies that v defined by v = u0 in {xd > 0} and v =
√

Λxd in {xd ≤ 0} is harmonic in

Rd; hence v =
√

Λxd by uniqueness of the solution to Cauchy problem for the Laplacian. Finally,
since u0 ≥ ϕ0 we have

√
Λ ≥ |∇ϕ0|(0) = |∇ϕ|(x0). The proof if now ϕ+ touches u from above is

similar. In this case we have Ωu0 ⊂ {xd > 0} since u0 ≤ ϕ+
0 , and hence Ωu = {xd > 0} by Lemma

5.31. Notice that u0 is a non trivial function by the non-degeneracy property in Lemma 5.22.
Suppose now that ϕ+ touches u from above at x0 ∈ ∂Ωu∩∂D and consider un and ϕn defined in

(5.41). By Proposition 5.24, un converges to a local minimizer u0 of the Alt-Caffarelli functional

with Λ = Λue
Φ(x0) in the half-space {xd > 0} (up to a change of coordinates). Therefore, the

sequence u0n := r−1
n u0(rnx) converges to a limit u00 which is a solution of the constrained Alt-

Caffarelli problem in {xd > 0} and is one-homogenous (see Remark 5.32). Therefore, Ωu00 =
{xd > 0} by Lemma 5.31 and u00 satisfies the optimality condition

|∇u00| ≥
√

Λ on {xd = 0}.
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This implies that u00(x) = αx+
d , for some α ≥

√
Λ, and thus that

√
Λ ≤ α ≤ |∇ϕ0|(0) = |∇ϕ|(x0)

(since u00 ≤ ϕ+
0 ). �

Remark 5.32. The homogeneity of the blow-up limits of the (local) minimizers of the Alt-
Caffarelli functional was first obtained by Weiss in [40]. In the case of the constrained problem,
when the solution u is optimal only among the functions with support in {xd > 0}, the Weiss
formula can still be applied because the one-homogeneous extensions of u are admissible com-
petitors. Thus, the blow-up limits in this case are still one-homogeneous. We refer for instance
to [37, Proposition 4.3] and Lemma 5.37 below.

Remark 5.33 (On the Alt-Caffarelli optimality condition). Using an argument based on an
internal variation of the boundary as in [2, Theorem 2.5] we can get in a weak sense the optimality
boundary condition given in Lemma 5.30, namely: for every x0 ∈ ∂Ωu ∩ D, r > 0 such that
Br(x0) ⊂ D and ξ ∈ C∞0 (Br(x0),Rd) we have

lim
ε↓0

∫
∂{u>ε}

(
|∇u|2 − Λue

Φ
)
e−Φ ξ · ν dHd−1 = 0,

while for every x0 ∈ ∂Ωu∩∂D, r > 0 such that Dr(x0) is connected and every ξ ∈ C∞0 (Br(x0),Rd)
such that (Id+ ξ)−1(Dr(x0)) ⊂ Dr(x0) we have

lim
ε↓0

∫
∂{u>ε}

(
|∇u|2 − Λue

Φ
)
e−Φ ξ · ν dHd−1 ≥ 0.

Definition 5.34 (Regular and singular parts of the free boundary). We say that x0 ∈ ∂Ωu is a
regular point if there exists a blow-up u0 ∈ BUu(x0) of the form

u0(x) =
√

ΛueΦ(x0) (x · ν)+ if x0 ∈ ∂Ωu ∩D, (5.42)

u0(x) = q (x · ν)+ if x0 ∈ ∂Ωu ∩ ∂D, (5.43)

where ν ∈ ∂B1 is some unit vector and q is a constant such that q ≥
√

ΛueΦ(x0).
We denote by Reg(∂Ωu ∩ D) the set of regular points (the regular part of the free boundary)
in D, and by Reg(∂Ωu) the set of all regular points of ∂Ωu. We define the singular part of the
boundary as Sing(∂Ωu) := ∂Ωu \Reg(∂Ωu) and Sing(∂Ωu ∩D) = ∂Ωu \Reg(∂Ωu ∩D).

Proposition 5.35 (Regularity of the free boundary). Suppose that u is a solution of (5.1) in
the bounded open set D ⊂ Rd. Then, we have:

(1) Reg(∂Ωu ∩D) is locally the graph of a C1,α function for any α < 1;
(2) the reduced boundary ∂∗Ωu ∩D is contained in Reg(∂Ωu ∩D);
(3) Hd−1(Sing(∂Ωu ∩D)) = 0; moreover, if d ≤ 4, then Reg(∂Ωu ∩D) = ∅.

If D is a C1,1 regular domain, then:

(4) Reg(∂Ωu) is locally the graph of a C1,1/2 regular function;
(5) ∂Ωu ∩ ∂D ⊂ Reg(∂Ωu);
(6) Reg(∂Ωu ∩D) ⊂ Reg(∂Ωu) and Sing(∂Ωu) = Sing(∂Ωu ∩D).

Proof. By Lemma 5.30, u is a viscosity solution of (5.40). Let x0 ∈ ∂Ωu be a regular point. Then,
for some r > 0 small enough the function ur,x0 = 1

ru(x0 + rx) is also a viscosity solution and is
ε-flat in the sense of [21]. Applying the results of De Silva [21] (in the case when x0 ∈ D) and
Chang-Lara-Savin [18] (if x0 ∈ ∂D), we get the claims (1) and (4).

We next prove (2) and (3). Let x0 ∈ ∂Ωu ∩D and un := ux0,rn be a blow-up sequence at x0

converging to some v ∈ BUu(x0) such that 1Ωun converges in L1
loc(Rd) to 1Ωv . If x0 ∈ ∂∗Ωu ∩D,

then Ωv is a half-plane of the form H = {x ∈ Rd : x · ν > 0} for some ν ∈ ∂B1. Without
loss of generality, we assume ν = ed. On the other, hand v is a solution to the Alt-Caffarelli
problem with Λ = Λue

Φ(x0). Thus v is harmonic in H and zero on ∂H, so it is smooth up to the
boundary of H. Now, the optimality condition |∇v| =

√
Λ on ∂H and the unique continuation
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of harmonic functions in the half-plane imply that v(x) =
√

Λx+
d , which proves (2). Now, since

Ωu has (locally) finite perimeter in D, the Federer Theorem and Remark 5.28 give that

Hd−1
(
∂Ωu ∩D \ (∂∗Ωu)

)
= Hd−1

(
∂Ωu ∩D \

(
∂∗Ωu ∪ Ω(0)

u ∪ Ω(1)
u

))
= 0,

which proves that Hd−1(Sing(∂Ωu ∩D)) = 0. We now prove the second claim of (3). As above,
let x0 ∈ ∂Ωu∩D and v = limn→∞ urn,x0 be a blow-up limit of u at x0. Then v is a solution of the
Alt-Caffarelli problem problem. Let ρn → 0 and vρn(x) = 1

ρn
v(xρn) be a sequence that converges

locally uniformly to a function v0. Since d ≤ 4, we have that the free boundary ∂Ωv is C1,α and
v0 is of the form v0(x) =

√
Λ(x · ν)+ for some ν ∈ ∂B1 (see [2] for d = 2, [16] for d = 3 and [31]

for d = 4). Now since, for fixed n > 0, we have that vρn = limm→∞ uρnrm,x0 , we can choose a
diagonal sequence uRn,x0 , where Rn = ρnrm(n), such that v0 = limn→∞ uRn,x0 . This proves that
x0 is a regular point.

The claim (5) follows by the same diagonal sequence argument. This time x0 ∈ ∂D and the
blow-up v is a solution of the constrained Alt-Caffarelli problem in {xd > 0}. Thus, the blow-up

v0 of v is one-homogeneous solution of the constrained problem for Λ = Λue
Φ(x0). This implies

(in any dimension) that v0(x) = qx+
d for some q ≥

√
Λ (see [37, Proposition 4.3]).

Finally, (6) follows by the definition of the regular part and claim (5). �

Remark 5.36 (On the higher regularity of the free boundary). The smoothness of the free
boundary can be improved under an additional regularity assumption on Φ. Indeed, if ∇Φ ∈
Ck+1,α(D;Rd) for some k ≥ 1 and α ∈ (0, 1), then by [33, Theorem 1], Reg(∂Ω∗)∩D is locally a
graph of a Ck+1,α function.

5.10. Monotonicity formula and some further estimates on the dimension of the singu-
lar set. This section is dedicated to the estimates on the dimension of the singular set (Theorem
1.5 (5) and Theorem 1.2 (5)). The main ingredient is a monotonicity formula that implies the
homogeneity of the blow-up limits at any free boundary point x0 ∈ ∂Ωu ∩D.

Let u be a solution (5.1) and Λu be the constant given by Theorem 5.12. We define the
Weiss-type boundary adjusted energy as

W (u,Φ, x0, r) =
1

rd

∫
Br(x0)

|∇u|2e−Φ dx− 1

rd+1

∫
∂Br(x0)

u2e−Φ dHd−1 +
Λu
rd
|Ωu ∩Br(x0)|.

Lemma 5.37 (Weiss monotonicity formula). Let u be a solution (5.1) in the bounded open set
D. Then, for every x0 ∈ ∂Ωu ∩D and every 0 < r < dist(x0, ∂D), the function W satisfies the
differential inequality

d

dr
W (u,Φ, x0, r) ≥

2e−max Φ

rd+2

∫
∂Br(x0)

|∇u · x− u|2 dHd−1 − C, (5.44)

where C > 0 is a constant depending only on λm,Φ, L := ‖∇u‖L∞ and the dimension d.

Proof. We first prove the claim when x0 ∈ ∂Ωu ∩D. Assume x0 = 0. We set

H(r) :=

∫
∂Br

u2e−ΦdHd−1 and D(r) :=

∫
Br

|∇u|2e−Φdx,

HΦ(r) :=

∫
∂Br

(ν · ∇Φ)u2e−ΦdHd−1 and DΦ(r) :=

∫
Br

(
|∇u|2 − λmu2

)
(x · ∇Φ)e−Φdx,

where ν(x) = x/r is the exterior normal to the sphere ∂Br at x. As in Proposition A.1 (notice
that in Proposition A.1 DΦ is defined differently) we have

D′(r) =

∫
∂Br

|∇u|2e−ΦdHd−1 and H ′(r) =
d− 1

r
H(r) + 2D(r)− 2λm

∫
Br

u2e−Φdx−HΦ(r).

Let φε be a radially decreasing function such that

0 ≤ φε ≤ 1 in Br, φε = 1 in Br(1−ε), φε = 0 on ∂Br and |∇φε| ≤ C(rε)−1. (5.45)
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As in Step 2 of the proof of Proposition A.1, the optimality condition δJ(u)[ξ] = Λu

∫
Ωu

div ξ dx ,

applied to the vector field ξ(x) = xφε(x), gives that

Λu

(
d|Ωu ∩Br| − rHd−1(Ωu ∩ ∂Br)

)
= −(d− 2)D(r) + rD′(r)− 2r

∫
∂Br

(∂νu)2 e−ΦdHd−1

+ λm

(
d

∫
Br

u2e−Φdx− r
∫
∂Br

u2e−ΦdHd−1

)
+ rDΦ(r),

where ∂νu := ν · ∇u. We now calculate

d

dr
W (u,Φ, x0, r) =

1

rd
D′(r)− d

rd+1
D(r)− 1

rd+1
H ′(r) +

d+ 1

rd+2
H(r)

+
Λu
rd+1

(
rHd−1(Ωu ∩ ∂Br)− d|Ωu ∩Br|

)
=

2

rd+2

∫
∂Br

|∇u · x− u|2 e−ΦdHd−1 +
1

rd+1
HΦ(r)− 1

rd
DΦ(r)

− λm
rd+1

(
(d+ 2)

∫
Br

u2e−Φdx− r
∫
∂Br

u2e−ΦdHd−1

)
≥ 2e−max Φ

rd+2

∫
∂Br

|∇u · x− u|2 dHd−1 − C,

which gives the claim if x0 ∈ ∂Ωu ∩D and r < dist(x0, ∂D). �

Lemma 5.38 (Homogeneity of the blow-up limits). Let u be a solution (5.1) in the bounded open
set D and let x0 ∈ ∂Ωu. Then every blow-up limit u0 ∈ BUu(x0) is one-homogeneous.

Proof. Let x0 = 0 and W (u,Φ, r) := W (u,Φ, x0, r). Recall that ur(x) = 1
ru(rx) and Φr(x) =

Φ(rx). We first notice that for every r > 0 and s > 0 such that rs ≤ dist(x0, ∂D) we have

W (ur,Φr, s) = W (u,Φ, rs).

Moreover, since the function r 7→W (u,Φ, t) + Cr is monotone, the limit

W (u,Φ, 0) := lim
r→0+

W (u,Φ, r)

exists (and is finite due to the Lipschtz continuity of u). On the other hand, for every blow-up
sequence urn with blow-up limit u0, we have

W (u0,Φ(0), s) = lim
n→∞

W (urn ,Φrn(0), s) = lim
n→∞

W (u,Φ(0), rns) = W (u,Φ(0), 0).

Thus, the function

s 7→ 1

sd

∫
Bs

|∇u0|2 dx−
1

sd+1

∫
∂Bs

u2
0 dHd−1 +

Λue
Φ(0)

sd
|Ωu0 ∩Bs|,

is constant. Now, by [40] (or, simply by applying (5.44) to u = u0, λm = 0 and Φ = 0), we have
that u0 is one-homogeneous. �

Definition 5.39. We define d∗ as the smallest dimension which admits one-homogeneous global
minimizers of the one-phase Alt-Caffarelli problem with (isolated) singularity in zero.

By [31] and [22] we know that d∗ ∈ {5, 6, 7}. Weiss was first to prove that the monotonicity
formula implies the dimension estimate

dimH Sing(∂Ωu) := inf{α ≥ 0 : Hα(Sing(∂Ωu)) = 0} ≤ d− d∗,

for every d > d∗ (see also [34] for an argument using only the monotonicity of W ). Thus, as a
consequence of Lemma 5.37, Lemma 5.38 and the results from [40] and [34], we get
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Proposition 5.40 (On the dimension of the singular set). Let u be a solution of (5.1) in the
bounded open set D ⊂ Rd. Then
• Sing(∂Ωu) = ∅ if d < d∗;
• Sing(∂Ωu) is a discrete (locally finite) set if d = d∗;
• dimH Sing(∂Ωu) < d− d∗ if d > d∗.

Proof. The proof of this proposition is standard, once we have the monotonicity of W (Lemma
5.37) and the consequent homogeneity of the blow-up limits (Lemma 5.38). We refer to [40,
Section 4] and [34, Section 5.5]. �

Remark 5.41. Recently, using the innovative approach of Naber and Valtorta [36], Edelen and
Engelstein [23] showed the monotonicity formula of Weiss can be used to obtain the (local)
estimate Hd−d∗(Sing(∂Ωu)) <∞, which in particular implies that dimH Sing(∂Ωu) < d− d∗.

Appendix A. Extremality conditions and Lebesgue density

In this section we prove Proposition A.1, which we use in Proposition 5.12 to show that the
Lagrange multiplier Λu is strictly positive, but the result is of independent interest. For instance,
it applies to optimal partition problems (see, for example, [20] and [17]). We first show that a
function which is critical for the functional

J(u) :=

∫
D
|∇u|2e−Φ dx− λ

∫
D
u2e−Φ dx, (A.1)

with respect to internal variations that is

δJ(u)[ξ] := lim
t→0

J(u(x+ tξ(x))) = 0 for every vector field ξ ∈ C∞c (D;Rd),

satisfies a monotonicity formula for the associated Almgren frequency function N(r). Now, by
the argument of Garofalo and Lin (see [26]) the monotonicity of the frequency function implies
that u cannot decay too fast around the free boundary points. If, in addition, u is a solution of
−div(e−Φ∇u) = λue−Φ on the positivity set Ωu = {u > 0}, we can use a Caccioppoli inequality
to show that if the Lebesgue density of Ωu is too small, then the decay of u on the balls of radius
r should be very fast. This, in combination with the monotonicity of the Almgren’s frequency
function, shows that the Lebesgue density of Ωu should be bounded from below everywhere (and
not only on the boundary of Ωu). In particular, there cannot be points of zero Lebesgue density
for Ωu in D.

Proposition A.1. Let D ⊂ Rd be a bounded open set and Φ ∈ W 1,∞(D). Suppose that λ ≥ 0
and u ∈ H1(D) is a nonnegative (non-identically-zero) function such that

(a) u is a solution of the equation

− div(e−Φ∇u) = λe−Φu in Ωu = {u > 0}; (A.2)

(b) u satisfies the extremality condition

δJ(u)[ξ] = 0 for every ξ ∈ C∞c (D;Rd),

where J is given by (A.1) and its first variation in the direction ξ is given by

δJ(u)[ξ] :=

∫
D

[
2Dξ(∇u) · ∇u+

(
|∇u|2 − λu2

)
(∇Φ · ξ − div ξ)

]
e−Φdx. (A.3)

Then, |D \ Ωu| = 0.
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A.1. Reduction to the case λ = 0. In this section we will show that it is sufficient to prove
Proposition A.1 for λ = 0. The general case will then follow by an elementary substitution
argument. In the next lemma we deal with the first variation of the functional J .

Lemma A.2. Suppose that D ⊂ Rd is a bounded open set, a : D → R is a given Lipschitz
function such that 0 < ε ≤ a ≤ ε−1 on D. Let λ > 0 and let ϕ ∈ H2(D) be such that

−div(a∇ϕ) = λaϕ in D, ϕ ≥ ε > 0 on D.

For any u ∈ H1(D), we set ã(x) := ϕ2(x)a(x), ũ := u/ϕ,

J(u) :=

∫
D

(
|∇u|2 − λu2

)
a(x) dx and J̃(u) :=

∫
D
|∇u|2ã(x) dx,

δJ(u)[ξ] :=

∫
D

[
2aDξ(∇u) · ∇u−

(
|∇u|2 − λu2

)
div(aξ)

]
dx,

δJ̃(u)[ξ] :=

∫
D

[
2ãDξ(∇u) · ∇u− |∇u|2 div(ãξ)

]
dx for any ξ ∈ C∞c (D;Rd).

Then, for every u ∈ H1(D) and every ξ ∈ C∞c (D;Rd), we have

δJ̃(ũ)[ξ] = δJ(u)[ξ]− 2

∫
D
∇ (uξ · ∇(lnϕ)) · ∇u a dx+ 2

∫
D

(uξ · ∇(lnϕ))λau dx. (A.4)

Proof. Notice that we may assume u ∈ C∞(D). First we notice that an integration by parts gives

δJ̃(ũ)[ξ] =

∫
D

2 ∂iξj ∂iũ ∂j ũ ã dx−
∫
D
|∇ũ|2 div(ãξ) dx

= −
∫
D

2 ξj ∂i(ã ∂iũ) ∂j ũ dx−
∫
D

2 ξj ∂iũ ∂ij ũ ã dx−
∫
D
|∇ũ|2 div(ãξ) dx

= −
∫
D

2 ξj ∂i(ã ∂iũ) ∂j ũ dx−
∫
D

div(ã|∇ũ|2ξ) dx = −
∫
D

2 ξj ∂i(ã ∂iũ) ∂j ũ dx

= −
∫
D

2(ξ · ∇ũ) div(ã∇ũ) dx.

and, analogously,

δJ(u)[ξ] = −
∫
D

2(ξ · ∇u) div(a∇u) dx+ λ

∫
D
u2 div(aξ) dx.

Now, since

div(ã∇ũ) = div(a(ϕ∇u− u∇ϕ)) = ϕdiv(a∇u)− udiv(a∇ϕ) = ϕ(div(a∇u) + λau),

we get

δJ̃(ũ)[ξ] = −2

∫
D
ξ · (∇u− u

ϕ
∇ϕ)

(
div(a∇u) + λau

)
dx

= 2

∫
D
ξ · ∇ϕu

ϕ

(
div(a∇u) + λau

)
dx− 2

∫
D

(ξ · ∇u)
(

div(a∇u) + λau
)
dx

= −2

∫
D
∇
(
ξ · ∇ϕ
ϕ

u

)
· ∇u a dx+ 2

∫
D

(
ξ · ∇ϕ
ϕ

u

)
λau dx+ δJ(u)[ξ],

which is precisely (A.4). �

Let now D ⊂ Rd and u ∈ H1(D) be as in Proposition A.1 for some λ > 0. In order to prove
that |D \ Ωu| = 0, it is sufficient to prove that |(D ∩ B) \ Ωu| = 0 for any (small) ball B ⊂ D.
Let now x0 ∈ D and let R > 0 be such that λ1(BR(x0),∇Φ) = λ. Such a radius exists, since
the map f(r) := λ1(Br(x0),∇Φ) is continuous, f(0) = +∞ and f(+∞) = 0. Notice also that we
may assume Φ to be defined on the entire space Rd. Let ϕ be the first eigenfunction on BR(x0)
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and let r = R/2. Then, we can apply Lemma A.2 in the set D∩Br(x0) with a = e−Φ. Moreover,
since u satisfies (A.2), we get that

δJ̃(ũ)[ξ] = δJ(u)[ξ] = 0, for every ξ ∈ C∞c (D ∩Br(x0);Rd),
which proves that ũ = u/ϕ satisfies hypothesis (b) for λ = 0. Finally, in order to prove that ũ
satisfies hypothesis (a), we notice that on Ωu = Ωũ we have (in a weak sense)

div(ã∇ũ) = ϕdiv(a∇u)− udiv(a∇ϕ) = ϕ (div(a∇u) + λau) = 0.

A.2. Proof of Proposition A.1 in the case λ = 0. Let λ = 0. Then we have

J(u) :=

∫
D
|∇u|2e−Φ dx, (A.5)

δJ(u)[ξ] :=

∫
D

[
2Dξ(∇u) · ∇u+ |∇u|2(∇Φ · ξ − div ξ)

]
e−Φdx. (A.6)

Let x0 = 0 ∈ D and τ = ‖∇Φ‖L∞(D). We set

H(r) :=

∫
∂Br

u2e−ΦdHd−1, D(r) :=

∫
Br

|∇u|2e−Φdx and N(r) :=
rD(r)

H(r)
.

Step 1. Derivative of H. We calculate

H ′(r) =
d− 1

r
H(r) + rd−1 d

dr

∫
∂B1

u2(rx)e−Φ(rx)dHd−1(x)

=
d− 1

r
H(r) + 2

∫
∂Br

u
∂u

∂n
e−ΦdHd−1 −

∫
∂Br

u2(n · ∇Φ)e−ΦdHd−1

=
d− 1

r
H(r) + 2

∫
Br

|∇u|2e−Φdx−
∫
∂Br

u2(n · ∇Φ)e−ΦdHd−1,

which we rewrite as

H ′(r) =
d− 1

r
H(r) + 2D(r)−HΦ(r). (A.7)

where we have set

HΦ(r) :=

∫
∂Br

u2(n · ∇Φ)e−ΦdHd−1 and |HΦ(r)| ≤ τH(r).

Step 2. Equidistribution of the energy. Let φε be a radially decreasing function such that 0 ≤ φε ≤
1 on Br, φε = 1 on Br(1−ε), φε = 0 on ∂Br and |∇φε| ≤ C(rε)−1. The vector field ξ(x) := xφε(x)
satisfies div ξ(x) = dφε(x) + x · ∇φε and ∂iξj = δijφε(x) + xj∂iφε(x). Since λ = 0 we have

δJ(u)[ξ] =

∫
D

[
2Dξ(∇u) · ∇u+ |∇u|2(∇Φ · ξ − div ξ)

]
e−Φdx

=

∫
D

[
2|∇u|2φε + 2(x · ∇u)(∇φε · ∇u)− |∇u|2(dφε(x) + x · ∇φε)

]
e−Φdx

+

∫
D
|∇u|2(∇Φ · x)φεe

−Φdx,

and passing to the limit as ε→ 0, rearraging the terms and using the property (b), we get

0 = −(d− 2)

∫
Br

|∇u|2e−Φdx+ r

∫
∂Br

|∇u|2e−ΦdHd−1

− 2r

∫
∂Br

(
∂u

∂n

)2

e−ΦdHd−1 +

∫
Br

|∇u|2(∇Φ · x)e−Φdx,

which we rewrite as

−(d− 2)D(r) + rD′(r) = 2r

∫
∂Br

(
∂u

∂n

)2

e−ΦdHd−1 − rDΦ(r),
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where

DΦ(r) :=
1

r

∫
Br

|∇u|2(∇Φ · x)e−Φdx and |DΦ(r)| ≤ τD(r).

Step 3. The derivative of N . We notice that N(r) is only defined for r such that H(r) > 0. In
what follows we fix r0 > 0 such that Br0(x0) ⊂ D and H(r0) > 0. Since u ∈ H1(D), there is an
interval (a, b) 3 r0, on which H > 0.

N ′(r) =
D(r)H(r) + rD′(r)H(r)− rD(r)H ′(r)

H2(r)

=
D(r)H(r) + rD′(r)H(r)− rD(r)

(
d−1
r H(r) + 2D(r)−HΦ(r)

)
H2(r)

=
−(d− 2)D(r)H(r) + rD′(r)H(r)− 2rD2(r) + rD(r)HΦ(r)

H2(r)

=
2r

H2(r)

(
H(r)

∫
∂Br

(
∂u

∂n

)2

e−ΦdHd−1 −D2(r)

)
+
r (D(r)HΦ(r)−DΦ(r)H(r))

H2(r)
(A.8)

Now we notice that, since u solves (A.2) on Ωu, we have

D(r) =

∫
Br

|∇u|2e−Φdx =

∫
∂Br

u
∂u

∂n
e−ΦdHd−1,

and so, by the Cauchy-Schwarz inequality and (A.8) we obtain

N ′(r) ≥ r (D(r)HΦ(r)−DΦ(r)H(r))

H2(r)
≥ −2τN(r). (A.9)

Step 4. A bound on N(r). Using the estimate (A.9) from the previous step we get that the
function r 7→ e2τrN(r) is non-decreasing in r and so

N(r) ≤ e2τ(r0−r)N(r0) ≤ e2τr0N(r0) for every a < r ≤ r0.

Step 5. Strict positivity and doubling inequality for H(r). By the step 4 we have

d

dr

[
log

(
H(r)

rd−1

)]
= 2

N(r)

r
− HΦ(r)

H(r)
≤ 2e2τr0N(r0)

r
+ τ, (A.10)

and integrating we get

log

(
H(r0)

rd−1
0

)
− log

(
H(r)

rd−1

)
≤ log

(r0

r

)
2e2τr0N(r0) + τr0, for every a < r ≤ r0.

In particular, H > 0 on every interval [εr0, r0] and so, H > 0 on (0, r0] and we might take a = 0.
Moreover, integrating once again the inequality (A.10) from r < r0/2 to 2r, we get

log

(
H(2r)

H(r)

)
≤ ((d− 1) log 2 + τr0) + 2 log 2 e2τr0N(r0) for every 0 < r ≤ r0

2
.

Taking r0 ≤ 1, there is a constant C, depending only on d and τ , such that

H(2r) ≤ C exp(CN(r0))H(r) for every 0 < r ≤ r0

2
. (A.11)

Integrating once more in r we get∫
B2r

u2e−Φ dx ≤ C exp(CN(r0))

∫
Br

u2e−Φ dx for every 0 < r ≤ r0

2
. (A.12)

Step 6. Caccioppoli inequality and conclusion. Let r ∈ (0, r0/2] and let φ ∈ C∞0 (B2r) be such that
φ = 1 in Br, φ = 0 on ∂B2r, 0 ≤ φ ≤ 1 and |∇φ| ≤ 2/r on B2r \ Br. Using the fact that u is a
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solution of −div(e−Φ∇u) = 0 in Ωu, we get the following Caccioppoli inequality:∫
Br

|∇u|2e−Φ dx ≤
∫
B2r

|∇(uφ)|2e−Φ dx =

∫
B2r

(
u2|∇φ|2 +∇u · ∇(uφ2)

)
e−Φ dx

=

∫
B2r

u2|∇φ|2e−Φ dx−
∫
B2r

uφ2 div
(
e−Φ∇u)

)
dx =

∫
B2r

u2|∇φ|2e−Φ dx.

≤ 4

r2

∫
B2r

u2e−Φ dx. (A.13)

On the other hand, there are dimensional constants Cd and εd > 0 such that, if |Ωu∩Br| ≤ εd|Br|,
then the following inequality does hold (see [15, Lemma 4.4])∫

Br

u2 dx ≤ Cdr2

(
|Ωu ∩Br|
|Br|

)2/d ∫
Br

|∇u|2 dx,

which, taking C := Cd exp(max Φ−min Φ), implies∫
Br

u2e−Φ dx ≤ Cr2

(
|Ωu ∩Br|
|Br|

)2/d ∫
Br

|∇u|2e−Φ dx.

This, together with (A.13) and the doubling inequality (A.12), gives that there are constants C1

and C2, depending only on d and τ such that

min {εd, C1 exp(−C2N(r0))} ≤ |Ωu ∩Br|
|Br|

for every 0 < r ≤ r0

2
,

where to be precise we recall that we assumed r0 ≤ 1. In particular, we have a lower density
bound for Ωu at every point of D, which implies that |D \ Ωu| = 0 and concludes the proof. �
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