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EXISTENCE AND REGULARITY OF OPTIMAL SHAPES FOR ELLIPTIC

OPERATORS WITH DRIFT

EMMANUEL RUSS, BAPTISTE TREY, BOZHIDAR VELICHKOV

ABSTRACT. This paper is devoted to the study of shape optimization problems for the first
eigenvalue of the elliptic operator with drift L = —A+V (z)-V with Dirichlet boundary conditions,
where V' is a bounded vector field. In the first instance, we prove the existence of a principal
eigenvalue A\1(Q2, V) for a bounded quasi-open set  which enjoys similar properties to the case
of open sets. Then, given m > 0 and 7 > 0, we show that the minimum of the following
non-variational problem

min {)\1(97V) : Q C D quasi-open, |2 <m, [|[V] L~ < T}‘

is achieved, where the box D C R? is a bounded open set. The existence when V is fixed, as well
as when V varies among all the vector fields which are the gradient of a Lipschitz function, are
also proved.

The second interest and main result of this paper is the regularity of the optimal shape Q*
solving the minimization problem

min {)q(Q,V@) : Q C D quasi-open, |Q] < m},

where @ is a given Lipschitz function on D. We prove that the topological boundary 9Q* is
composed of a reqular part which is locally the graph of a C*® function and a singular part
which is empty if d < d*, discrete if d = d* and of locally finite H4 " Hausdorff measure if
d > d*, where d* € {5,6,7} is the smallest dimension at which there exists a global solution to
the one-phase free boundary problem with singularities. Moreover, if D is smooth, we prove that,
for each z € Q" NID, dN* is C"* in a neighborhood of z, for some a < /2. This last result is
optimal in the sense that C*'/? is the best regularity that one can expect.
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1. INTRODUCTION AND MAIN RESULTS

Let Q C R? be a bounded domain (here and after, “domain” means open connected set)
and V € L®(Q,R?) be a given vector field. We consider the elliptic operator with drift L =
—A 4 V(z) - V with Dirichlet boundary conditions on 9€2. In [4] Berestycki, Nirenberg and
Varadhan showed that there is a positive real eigenvalue, not greater than the real part of any
other eigenvalue of L. This eigenvalue is called principal or first eigenvalue of L and is denoted
by A\ (2, V).

Assume now that € is a C2 bounded open set of Lebesgue measure || = m and let V : Q — R?
be a vector field such that ||V| e~ = 7 (where ||V~ stands for the L*°-norm of the Euclidean
norm of V). In [28] Hamel, Nadirashvili and Russ introduced a new symmetrization technique to
prove the lower bound

A <B,T|i—|> < M(Q,V), (1.1)

where B is the ball of Lebesgue measure m centered in zero, with an equality that holds if and
only if, up to translation, = B and V(z) = T‘—ﬁ‘. In other words, (B, Tﬁ) is, up to translation,
the unique solution of the shape optimization problem

min {Al(Q, V) : QC R open, [ =m, |V|i= < T}. (1.2)

In the present paper, we fix a bounded open set D C R% If V € L>®°(D,R%), we first prove
that, if Q C D is a quasi-open set, there exists a principal eigenvalue A;(€2, V'), satisfying some
properties similar to the case of open sets. Our motivation to do so is the study of shape
optimization problems.

More precisely, the aim of the present paper is twofold. From one side, we develop a purely
variational existence theory for shape optimization problems of the form (2)). We consider the
model problem

min{Al(Q,V) L QC D, Q <m, |V < T}, (1.3)

where D C R is a given bounded open set. We notice that in this case a symmetrization technique
in the spirit of [28] cannot be applied since the geometry of D strongly affects the geometry of the
admissible domains and it is impossible to determine explicitly the shape of the optimal domains
or the precise analytic expression of the optimal vector fields. Moreover, in the case of a generic
vector field V' the principal eigenvalue A\ (€2, V) does not have a variational formulation but is
only determined trough the solution of a certain PDE on 2 so, the minimization problem (L3))
cannot be expressed as a variational problem involving integral cost functionals. Our main result
concerning the optimization problem (L3 is the existence Theorem in the class of quasi-open
sets.

On the other hand, we study the case in which only the shape €2 is variable, while the vector
field V is fixed. Precisely, we consider the shape optimization problem

min{)\l(Q,V) . Qc D, |9 gm}, (1.4)

where both the upper bound m of the Lebesgue measure of the domain 2 and the vector field
V are fixed. In this case the geometry of the optimal sets is affected not only by the geometric
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constraint {2 C D but also by the form of the vector field V. We notice that in this case it is the
inclusion constraint that provides the compactness necessary for the existence of an optimal set.
We show that the shape functional Q — A;(2, V) is lower semi-continuous with respect to the
so-called ~-convergence of sets and then we obtain the existence of optimal sets by a general result
of Buttazzo and Dal Maso [I3]. Furthermore, when the vector field is the gradient of a Lipschitz
function, we prove a regularity result for the optimal sets. Our main result is the following.

Theorem 1.1. Let D be an open, bounded and connected set in R%. Let m € (0,|D|) and let the
vector field V : D — R? be such that |V||p~ = T < +00. Then the shape optimization problem

min{)\l(Q,V) : Q C D quasi-open, |2 < m} (1.5)

admits a solution Q* C D. Moreover, if the vector field is of the form V =V ®, where ® : D — R
1$ a given Lipschitz function, then the solution is an open set of locally finite perimeter such that
|Q*| = m. Moreover, the boundary 0Q2* can be decomposed in the disjoint union of a regular set
Reg(0Q*), which is locally the graph of a CY® function, and a singular set Sing(OQY*), which is
empty if d < d*, discrete (possibly empty) if d = d* and of locally finite H™% Hausdorff measure
if d > d*, where d* € {5,6,7} is defined in Definition 534l Furthermore, if 0D is C1', then the
regular part Reg(OSY*) contains OSY* N OD, which means that, for all x € 9Q* N AD, IQ* is CL
i a neighborhood of x.

Remark 1.2. We notice that the hypothesis on the connectedness of the box D could be dropped
since the intersection of an optimal shape with a connected component of D is itself a solution
in this component.

Remark 1.3 (On the optimality of the smoothness at contact points). The regularity of the
boundary of an optimal set Q* to the problem (5] at contact points of the free boundary with
the box cannot exceed C'/2. Indeed, Chang-Lara and Savin proved in [18] that the boundary
of Q,, where u is a solution of the free boundary problem ([E.30]) in ©, = Q*, is at most cLe
regular.

As a consequence of Theorem [[.1] we get the regularity of every shape solution to the analogous
problem where V varies among all the vector fields which are the gradient of a Lipschitz function.

Corollary 1.4. Let D be an open, bounded and connected set in R?, m € (0,|D|) and 7 > 0.
Then the shape optimization problem

min{)\l(Q,VCI)) : QC D quasi-open, |Q <m, ® € WhH(D), |[V®| = < T} (1.6)

admits a solution (*,V®*). Moreover, Q* is an open set of locally finite perimeter such that
|Q*| = m. Furthermore, the boundary 02* can be decomposed in the disjoint union of a regular
set Reg(0QY*) and a singular set Sing(OQ*) with the properties stated in Theorem [l

Outline of the proof and plan of the paper. Let us now briefly describe our strategy. We
first extend the definition of A1 (£2, V') to the case of quasi-open sets, setting

A(Q,V) :=sup {/\1(Q,V) : Qopen, QC QC D}.

Considering a maximizing sequence and using y-convergence arguments and resolvent estimates,
we prove that A\(€Q,V) < +4oo is indeed an eigenvalue of L on € under Dirichlet boundary
condition, and that the real part of any other eigenvalue of L is not smaller than A;(Q, V).
We then consider three minimization problems for A1 (£2, V). First, the quasi-open set € is fixed
and the vector field V' varies under the constraint ||[V|| () < 7. In this case, we establish that
this problem has a solution V*, which satisfies

Vu(x)

V*(z) = —TW if |[Vu(x)| #0; V*¥(x)=0 if |Vu(x) =0, (1.7)
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where u is the corresponding eigenfunction. The proof relies on 7-convergence arguments (since
2 can be approximated by smooth open sets in the sense of the y-convergence) and the corre-
sponding result for open sets. In the second minimization problem, both 2 and V vary, sat-
isfying €@ C D and [ < m and ||V () < 7, and the result states that this minimization
problem has a solution (Q*,V*), where V* still satisfies (IL7]). Finally, we restrict our atten-
tion to the minimization problem for A\(2,V) when  and V vary, satisfying the same con-
straints as before, assuming furthermore that V is the gradient of a Lipschitz function in D.
Using a variational formulation for A;(€2, V'), which is available due to the form of V' (namely
. Jp e I Vul* dz
A(Q, V) = min —
weHIQ\{[0}  [p e Pudx
solution (Q*, V™).
We then study the regularity of the optimal set Q* in this last optimization issue, relying in
an essential way on the variational formulation of A\;(€, V). More precisely, we observe that, if
V = V& is given and 2 C D is a solution of ([L5]), then there exists a corresponding eigenfunction
u solving

), we show that this third minimization problem has a

min{/De_@]Vu\de s u € HY(D), u>0, |{u # 0} < m, /De_q>u2da;: 1}. (1.8)

Conversely, if u is a solution of (L.8]), then the quasi-open set {u > 0} is a solution of (LH]). This
observation is crucial for our analysis, since we interpret the optimal domain 2 as the set where
the eigenfunction wu is positive and we are therefore led to regularity issues for a free boundary
problem. Inspired by [6], we reformulate the problem (L8]) using the functional

J(v) ::/ ]Vfu]2e_q>dx—)\m/ v?e Ydx
D D

for v € H}(D), where A, := [, |Vu|?e™® dx for u solving (LB). One easily checks that, if u
is a solution of (LH), then J(u) < J(v) whenever v € H}(D) and |Q,| < m, where we set
Q= {z € Q; v(z) > 0}. We first focus on regularity properties of the solution u of (LE). The
function w is proved to be bounded, and we show that |€2,| = m. Then, using regularity properties
of the Lagrange multipliers A, associated with the functional J, we prove that €2, is actually an
open set of (locally) finite perimeter, and that u is (locally) Lipschitz and behaves like the distance
to 9, near 082, N D.

Finally, using blow-up type arguments inspired by [33], we prove that |Vu| = \/Aye® on 9Q,ND
and |Vu| > v/A,e® on 092, NOD (if we assume some smoothness on D) in the viscosity sense,
from which we derive the decomposition of 99, as the union of a regular C® part and a “singular”
one with zero d — d* Hausdorff measure.

In the general case where the drift V' is not assumed to be the gradient of a Lipschitz function,
obtaining regularity results for the boundary of the optimal domain 2 is an open problem.

The paper is organized as follows. After giving some general useful results about y-convergence
in Section [2 we define and prove the main properties of A1(€2, V) when 2 is merely a quasi open
set in Section [3l Section [l is devoted to the proof of the existence of optimal domains and vector
fields for the various optimization problems we consider, while, in Section Bl we establish the
regularity results in Theorem [[.11

2. PRELIMINARIES

In this section we recall the main definitions and the properties of the quasi-open sets and the
~y-convergence.

2.1. Capacity, quasi-open sets and quasi-continuous functions.
The capacity of a set E C R? is defined as

cap(E) :=inf {||lul3 : ue HY(R?), > 1 in a neighborhood of E},
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where H'(R?) is the Sobolev space equipped with the norm ||ul/3;; = / (IVul* + u?) dz.
R4

We say that a property holds quasi-everywhere (q.e.) if it holds on the complementary of a set
of zero capacity.

A set © C R? is said to be quasi-open if there exists a decreasing sequence (wn)n>1 of open
sets such that, for every n > 1, Q Uw, is an open set and lim cap(w,) = 0.
n—oo

A function u : R — R is said to be quasi-continuous if there exists a decreasing sequence
(W )n>1 of open sets such that li_)m cap(wy,) = 0 and the restriction of u to R%\ w, is continuous.
- n o0

It is well-known (see for instance [24, Theorem 1, Section 4.8]) that, for every u € H'(R%),
there exists a quasi-continuous representative @ of u, which is unique up to a set of zero capacity.
From now on we will identify a function u € H*(R?) with its quasi-continuous representative. We
note that, by definition of a quasi-open set and a quasi-continuous function, for every u € H'(R?),
the set Q, := {u > 0} = {z € R? | u(x) > 0} is a quasi-open set ([29, Proposition 3.3.41]). On
the other hand, for every quasi-open set €2, there exists a function u € H'(R?) such that Q = €,
up to a set of zero capacity that is, the quasi-open sets are superlevel sets of Sobolev functions.

For any set E C R?, the Sobolev space H}(E) C H'(R?) is defined as
H}(E) := {ue HYRY) : u=0 qe. in R?\ E}.

Note that, whenever E is open, this definition coincides with the usual definition of H}(E) as
the closure of C2°(E) with respect to the norm || - ||1, C°(E) being the set of smooth functions
compactly supported in E (see for instance [29, Theorem 3.3.42]). For any set £ C RY there is
a quasi-open set E C R? such that cap(E \ E) = 0 and H&(EN') = H}(E). Roughly speaking,
the quasi-open sets are the natural domains for the Sobolev space H&. We notice that, for every
quasi-open set F, H& (E) is a closed subspace of HY(R?) ; if E; C F, are two quasi-open sets,
then H}(E;) C H}(Fs) and the two sets E; and Fy coincide q.e. if and only if H} (E;) = H(Es).

2.2. PDEs on quasi-open sets. Let D C R? be a given open set and 2 C D be a quasi-open
set of finite Lebesgue measure. For every quasi-open set  C D and every function f € L?(f),

the Lax-Milgram theorem and the Poincaré inequality ensure that there is a unique solution
u € H} () of the problem

~Au=f in Q5 wue H}Q),

where the PDE is intended in the weak sense
/ Vu-Veodr = / fodz , for every o€ H}(Q).
Q Q

In particular, taking u = ¢, we notice that [|[Vullr2q) < [[fllz2()llullz2(@). Now since © has
a finite Lebesgue measure, there is a constant Cq such that ||ul|;1 < Cq|Vul|r2 for every u €
HE(Q). Thus, we get that [|ul| g1 < Cql|f]| 2.

The resolvent operator RSSA : L2(D) — L*(D) is defined as RS;A( f) = u and is a linear,
continuous, self-adjoint, positive operator such that R;ZA(L2 (D)) C H(Q). Moreover, thanks to
the compact embedding Hg (Q2) < L?(12), the resolvent R;ZA is also compact.

The usual comparison and weak maximum principles hold in this setting. Precisely, we have:

o if f € L?(D) is a positive function and Q; C Qs C D are two quasi-open sets , then
wo, < WQ,.

e if ) is a quasi-open set and f, g € L?(2) are such that f < g in 2, then RéA(f) < RéA(g).

In the sequel we denote by wq (and sometimes also by R(;A(l)) the solution of
—Awg=1 in €, wq € H(Q).

This function is sometimes called torsion or energy function and is useful, in particular, to define
the topology of the y-convergence on the family of quasi-open sets, which is the purpose of the
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next section. In the following proposition we summarize the main properties of the function wq
(see for instance [35] Proposition 3.50, Remark 3.53, Lemma 3.125, Proposition 3.72]).

Proposition 2.1 (Properties of the torsion function wq).
(1) There is a dimensional constant Cy > 0 such that

d+2
IVwallre < CalZT  and  |lwal|r= < CalQ?/. (2.1)
(2) Let Q1,99 C D be two quasi-open sets. Then we have the estimate
] G, = wouy0,) do < cap(62) [ (22

(3) HY(Q) = H}({wg > 0}). In particular, Q = {wq > 0} up to a set of zero capacity.
In the sequel we make the convention to extend to D any vector field V € L>(Q, R?) and any
function u € HZ(Q) by letting it equal to 0 on D\ Q so that V € L>®(D,R%) and u € H}(D).

We notice that, given a drift V € L>(Q,R9), the bilinear form associated to the operator
L = —A +V -V may not be coercive on H}(2). Thus, in order to define the resolvent of
L =—-A+V -V, we consider a large enough constant ¢ > 0 (depending only on [|V|| (@), for
which there exists a positive constant 6 > 0 such that

5/ (IVul* + u?) dz < / (IVul* + (V- Vu)u +cu®)dr , for every u € H)(). (2.3)
D D

The bilinear form associated to the operator L' = L + ¢ is hence coercive on H} (). Note that

72

4(1-6)

Therefore, thanks to Lax Milgram theorem, we define the resolvent RS : L?(D) — L*(D) as the
compact (non self-adjoint) operator, which maps f € L?(€) to the unique solution of the problem

Lu=f in Q, u € H}(Q),

which is intended in the weak sense

/Q(Vu-VgD—I—(V-Vu)gD—I—cugo)d:E:/Qfgpdzn, for every o € H}(Q).

if ||V]gee <7, then we can takeany 0<d <1 and c¢>d+

2.3. The y-convergence and the weak-y-convergence. In this subsection we briefly recall
the definition and the main properties of the y-convergence of (quasi-open) sets.

Definition 2.2. Let D C R% be a given open set of finite Lebesgue measure, (€2,),>1 be a
sequence of quasi-open sets and let €2 be a quasi-open set, all included in D. We say that
e ), y-converges to €, if wg, converges to wq strongly in L?(D);
e ), weak-y-converges to ), if there exists w € H}(D) such that Q = {w > 0} and wg,,
converges to w in L?(D).

Though the y-convergence is not compact on the family of quasi-open sets (see for instance [19]
and [29, § 3.2.6] for an example), it is easy to see that the weak-y-convergence is: by (Z1), up to a
subsequence, wq, weakly converges in H} (D) to some w € H}(D) and hence ), weak-vy-converges
to the quasi-open set Q := {w > 0}. To deal with the non-compactness of the y-convergence we
will use the following Lemma (see for example [12] and [29, Lemma 4.7.11]).

Lemma 2.3. Let (Qn)n21 C D be a sequence of quasi-open sets that weak-vy-converges to the
quasi-open set Q C D. Then there exists a subsequence of (S2n),,>1, still denoted by (2y),,>;, and

a sequence (Qn)nZI C D of quasi-open sets satisfying Q, C Q,, such that Q, ~v-converges to €.
The following lemma is a direct consequence of the definition of the weak-vy-convergence and

the fact that for every quasi-open set 2 = {wq > 0} (the detailed proof can be found for example
in [12] and [35, Lemma 2.2.21]).
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Lemma 2.4 (Lower semi-continuity of the Lebesgue measure). Let (,)n,>1 be a sequence of
quasi-open sets in D weak-y-converging to Q@ C D, then Q] < liminf |2,
n—-+0o0

As was shown in [9] and [12], the following theorem, first proved in [I3], is an immediate
consequence of Lemma 2.3] and Lemma 2,41

Theorem 2.5 (Buttazzo-Dal Maso [13]). Let F be a functional on the quasi-open sets, which is:
e decreasing with respect to the inclusion of sets;
e [ower semi-continuous with respect to the y-convergence.

Then, for every bounded open set D C R and every 0 < m < |D|, the shape optimization problem

min {]:(Q) . Q quasi-open, Q C D, Q] < m}
has a solution.

We will not be able to apply directly Theorem to establish the existence of optimal sets
for both the problems (L4]) and (3] in the class of quasi-open sets. Instead, in Section [ we
will use an argument based only on Lemma 2.3] and Lemma 2.4] but before that we will need to
extend the definition of A\ (£2, V') to the class of quasi-open sets. We do this in Section [ where
we will use several times the following approximation result.

Lemma 2.6 (Approximation with open and smooth sets). Let Q C D be a quasi-open set. Then:
(1) there is a sequence of open sets (Q),~, that y-converges to Q and is such that @ C Q, C D
and lim |Q,|=[Q|;

n——+00

(2) there is a sequence ()~ of smooth (C>) open sets contained in D, that y-converges to ).

Proof. The result is well-known; here we give the proof for the readers’ convenience.

(1) Let (wn),,~; be a sequence of open sets such that lim,, , cap(wy) = 0 and §,, = (QUw,)ND
is an open set. Then, [22) applied to the sets 2, and w, \ 2 together with the second estimate
in () show that wq, converges to wq in L'(D). Moreover, up to a subsequence, wq, weakly
converges in H'(D) thanks to the first estimate in 2I]). Since the embedding H}(D) — L*(D)
is compact, there is a subsequence which converges strongly in L?(D). By uniqueness of the limit
in LY(D), it has to be wg. Thus, wq, converges in L%(D) to wq and so, 2, y-converges to €.
Observe also that one has lim [€Q,| =[] since lim |w,| = 0.

n——+0oo n—-+00

(2) Firstly, assume that € is an open set. Let (£2,),~; be an increasing sequence of smooth
open sets included in 2 which Hausdorff converges to 2. Then, up to a subsequence, w,, := wq,
weakly converges in H{ (D) to some w € H} (D). But Q,, are open sets such that Q,, C 2, and
since the convergence of €, to  is Hausdorff, we can pass to the limit in the equation

—Aw, =1 in Q,
to see that w satisfies

—Aw=1 in €.
This also shows that the sequence of norms ||wy, || g1(p) converges to [|wl|g1(py, so that the con-
vergence of wy, to w is strong in H*(D). Finally, since Q,, C Q, we get that w € H}(2) and hence
that w = wq. Therefore, the sequence of smooth open sets €2, y-converges to (1.

If now €2 is merely a quasi-open set, we can approximate €2 by a sequence of open sets which
~-converges to ) thanks to (7). Hence, by approximating these open sets by open smooth sets as

above, we get a sequence of smooth open sets which y-converges to 2. Recall that the topology
of the y-convergence is metrizable (see for example [9]). ]

Remark 2.7. In general, we cannot approximate a quasi-open set (or even an open set) Q@ C D
by a sequence of smooth (say of class C1) open sets (€2,,),~,; which y-converges to  and such
that €, D Q. Indeed, let (&,)n>1 be a dense sequence in D= (0,1)2 € R? and pick a sequence
(rn)n>1 of positive numbers such that ) -, 7rl < 1. Set Q = Un>1B;, (&) C D. We now claim
that if €, D € is a smooth open set, then ﬁecessarily Q, O D. To see this, let z° € D C Q C Q,,.
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Then if 2 € 99, there exist 7 > 0 and a smooth, say of class C!, function f : R — R such
that, up to reorienting the axis, we have Q, N B.(2°) = {zx € B.(2°) : 24 > f(x1, - ,24-1)}-
It follows that ﬁz N B, (2%) € D is a nonempty open set which does not intersect €,,. This is in
contradiction with €, D  since € is a dense open set in D. Hence = € §2,, and this shows that
D C Q,. Now, suppose that (£2,),~, is a sequence of smooth sets such that D > Q, D Q. Then
Q, = D for every n > 1. Furthermore, the weak maximum principle implies wq < wp = wq,,
in D, where the first inequality is strict since || < |D| = 1. Therefore, wq, cannot strongly
converge to wq in L?(D).

We now give a characterization of the ~-convergence in terms of convergence of resolvent
operators. The following theorem is a generalization of [29, Lemma 4.7.3] for the operator L'.

Theorem 2.8. Let D C RY be a bounded open set, (Q21),,>1 C D be a sequence of quasi-open sets
and 2 C D be a quasi-open set. The following assertions are equivalent :

(1) the sequence (y,),,~, Y-converges to ;

(2) for every sequence (f,),~,; € L*(D) weakly converging in L*(D) to f € L*(D), the sequence

<R(Lz;(fn)) ., converges to RE (f) strongly in L*(D);

n>

(3) the sequence of operators (Ré;) . € L(L*(D)) converges to RS in the operator norm
n>

Il zcz2(py)-

Proof. Tt is plain to see that the equivalence between (2) and (3) holds for all sequence of compact
operators defined on Hilbert spaces. It then remains to prove that (1) and (2) are equivalent.
(1)=(2). Let f, € L?(D) be a sequence L?(D)-weakly converging to f € L%(D). Then || f,][.2 is
uniformly bounded. Moreover, writing u,, = Ré;( frn) we have

/ fatty dx = / (IVun|* +V - Vg, up, + cul) da.
D D

Thanks to [23)) this gives

1

! / (2 4+ u2) dr > 6 / (Vatn? + u2) da,
2 Jp D

and therefore
/ f2de > (20 — 1)/ (|Vun|* +u?) da.
D D

Taking § € (1/2,1), this shows that the sequence ||uy, | g1(py is bounded.

Assume now that the conclusion of (2) does not hold. Then there exists ¢ > 0 such that, up to a

RL’n (fn) — RE(f )‘ D) > €. Moreover, up to a subsequence, u,, weakly converges
in H'(D) to some u € H}(D), and therefore g, = f, — V - Vu,, — cu,, weakly converges in L?(D)
to g = f—V -Vu— cu. Theorem 2.8 being true for the Laplacian (see [14, Proposition 3.4]),
we conclude that R(_zf(gn) strongly converges in L%(D) to R;ZA(g). Thus RQ:L( fn) = Ra, (9n)
and RS (f) = Rq(g) imply that Ré;( fn) strongly converges in L?(D) to R (f), which yields a
contradiction and therefore proves (2) .
(2)=(1). Let (fu)n>1 € L*(D) be a sequence weakly converging in L?(D) to f € L?(D). Set
Wy 1= RﬁnA(fn) and w := RéA(f). We claim that w, — w strongly in L?(D), which, according
to [I4] and [29, Lemma 4.7.3], implies that §2,, y-converges to 2. Assume by contradiction that
it is not the case, and pick up € > 0 and an increasing function ¢ : N* — N* such that

>e for every n > 1. (2.4)

subsequence,

[wen) — wHLz(D)

Since the sequence (wy,)p>1 is bounded in H&(D), up to a subsequence, there exists a function

z € H}(D) such that W (n) converges to z weakly in H{ (D) and strongly in L?(D). Now, since

L'w, = fo+V -YVw, +cw, :=g, in
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and wy, € HE(Qy), w, = Ré;(gn) But g,;n) — 9 := f+V - Vz+ cz weakly in L?(D), so that,

by assumption (2), wy,) — Rg (g) strongly in L?(D). Then the convergence of w to z yields

p(n)
that z = R (g), is a solution of

L'z=f+V-Vz+cz in Q, z € H}(9),

or, in other words, z = R(—)A( f) = w. Thus, ([24) provides a contradiction, therefore showing
that w, — w strongly in L?(D), which means that (1) holds. O

3. THE PRINCIPAL EIGENVALUE ON QUASI-OPEN SETS

For a bounded domain Q@ ¢ R? and V € L>(Q,R%), the principal eigenvalue A\;(Q, V), of the
(non self-adjoint) elliptic operator L = —A + V -V on 2 with Dirichlet boundary condition on
09, was defined in [4] by

ML V) =sup{AeR : o W2 Q) suchthat ¢ >0 and —Lop+Ip<0 in Q},

where it was proved that A\;(€, V) € R has the following properties:
(i) There is a positive eigenfunction u :  — R such that u € VVif(Q), for all p € [1,+00), and

Lu=X(Q,V)u in Q, u € H(Q), / w?de =1,
Q

(see [4, Theorem 2.1}).
(17) A\1(Q,V) < Re (X) for every eigenvalue X # A1 (2, V) of L in Q (see [4, Theorem 2.3]).
(77i) The functional ©Q — A;(Q, V) is decreasing with respect to the domain inclusion.

In the sequel we extend the definition of A\;(€2, V') to quasi-open sets. We first recall that the
definition can be extended to an arbitrary open set ) C D by

)\1(9, V) = inf )\1(Qn, V),

where the infimum is taken over all the connected component €2, of 2. Now, in view of property
(7i1) above, for any quasi-open set 0 C D, we define

A1(Q,V) :=sup {Al(Q,V) : Qopen, QCQC D}. (3.1)
Remark 3.1. Notice that, these two definitions coincide for open sets.

Remark 3.2. The functional Q — A\1(£2, V'), defined on the family of quasi-open sets, is still non-
increasing with respect to the set inclusion, that is A\ (Q2, V) < A1(Q1, V), whenever Q; C Qo.

We will show that A\;(€,V) is finite and is an eigenvalue of L in € satisfying the minimality
property (7). Recall that, for a quasi-open set of finite Lebesgue measure Q@ C D, we say that
X € C is an eigenvalue of the operator L = —A+V -V in Q if there is an eigenfunction u : R — C,
(weak) solution to the problem

—Au+V-Vu=Au in Q, u € Hy(9;C), /’UF dx = 1. (3.2)
Q

Let now ¢ > 0 be the constant from Subsection and L' = L + c. Note that A\ € C is an
eigenvalue of L in €, if and only if, X\ + ¢ is an eigenvalue of L’ in Q. By the argument from
Subsection 2.2, we have that the bilinear form associated to the operator L’ is coercive and so,
Rg is a compact operator on L?(D). In particular, the spectrum is a discrete set of eigenvalues
with no accumulation points except zero and A € C is an eigenvalue of L in the sense of ([3.2)) if
and only if (A 4 ¢)~! is an eigenvalue of R .

The following theorem shows that most of the properties of the principal eigenvalue on an open
set still hold for A;(€2, V) if Q C D is merely a quasi-open set.
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Theorem 3.3. Let D be a bounded open set, V & LOO(D,]Rd) and Q@ C D be a non-empty
quasi-open set. Then

(1) M (2, V) is well-defined that is, \1(2,V) < 4o0.

(2) M\(Q,V) is an eigenvalue of L in ; there is a (non-trivial) real-valued eigenfunction u
such that

Lu=X(Q,V)u in Q, u € H(Q), /u2d:p:1.
Q
(3) If A € C is an eigenvalue of L in Q, then A1 (Q,V) < Re(A).

In order to prove Theorem B3] we will need the following two lemmas. The key estimate for
the proof of Theorem (1) is contained in the following lemma inspired by [4], Proposition 5.1].

Lemma 3.4. Let V € L>®(D,R%) and Q C D be an open set. Suppose that there is T > 0 such

that ||V ||ee() <7 < 24/M1(Q,V). Then
A1(02,0) > A (Q, V) =7/ M (Q, V). (3.3)

Proof. Let us first suppose that € is connected. For convenience, set A := A(2,V). By the
definition of the first eigenvalue of —A on domains, it is enough to find some ¢ > 0 in €2 such that
—A¢p > (A — 7V )¢ in Q. Since Q is an open set, from [, Theorem 2.1], there exists a positive
eigenfunction ¢y for the first eigenvalue of L in 2, that is, ¢y > 0 in  and Loy = A¢y. Set
¢ := ¢, for some a € (0,1) to be chosen later. Then, in 2, we have

—A¢—Ap = —a(Ady)dS ! — ala — 1)| Vv P72 — Adi

Vo Vovl*] o
= [)\(a—l)—av-(b—vv—ka(l—a)‘ <Z5%‘//’ ](bv
\% Vov|?
> [)\(a ~1) — arl fVV‘ + ol —a)‘ gf?VV’ } s
The function z +— —atz + (1l — a)z? reaches its minimum at z = 7/(2(1 — «)). Therefore, we
t
# 72 . 2

Since a € (0,1) is arbitrary, we can choose it so that it maximizes the term in the brackets of
the above estimate, that is, such that 1 — o = 7/(2v/)). Note that, by hypothesis on 7, we have
a € (0,1). It follows

—Ap— \p > [—T\/X—i- Tﬂ ¢ > -1V,

which proves the claim in the case when € is connected.
In the general case, let (€2;,),>1 be the connected components of Q. Then, for every V, we
have

A(Q, V) =inf A\ (Q,,V).
Then, we have, for all n,

A (2,0) > M (20, V) =TV A2, V) > M (V) =7/ A (2, V),

where the last inequality is due to the fact that  — = — 74/x is a non-increasing function on the
interval [\ (2,V), +00). O

The next lemma is a direct consequence of the classical result [3I, Theorem 3.16] on the
convergence of a spectrum of closed operators with suitable properties. We will use it in the
proof of Theorem B3] (3).
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Lemma 3.5. Let H be a separable Hilbert space and (T,),~, € L(H) a sequence of compact
operators converging to the compact operator T'€ L(H) in the operator norm || - || z(my. Suppose
that X € C\ {0} is an (isolated) eigenvalue of T and let r > 0 be such that B,(A\) No(T) = {\}.
Then, there is ng > 1 such that for every n > ng there is an eigenvalue A, € o(T,,) N Br/2()\).

We are now in position to prove Theorem

Proof of Theorem 3.3l Consider a maximizing sequence (£2,),,-, for ([3.1]), that is, a sequence of
open sets (€y,),,~; such that

M(Q,V) = li_}rn A (2, V) and QcCQ,cD forevery n>1.

We first show that we can assume that )y, y-converges to €. Let wy be a sequence of open sets
such that QU w, is open and cap(w,) — 0. We set Q, := Q, N (QUw,) = QU (w, N Q). B
BI) and the inclusion Q C Q,, C 2, we have A\ (Qn, V) < A1 (2, V) < A (Q,V), so we get

A2, V) = lim (2, V) and QcQ,cD forevery n>1.

Thus, we may consider Q,, in place of Q, as a maximizing sequence for (BI). Finally, as in
Lemma [Z6] 2, v-converges to € thanks to the estimate (Z2)) applied to the sets Q, and Q, Nw,.

We now prove claim (1). Indeed, suppose by contradiction that
(V) = nh_)llolo A1(2,,V) = +o0
Then, by Lemma B.4] we have that
lim A;(©,,0) = +o0

n—o0

Now, since £ — A1 (€, 0) is decreasing and Q C €, we get that A;(€2,0) = +00. By the variational
characterization

Vul?d
ME@Q.0) = min  delVuldr
weHI(@\{0}  Jou?dz

we get that H}(Q) = {0}, which implies that Q = () (or, equivalently, cap Q = 0), which is absurd.

We now prove (2). Let u, € H}(Q,) C H}(D) be the (normalized) eigenfunction associated to
A1(Q2y, V). Then we have

L'u,, = (Al(Qn, V) + c)un in Q,, Uy € H&(Qn), / u?de =1.

Multiplying the above equation by w,, integrating over €2,, and using the estimate (23] we get
SllunlF < M (Q, V) + ¢ for every n > 1.

In particular, since A\1(Q,V) < oo, we get that (uy),~, is uniformly bounded in H}(D) and so,
up to a subsequence, we may assume that u,, converges, weakly in H{ (D) and strongly in L?(D),
to a function u € H}(D). Moreover, €2, y-converges to {2 and so, RfLZ/n converges in norm to R(L{.
Thus,

u= lim u, = hm (Al(Qn, V) + C)RQ (un) = M (Q, V) + ) RE (u),

n— o0

which concludes the proof of ( 2).

Proof of (3). Suppose that A € C is an eigenvalue of L on € such that Re(A) < A\ (2, V).
Then, (A +¢)~! € C is a (non-zero) eigenvalue of the compact operator Ré’. Applying Lemma

B we can assume that for n large enough, there is an eigenvalue A\, of L on €, such that
Re(An) < A\1(€2y, V), which is a contradiction with [4, Theorem 2.3] . O



12 EMMANUEL RUSS, BAPTISTE TREY, BOZHIDAR VELICHKOV

Remark 3.6 (On the sign of the first eigenfunction). In particular, as a consequence of the
proof of Theorem (2), there is an eigenfunction u of L on the quasi-open set {2, which is
non-negative, being the limit of non-negative functions. We notice that u does not need to be
strictly positive as 2 might be disconnected.

We conclude this section with a proposition on the continuity of A\ (-, V') with respect to the
~-convergence.

Proposition 3.7. Let D C R? be a bounded open set, V€ L®(D;R?) and (Q,),~, C D be a
sequence of quasi-open sets that y-converges to the quasi-open set Q C D. Then

)\1(97‘/) _ {nh_?;o)‘l(gnav)? Zf Q#(ZL
+oo, if Q=40.

Proof. Let 7 = ||[V|oc(p)y and ¢ and ¢ be as in 23). Set L' = L +c.

Suppose first that the sequence (A (2, V)),,~; is bounded. Reasoning as in the proof of Theorem
B3] (2) we get that, up to a subsequence, A1(£2,, V) converges to an eigenvalue A € R of L on €.
Now, by the argument of Theorem B3] (8) and Lemma [B5] we have that A satisfies the property
(3) of Theorem B3] so A = A\ (€2, V'), which concludes the proof since the sequence (A1 (2, V)),,>q
is bounded . -
Next, suppose that the sequence (A1(2,,V)),,~; is unbounded.  Applying Lemma [3.4] we get
that, up to a subsequence, nh_}n;o A1(€2,,0) = +00. Since Réf are self-adjoint compact operators,

we get that
. —A i
1853wy = Jin 3o =0
Finally, the v-convergence gives that Rg_zA(Q) = 0 and so, Hj(Q) = {0} and cap(Q?) = 0. -

Remark 3.8. In view of Proposition B.7 we set A1 (0,V) = +oo.
Putting together Theorem and Proposition 3.7] we obtain the following result.

Corollary 3.9. Let Q be a bounded quasi-open set and V € L‘X’(Q;Rd). Then, there is an
eigenvalue A\ (Q, V) eR of L=—-A+V -V in Q such that:

A1(,V) =min {Re%\ : A € Cis an eigenvalue of L on Q}
=sup {\i(Q) : Q is an open set containing Q}
= li_)m A (2, V), where (), is any sequence of (smooth) open sets y-converging to 2.

Proof. The first two inequalities are due to Theorem For the third one it is sufficient to note
that for every quasi-open set {2 there is a sequence of smooth open sets y-converging to 2 and to
apply Proposition B.71 O

Remark 3.10 (Faber-Krahn with drift for quasi-open sets). As further consequence of Corollary
we can extend the Hamel-Nadirashvili-Russ inequality to the class of (bounded) quasi-open
sets. Precisely, for every bounded quasi-open set Q C R? with |©2| > 0 and every 7 > 0, we have

A1 <B,T|?x|> <M(Q,V) forevery Ve L®(Q;RY) with ||V]r= <7, (3.4)

where B is the ball centered in zero of the same Lebesgue measure as 2. Indeed, let Q C R¢
be a bounded quasi-open set and V € L>(2,R%) be such that ||[V||z~ < 7 (in what follows we
assume that V' is extended by zero outside €2). Let (£2,),~,; be a sequence of bounded open
sets which v-converges to € and such that |[Q,| converges to || (see Lemmalem approx qo).
Denote by By, (resp. B) the ball centred at 0 whose Lebesgue measure is |B,., | = |2,| (resp.
|B| = |€2]). Then, since €2, is an open set, we have A\{(B,, ,7e;) < A1(Qy,v) thanks to [27]
Remark 6.10]. Moreover, B,, ~-converges to B (since |B,,| — |B| and hence B, converges to
B in the sense of Hausdorff; see [29, Proposition 3.4.2]). Therefore, Corollary implies that
M (B, ,Tey) converges to A\i(B,Te,) and similarly, A;(2,,V) — A (Q, V). Passing to the limit
we get
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4. EXISTENCE OF OPTIMAL DOMAINS

In this section we prove the existence of optimal domains for the cost functional A; (2, V). We
first consider the case when the drift V is fixed, for which the existence follows by the result
of the previous section and a classical theorem in shape optimization. The case when both the
domain €2 and the drift V' may vary requires more careful analysis and the rest of the section is
dedicated to the proof of Theorem 3] In the end of the section (Theorem (5] we also prove
that a solution (€2, V') exists also in the class of vector fields V' obtained as gradients of Lipschitz
continuous functions.

Theorem 4.1 (Existence of optimal sets for a fixed vector field). Let D C R be a bounded open
set and V € L>®(D;R?Y). Then, for every 0 < m < |D|, there is an optimal domain, solution of

the problem (L3).

Proof. By Remark and Proposition B17] we get that Q — A\ (2,V) is y-continuous and de-
creasing with respect to the set inclusion. The claim follows by Theorem O

4.1. Optimal drifts on a fixed domain. Let Q C R be a fixed bounded quasi-open set and
7 > 0 be given. We consider the following variational minimization problem

min{)\l(Q,V) Ve L%(QRY, |V~ < T}. (4.1)
Theorem 4.2. The problem (&I has a solution, which satisfies
Vu(z) . :
Vilx) = —71 if |Vu(x)| #0; Vi(x) =0 if |[Vu(x)| =0, 4.2
(@) = ~rrgi if [Vula) (1) =0 if Vu(z) (1.2

where u is the eigenfunction of L = —A + V, -V in §, associated to the eigenvalue A\ (£2, V).

Proof. Let (£2,),~; be a sequence of smooth, say of class C? for some 0 < o < 1, open sets
which v-converges to ) (see Remark 26)). Since €, is smooth, we already know (see [28, theorem
1.5]) that the problem (ZI]) for the fixed domain §2,, has a solution V,,. Moreover, if u, is the
associated eigenfunction of —A + V,, - V in Q,, that is, u,, is defined by

—Aup + Vi - Vuy = M (Qn, Vi )u, in Qy, Uy, € H&(Qn), / ui dr =1,
Qn

then the optimal vector field V,, is unique and is given by
Vup(z) .

—T7———=— if |Vu,(x 0,

0 if |Vuy,(z)| = 0.

In particular, u, is a solution of
—Auy — 7 [Vuy| = M (Qp, Vi)u, in Q, Uy, € H&(Qn), / u?dr =1.

We first claim that the sequence (A1(Q2y,, V4,)),,~; is bounded. Indeed, by optimality of V,,, one has
A (0, Vi) < A1(Q,,0), which is nothing but the principal eigenvalue of —A on €, with Dirichlet
boundary condition. But since 2, y-converges to 2, Proposition B.7] yields that A;(Q2,,0) —
A1(€2,0) so that the sequence (A1(€2y,0)),,~, is bounded, proving our claim.

Therefore, up to a subsequence, A;(€,,V;) converges to some A € R and u, has a uniformly
bounded norm in H& (D), which yields a function u € H&(D) such that, up to a subsequence,

U, — u weakly in H}(D) and u, — u strongly in L?(D). (4.3)

Since the sequence |Vu,| is bounded in L?(D), up to a subsequence, —7 |Vu,| — z weakly in
L?(D) for some function z € L*(D). Therefore, f, := A1 (Qp, vy )ty + 7|V, | weakly converges in
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L%*(D) to f := Au—z. Thanks to theorem 8| (applied to —A), u,, = R, (fn) strongly converges
in L2(D) to R&A(f). By ([@3]), we have u = R@A(f) and hence u € H} (Q) Furthermore

/ \Vu|? dz = / (—zu + M?) da
D D

= lim (T]Vun\un—k)\l(Qn,V) = lim /\Vun\ dx,

n—-+00 n——+00

where the first line is due to the fact that u € H}(Q) and —Au = Au — z in . This proves that
uy, converges strongly in H'(D) to u, that |Vu,| strongly converges in L?(D) to |Vu/|, and hence
that z = —7|Vul|. Therefore u satisfies

—Au+V,-Vu=—-Au—7|Vu| =X u in €, u € Hy(Q), /uzdajzl,
)

where V, € L®(D,R%) is given by ([&2). This shows that A is an eigenvalue of the operator
L=—-A+V,-Vin Q. In particular, we have ||Vi||oc <7 and A\1(€2, Vi) < A. On the other hand,
by the minimality of V,, we have A\1(Q,,V,) < A\ (2, Vi). Hence, letting n — oo, we get that
A < A1(Q, Vi), which yields A = A1(€, Vi) and concludes the proof of the theorem. O

4.2. Shape optimization problem over domains and vector fields. Let D C R? be a
bounded open set, 0 < m < |D| and 7 > 0. We consider the shape optimization problem

min {A(Q,V) : Q C D quasi-open, |Q <m, ||V|z=~ <7} (4.4)

Theorem 4.3 (Existence of optimal sets and optimal vector fields). Let 7 > 0 and m € (0, |D|).
Then the problem (@A) has a solution (2*,V*), where V* is given by (d2).

Proof. Let (2,,V,,) be a minimizing sequence for ([@4]) and let
=inf {\(Q,V) : QC D quasi-open, | <m, [|[V|r~ <7} = li_)rn AL (2, Va),

Since the topology of the weak y-convergence is compact, we can assume that, up to a subsequence,
Q,, weakly y-converges to a quasi-open set 2 C D. Then, let Q,, be a sequence of quasi-open sets
as in Lemma 23l Denote by V,, the optimal vector field given by Theorem on €, and let
u, € HY(Q,) be a solution of

—Auy, + V- Vu, = Al(Qn,Vn)un in Q,, Uy € Hol(ﬁn), / ui dx = 1.
D

By the minimality of V,, and the inclusion €, C Q,,, we have
0< Al(Qn, Vn) < Al(Qn,Vn) <\ (2,, V) for every n > 1.

Therefore, up to a subsequence, Al(Qn, f/n) converges to some A such that A < \. In particular,
(un),>; is uniformly bounded in HZ(D) and so, up to a subsequence, u, weakly converges in
H}(D) to some u € H}(D). Now, since Q,, y-converges to Q, we can argue as in the end of the
proof of Theorem 2] to conclude that the convergence of u,, to u is strong in H'(D). This yields
that w is not identically zero and satisfies

—~Au+V -Vu=Au—7|Vu|=Au in Q, u € H(Q), /u2dx:1,
D

where V' € L*(D, Rd) is given by ([@2). Furthermore, thanks to Lemma [2:4] we have that
|Q| < m. Hence, A < \. Thus, we get that A\ = A and hence that A = A\;(Q, V), which proves
that the couple (Q V)isa solutlon of (44). O

Remark 4.4. If the box D contains a ball B C D such that |B| = m, then by Remark a
solution of (44 is given by A\ (B, 7z/|x]).
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We now consider a shape optimization problem in the more restrictive class of couples (2, V),
in which the vector field V' is a gradient of a Lipschitz function. Precisely, given a bounded open
set D C R% 7 >0 and m € (0,|D|), we consider the shape optimization problem

min {Al(Q,VCD) : Q C D quasi-open, ® € W°(D), |Q <m, [|[V®|r~ < T}. (4.5)

In this case the argument from Theorem does not apply since the optimal vector field from
Theorem may not be the gradient of a Lipschitz function. On the other hand, the functional
A1(Q, V®) is variational so we can use a more direct approach. Indeed, for every A € R and
u € HE(Q) we have

—Au+Ve®-Vu=Xu in Q@ < —div(e ®Vu)=Xte%u in Q,
and since the operator A = —div (e"®V") is self-adjoint, we get that

—d 2 d
MEOQVB) = min  JpeVulde
weH QN0 [pe Puldx

(4.6)

Theorem 4.5 (Existence of optimal sets and optimal potentials). Let D C R? be a bounded open
set, 7> 0 and m € (0,|D|). Then the problem (L) has a solution.

Proof. Suppose that (€2,,®,) is a minimizing sequence for (L) and let A\, = A\ (Qy, V®,).
Given zp € D, we may suppose that ®,,(zg) = 0 for every n > 1. Thus, up to a subsequence, ®,,
converges uniformly in D to a function ® € W1*°(D) such that ®(z¢) = 0 and ||[V®|1~ < 7.
Let u,, be the solution of

—Auy, + VO, - Vu, = \u, in Q,, Uy, € H&(Qn), / ufl dr = 1.
D

Then, wu,, is uniformly bounded in H&(D) an so, up to a subsequence, u, converges weakly in
H (D) and strongly in L?(D) to a function u € H}(D). Thus, we have

e ®u?dr = lim [ e %2 dx and e~ ?|Vul? dz < liminf [ e ®"|Vu,|? dz.

Now, choosing Q := {u > 0} and applying (4.0]), we get

—®1vul2d v n2d

A(Q,P) <
1( ; ) = fD e_q>u2 d 00 fD e—q)nu% dx n—00

Now, in order to conclude, it is sufficient to notice that by choosing a subsequence, we may assume
that u,, converges to u pointwise a.e., so we get

Q] = {u >0} < lini)inf H{un, > 0} < lirginf |92, < m,
which proves that (2, ®) is a solution of (4.3]). O

5. REGULARITY OF THE OPTIMAL SETS

In this section we study the regularity of the boundary 92 of the optimal sets €. We only
consider the case V = V@&, with ® € W1°(D), since in this case the optimization problem
(L3 is equivalent to a free boundary problem for the first eigenfunction u on the optimal set .
The regularity for a generic vector field V' € L*°(D) remains an open problem essentially due to
the lack of variational characterization of the eigenvalue A;(€2, V). We start with the following
lemma.

Lemma 5.1 (Reduction to a free boundary problem). Let D C R? be a bounded open set,
0<m<|D[, 7>0,®ec W(D), with |[V®||p~ < 7, and V = V. Suppose that the quasi-
open set Q C D is a solution of ([LHl). Then every corresponding first eigenfunction ug of the
operator —A +V -V on Q) is a solution to the variational problem

min{/ \Vul?e™®de : ue HY (D), ‘{u # 0}| <m, / e Pt de = 1}. (5.1)
D D
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Conversely, if u is a solution of (B.1)), then the quasi-open set {u # 0} is a solution of (LI]).
Proof. The proof is a straightforward consequence of the variational formula (Z6]). O
Remark 5.2. It turns out that if w is a solution of (B.1l), then v > 0 in D (see Lemma 5.8 below).

The rest of this section is dedicated to the regularity of the free boundary 902, N D and of
the whole boundary 9, if D is smooth, of a solution u of (5II), where we recall that, for any
function v € H}(D) we denote by €, the (quasi-open) set {v > 0}.

The first regularity result for a free boundary problem formulated as the minimum of a varia-
tional functional is due to Alt and Caffarelli [2]. Nowaday, there is a well established regularity
theory for the solutions to free boundary problems. Let us briefly reassume the main steps of the
proof.

1. Regularity of the solution. Establish the continuity of the solution u and prove that u behaves
as the distance function dist(-, 9€2,) in a neighborhood to the boundary 0S,,.

2. Optimality condition. Prove that the solution wu satisfies an elliptic equation in €2, and an
optimality condition (in some weak sense) |Vu| = Ce®/? on the free boundary 9, N D and
|Vu| > Ce®/? on 99, N OD, where C' is a constant.

3. Reqularity of the free boundary. Prove that the boundary 0f2, can be decomposed as a
disjoint union of a regular part, Reg (9€2,), and a (small) singular part Sing (9€2,,).

The first step is usually obtained by an appropriate construction of the competitor against
which the optimality of u is tested. Now, in our case, this might appear as a difficult task since the
constraints / e~ ®u? dr = 1 and especially [{u > 0}| < m are quite restrictive. Similar technical

D
obstruction was overcome by Aguilera, Alt and Caffarelli in [I], Briangon [7], and Briancon and

Lamboley [6]. In order to overcome this difficulty, we essentially adopt the approach from [7]
and [6] which allows to replace the measure contraint with a quasi-minimality condition at small
scales (Subsection [0.5]). We then obtain the Lipschitz continuity (Subsection [5.0]) and the non-
degeneracy (Subsection [0.7]) of the solution. In Subsection [5.8 we prove that the blow-up limits
of u are global solutions of the one-phase Alt-Caffarelli free boundary problem and in Subsection
(.10l we deduce the optimality condition (in viscosity sense) on the free boundary and we prove
our main regularity result (Proposition [(5.32]).

5.1. Boundedness of the eigenfunctions. In this subsection we give a bound on the L°° norm
of the eigenfunctions on generic bounded quasi-open sets. We first prove that if u is a solution of
a PDE with sufficiently integrable right-hand side, then u is bounded. Then we use and iterate
an interpolation argument to improve the integrability of the eigenfunctions.

Lemma 5.3. Let D C R? be a bounded open set, Q C D be a quasi-open set and ® € Whee(D).
Let f € LP(D) for some p € (d/2,+00] and let u € H} () be the solution of

—div(e™®Vu)=f in Q, u e HYHQ). (5.2)
Then, there is a dimensional constant Cy such that
C emax@ B
lullzoe < 5= 120 ) £ 12,

2/d— l/p

where max ® = ||| oo (p)-

Proof. We first assume that f is a non-negative function. We notice that « > 0 on €2 and that u
is a minimum in H{(Q) of the functional

J(u) ::%/Qe_q)\Vu]zdx—/qudx.

The rest of the proof follows precisely as in [35, Lemma 3.51]. For every 0 < t < ||u||z~ and
e > 0, we consider the test function u;. = uw At + (u —t — €)4. The inequality J(u) < J(ug.)
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gives that

1 p-1
5/ Vo< [ fu-wdoge [ fde<elfllus o)
{t<u<t+e} R4 {u>t}

and, using the co-area formula and passing to the limit as ¢ — 0, we get
-1
/ V| dHE < 265 £ o [{u > 1|5 (5.3)
{u=t}

Now, setting ¢(t) := [{u > t}| and using the co-area formula again as well as the Cauchy-Schwarz
inequality, we obtain

-1
1
¢ (t) = _/{ N dH < — </{ o |Vu|d7—[d‘1) Per({u > t})?,

which, together with the isoperimetric inequality [{u > t}|%1 < CgPer({u > t}) and (5.3), gives

G
e P f| o

bRl

d—2
¢'(t) < plt) « .
Setting o = 472 —I—% < 1and C = Cyfllire” ™%, we have ¢/ < —Cp® If tyax =
sup{t > 0; p(s) >0 for all s € [0,t)} < +oo, then ¢/ (t)p(t)™* < —C for all t € [0,tmax), SO

that 0 < p(t) < (|Q* — (1 — @)Ct) == for all t € [0,¢max). This shows that tymax < +oo and
that

[

1|Qfa=te
lul|Loe < tmax < Ema

which concludes the proof when f is non-negative. For a general function f, the proof now follows

by applying the estimate in Lemma to both the positive and the negative parts of f. O

Lemma 5.4 (Boundedness of the eigenfunctions). Let D C R? be a bounded open set, @ C D be
a quasi-open set, ® € WH(D) and V = V®. Let R : L*(Q) — L*(Q) be the resolvent operator
of —A+V -V on Q. Then, there are constants n € N, depending only on d, and C € R, depending
on d, |Q] and ||®||p~, such that

RML*(Q)) C L=(Q)  and R z2@)L=() < C.
In particular, if u is a first eigenfunction of —A +V -V on Q normalized by ||u||;2 = 1, then
u € L®(Q) and
lu|pe < CAF(Q, V).
Proof. Let us first notice that if d < 3, then d/2 < 2 and so, taking n = 1, the claim follows
directly by Lemma 5.3l If d > 3, then setting 2* = dzfdw we have
R:L*(Q) = L¥(Q) and R:LYN) — L®(Q).
Thus, interpolating between 2 and d, we get

d d
|Bllcriny < C where pe(2.d] and g= 57> 2, (5.4)
where C' depends only on d, |Q| and ||®||z~. Now, it is sufficient to notice that R¥ € £(L?; L%),
d k
where ¢, = 2<m> . For k big enough we have that g, > d/2 and so, RFT! € £(L?; L>°), which

proves the first part of the claim. Finally, in order to get the estimate on w, it is sufficient to
notice that R(u) = A7 (Q, V)u and R™(u) = A\]™(, V)u. O
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5.2. Pointwise definition of the solutions. When we deal with Sobolev functions we usually
reason up to a choice of certain representative of the function. Even if this representative is defined
quasi-everywhere, there still might be a set of zero capacity where the function is not defined.
Of course, this interferes with the notion of a free boundary in the sense that we cannot just
consider the topological boundary of €2, without specifying the representative of v that we work
with. Fortunately, the eigenfunctions of the quasi-open sets are defined pointwise everywhere,
that is every point is a Lebesgue point.

Lemma 5.5. Let D C R? be a bounded open set, Q C D a quasi-open set and ® € WH(D) a
given Lipschitz function. Let f € L>(D) and u > 0 be a solution to the problem (5.2)) in €.
(1) Then, div(e=®Vu)+ f >0 in D, in sense of distributions. In particular, div(e”*Vu) is
a (signed) Radon measure on D.
(2) If xo € D is an arbitrary point in such that By(xo) is a ball included in D, then we can
define the value of u at xg by

u(zg) = lim w(x) dH* 1 (z) = lim u(z) dz.
u(wo) = lim o5 (o) (z) (z) = lim . (z)

Moreover, we have the identity

i /OT Sl_d diV(E_(I)VU)(Bs(xO)) ds

—® 19,d—1 —®(z0) _
ue” dH —u(xp)e =
]éBr(mo) (o) dwq

1

——/ Sz_dds/ uVo - ve? dHIL (5.5)
dwq Jo OB,

Proof. (1) For n € N define p,, : R — R by

pn(s) =0, for s <O0; pn(s) =ns, for se€[0,1/n]; pn(s) =1, for s> 1/n.
Since p,, is Lipschitz continuous, we have p,(u) € HE(Q) and Vp,(u) = pl(u)Vu. Let ¢ €
C§e(D), ¢ > 0in D. Using yppp(u) as a test function in (5.2)), we get

/ po(uw)Vu - Ve Pdr < / (pn(u)Vu - Voo + opl, (u)|[Vul*) e da = / fopn(u) dx.
D D D

which, letting n — oo, gives the first claim.
In order to prove (2), we suppose that o = 0 and we calculate

d ][ —‘1> d—1 __ d ][ @(sﬁ d—1
— dH — s& dH
dS OBs dS 8B ( )

— [ [e- Vulse) — uls)e - Va(sgle e ane!
0B
1—-d 82_d

s PR —® od—1
- By -2 — - .
s div(e™"Vu)(Bs) s /8 . uVae-ve ™ dH

Then, integrating from p to r (p < r), using the inequality from (1) and the fact that v € L*>°(D)
by Lemma [5.4] we get

][ ue_q’d”;'—ld_l—][ e / 14 div (e~ V) (Ba(xo)) ds (5.6)
OB, o8,

dwg
——/ 82_dd8/ uVd - ve P andt
dwq J, 9B,

1 1 — min ® 2 .2
(551 + Sllullz [V@l|me™ ™) (2 — 12)
= —C(p* = 1?)
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where C' > 0. This shows that the function r — ue”®dH*t — Cr? is non-decreasing.
dB,
In particular, the limit ¢(z¢) = hr% ue”PdHI! exists and we set u(zg) = e®#0)¢(xy).
T OBr(x0)
Finally, (5.0) follows by letting p — 0 in (5.0I). O

As a direct consequence of Lemma[5.5 and (5.5]) we get the following strong maximum principle.

Lemma 5.6 (Strong maximum principle). Let D C R? be an open connected set and u € HL(D)
satisfy w > 0. Assume that div(e"®*Vu) € L>®(D) satisfies div(e"*Vu) < 0. Then, if u is not
identically vanishing in D, then w is strictly positive in D.

Proof. Set A := {x9 € D; u(xg) =0}. If 29 € A, then (B.5) implies that u(z) = 0 for almost
every « € By(xo) whenever B,(xog) C D. But, if x € B,(xy), since z is a Lebesgue point for u,
u(z) = 0. Thus, A is open.

Consider now a sequence (zp),>1 € A converging to zop € D. For some n large enough, there
exists a ball B,(z,,) C D containing x¢. Since u vanishes everywhere in B, (z,,), u(z¢) = 0, which
proves that A is closed in D. We conclude by the connectedness of D. O

A consequence of Lemma [5.5]is the fact that the set €, = {u > 0} and the (topological) free
boundary 92, N D are well defined. Below we prove that the topological boundary coincides with
the measure theoretic one.

Lemma 5.7. Let u € H}(D), uw > 0 in D, be a solution of B, zo € 0y and let r > 0 be
such that D, (x¢) = By(zg) N D is connected. Then we have 0 < |, N By(x0)|. Moreover, if
xo € 02y, N D, we have |, N By (x0)| < |Dr(z0)].

Proof. The first inequality comes from the fact that every point is a Lebesgue point for u. To
show the second one, we argue by contradiction and assume that [, N B,(zo)| = |Dy(x0)| for
some r > 0. We claim that u is a solution of

—div(e”®Vu) = Apue™® in D, (x0), where A\, ::/ Vu|?e™? da.
D
Indeed, let v be the solution of
—div(e™®Vv) = Apue™® in D,(x0), v=wu in D\B,(xg).
Then Lemma [5.6] implies that v > 0 in D, (xg). Since |2,| = |£2,|, the optimality of u gives

fD|VU|2€_<I>dl‘ / Vulte® do = [p [Vul?e cbd:n_i_)\ L [pute™® da
Jpvie®du Jpvie=®da " f vZe~® dx

which implies

0> / (|Vul* - \Vo[?)e™Pdx + )\m/ (v* — u?)e”Pdr = / (IV(u = v)[* 4+ An(u — v)?) e Pdx,
D D D

where the last equality follows by the definition of v and the fact that v — u € HE(D,(wo)).
This implies that © = v almost everywhere and hence, by Lemma [B.5] that u = v everywhere.
Therefore, we have u > 0 in B,.(zg), which is in contradiction with xg € 9Q, N D. O

Lemma 5.8 (Saturation of the constraint). Let D C R? be an open connected set, ® € Wh>°(D),
m and T be as in Lemma Bl Then every solution u of (B.1)) is such thatu > 0 on D and |Q,| =m
(up to a change of sign). In particular, every solution Q of (L)) is such that || =

Proof. Let u be a solution of (5.1]) and set

U U_
+ and ug =

()™ (fee)”

Uy =
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We first prove that either u; or wg is a solution of (B.I). It is obvious if u = uq or u = u_.
Otherwise, we have uy # 0 and u_ # 0, and the claim follows from the estimate

- [p I Vus?e®da [, |Vu_|* e ®dax _ Ip <|VU+|2 + |VU—|2> e Pdz [ |Vul?e=®dx
in = :
[pude®dx 7 [Hute ®dx [p (uh +u?) e ®dx Jpute=®dx

Up to changing u into —u, we assume that wu; is a solution of (B.I]). Now, suppose by contradiction
that |Q,| < m. Then, for every ball B,.(z¢) C D such that |Q,| + |B,| < m, u; is a solution of

—div(e ®Vuy) = Ape Pu; in B, (x0).
By the strong maximum principle, we get u > 0 in B,(xg), which is a contradiction. This proves

both the saturation of the constraint and the positivity of u. O

5.3. A free-boundary problem with measure constraint. We now follow the strategy
adopted in [6 [7]. In particular, the proof of Theorem below is very close to the one of
Theorem 1.5 in [6]. Note that the approach is local and that a result analogous to Theorem
with perturbations in D is vain (see Remark 1.6 in [6]).

Let u € H}(D) be a solution of (5.I) and let A, = / |Vu|?e™® dx. For any v € H}(D) we set
D

J(v) = / |Vo2e ®da — /\m/ v2e ?dx. (5.7)
D D
Remark 5.9. It is plain to see that, when u € H{(D) is a solution of (E.1)),
J(u) =min {J(v) : ve H{(D), |Q] <m}. (5.8)

For a ball B,(zo) C R? we define the admissible set
A(u,z0,7) == {v € H(D) : u—v € Hy(Br(20))}-

Remark 5.10 (Coercivity of J). We notice that the set {v € A(u,zg,7) : J(v) < C} is weakly
compact in H}(D). Precisely, if u € Hi(D), ® € Wh*(D) and J be given by (5.7, then there
is a constant rg > 0, depending on d, ®, \,,, and D such that for all » < r,

/B [Tl S 26T 0) 4 (1 e ), o€ Alnzor). (59)
r(Z0

Indeed, let v € A(u,xg,r) with r < ry. We have
2
2 2 2 2 2
vdm§2/ vV — U dw+2/udw§7/Vv—u dw+2/udaz
/D D( ) D A(Br(z0)) IV ) D

4r2
< 0 / Vol? + [Vu|? da:+2/u2da:,
~ AMi(By) D(’ PVl D

where the last inequality is due to the (—2)-homogeneity of A\i(B,) and the fact that r < rg.
Choosing 1y small enough (depending only on d, A\, [|[V®||z~ and the diameter of D) we get

/ ’V’U’2 dx < emaxfbj(v) + )\memaxfb—mirKI)/ 1)2 dr
By (zo) D

1 .
< M J(y) 4 —/ (IVo]* + |Vul?) da + 2)\memax¢_mmq’/ u? d.
2 By (x0) D
which concludes the proof of (5.9).

As a consequence, we obtain the following result, which gives us the existence of a solution to
a local version of the minimization problem (5.8]) with some different measure constraint.

Lemma 5.11. Let u € H}(D) be a solution of the problem ([B8)). Let By.(xo) C R? be a ball and
let m > |Qy, \ Dy(z0)|. Then:
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(1) the problem
min {J(v) cv € Alu, zo, 1), Q] < ﬁ@} (5.10)
has a solution,

(2) If D,(x0) := By(xo) N Qy is connected and |, U D, (xg)| > m, then |Q,| = m,
(8) there exists o > 0 such that, for every r < rg, every solution v of ([B.I0Q) is non-negative.

Proof. For 1, it is enough to notice that, by Remark 510l J is bounded from below in A(u, zg, 7).
Then, if (v,),>1 is a minimizing sequence for (GI0), by (E3) v, is bounded in H' and so a
minimizer exists by the semicontinuity of .J (notice that, up to a subsequence, there exists v € L?
such that v, — v strongly in L? and almost everywhere, so that 1o, < lim1g, ).

For 2, if D, (x¢) is connected and |, U D,.(z¢)| > m, we argue as in the proof of Lemma [5.§] to
conclude that |Q,| = m. For 3, let v be a solution of (B.I0). Then, by the optimality of v and
the fact that v € A(u,zg,r) and Q,+ C €, one has

JH) +Jw) = Jw) < Jt),
which means that J(v~) < 0. Therefore,

/ Vo~ |?e ® dx < )\m/ lv~ e ® da
By (zo) By (zo)

< )\meerCdrz/ Vo~ e~ ® du,
By (o)

where the second inequality is due to the fact that maxp (;,) ® — ming (;,)® < 2r7 and the
variational characterization and the scaling of A\{(B,,0) = Cyr~2. Thus, for r small enough
(r < ro with ro depending only on 7, \,,, and d), v~ = 0.

O

5.4. An internal variation optimality condition. Let D C R? be a bounded open set, u €
HY(D) and ¢ € C°(D;R?). The first variation 6.J(u)[¢], of J at u in the direction &, is given by

5.7 (w)[e] i= tim L) = ()

e p ,  where w(x):=u(z + t&(x)).

A straightforward computation gives that
5T(w)lE] = / [2DE(Vu) - Vut (Vul ~ A®)(VE €~ dive)|ePde.  (5.11)
D

We prove in Proposition [B.12] the existence of an Euler-Lagrange multiplier for every solution
w of (B.8). This, using a local internal variation of the boundary of the optimal set ,,, we derive
an optimal boundary condition for u (see Lemma [5.29]).

Proposition 5.12 (Euler-Lagrange equation). Let u be a solution of ([B.8). Then, there exists
Ay > 0 such that

0J(w)¢] = Ay | divEde for every £ € CX(D;RY). (5.12)
Qu

Moreover, for every xg € 98, N OD and every r > 0, we have

0J(u)[§] > Ay [ divde,
Qy

for every € € C°(B,(z0),R?) such that (Id + &)~ (D, (x0)) C D,(0).
Proof. Let £ € C®(D;R%) and u;(z) = u(z + t&(z)). Then we have

10| = || — t/ div & da + o(t). (5.13)
Quy
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Step 1. We first notice that if B,(zo) C R? is a ball such that
D, (x¢) := By(z9) N D is connected and 0 < |Dy(x0) N Qy| < |Dy(xo)],

then there is a vector field & € C2°(D,(z0); R?) such that / div o dx = 1. Indeed, if this is not
Qu

the case, then we have

/ divédr =0 for every £ € CX(Dy(x0); RY).

For every ball B,(x1) C D,(xg), take a vector field of the form &(z) = (z — x1)¢.(x) with
0 < ¢. < 1 on By(z1), ¢ radially decreasing in B,(z;) with |[V¢.| < C(pe)™!, ¢ = 1 on

B(1—¢)(71) and ¢ = 0 on 9B,(x1). Then we have / (doe(z) + (x — x1) - Voe(z)) dz = 0 and,

passing to the limit as ¢ — 0, we get
d|Q N By(x1)] — pHHQ, N OB,(21)) = 0.

In particular, we get that the map p ~— p~9|Q, N B,(x1)| is constant. Since the above identity
holds for all balls B,(x1) C D,(xo), we get that |, N D,(xo)| = 0 or |Q, N D,(x0)| = |Dr(x0)],
which concludes the proof of the claim.

Step 2. We now prove the first statement of the proposition. Let & € C°(D;R?) be as in Step
1 and ¢ € C°(D;RY). There are two cases:

If/ divédx = 0, define & = & + néy with n > 0 so that / divéy de = n. Set w(x) =
Qy Qu
u(z +t&1(x)). Then, for t small enough, u; € H} (D) and [2,,| < |Q,]| = m and

J(ug) = J(u) + £ 6 (u)[&1] + o(t).
By the minimality of u we have J(u) < J(ut) and so, d.J(u)[&1] > 0. Therefore,

5T (w)[E] > —n8T(w)go] for every 7> 0,
and hence, we get §J(u)[¢] > 0. Taking —¢ instead of £ we have that §J(u)[¢] = 0, and hence
(E12) holds for any A, > 0.

If/ div&dx # 0, define & = 5—50/

case, we have 0.J(u)[¢2] = 0. On the other hand, §J(u)[&2] = §J(u)[¢] — 5J(u)[§0]/ div ¢ dex,
Q

which proves (B.12) with A, := §J(u)[&]. Moreover, for ¢t small enough, u(z) = u(x ¥ té(x)) €
HE (D) and, by the minimality of u, we have
J(u) < J(ug) = J(u) + tAy, + o(t),

which proves that A, > 0. The strict inequality follows by a general result (Proposition [AT]) for
minimizers of J with respect to internal perturbations.
Step 3. Let g € 0, NOD, r > 0 and & € OX(D;RY) be as in Step 1 so that we have
§J(u)[¢] = Ay. For any & € CX(B,(w0),R?) such that (Id + &)~ Y(D,(w0)) C Dy(0), we set
&S =¢—(1—né fQu div & dx where 7 is some positive constant. Note that the vector field & is
such that u(z) = u(x + t&(z)) € H(D) for small ¢t > 0 and Jo, div& dz =1 > 0. Therefore,
using the minimality of u, we have for every ¢ > 0 small enough

J(u) < J(ue) = J(u) + 6] (u)[&1] + o(2),

so that we get dJ(u)[&1] > 0. It follows that 6.J(u)[£] > (1—n)A, for every n > 0, which concludes
the proof. 0

div&dz. Then / div & dax = 0 and, by the preceding

u u

In the following lemma we show that the Lagrange multipliers, associated to the solutions of
variational problems with measure constraint in a fixed ball B,(z¢), are continuous with respect
to variations of the measure constraint around m. This lemma will be used several times in the
proof of the optimality of the blow-up limits.
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Lemma 5.13 (Convergence of the Lagrange multipliers). Let D C R? be a bounded open set,
u € HY(D) be a solution of [B.8) and A, be the constant from [BI2). Let B,(vo) C R? be a ball
such that

D, (xo) := By(zo) N D is connected and 0 < |Dy(x0) N Q| < |Dr(z0)].

Let the sequence (my),,~, be such that li_)rn my, = m. Then, for n big enough, there is a solution
- n (0.0]

up € A(u,zg,r) of the problem
min{J(v) s v € Alu,zg, ), |Qy] < mn} (5.14)

Moreover, up to a subsequence, we have:
(a) for every n there is a Lagrange multiplier A, > 0 for which (512) holds for w, in Dy (xg);
(b) for every n there is a vector field &, € C°(D,(x0); RY) such that

d ¢
dt t:OJ(u"

(¢) un, converges strongly in Hi (D) and pointwise almost everywhere to a function us € A(u,zo,)
which is a solution of (BI0);

(d) the sequence of characteristic functions lq, converges to Lo,  pointwise almost everywhere
and strongly in L?(D);

(e) if we have 0 < |Qy \ By(xo)| < |D\ By(x0)|, then T}I_IEOA“” = A,

)= Ay, and %L—om“ﬂ =-1 where ul () := up (v +1&,(2)); (5.15)

Furthermore, if D is of class CY' and m,, < m for every n large enough, then all these properties
still hold even if the assumption |, N Dy(z0)| < |Dy(x0)| is not satisfied.

Proof. First of all, we notice that since |, \ D, (xg)| < m < |Q, U D,(z0)|, we may assume that
the same holds for every m,,, for n large enough. Thus, by Lemma [B.11] the problem (5.I4]) has
a solution wu,, such that |, | = m,. Then, it follows that wu, satisfies

0 < |Qu, N Dy(z0)| < |Dy(x0)]. (5.16)
Therefore, by step 1 in the proof of Proposition5.12] there exists a vector field &, € C>°(D,(xg); RY)

such that / div &, dx = 1, and, reasoning as in Proposition [5.12], there exists A,, > 0 such that
Quy,

0J (un)[€] = Au"/Q div&dx for every £ € O°(Dy (), RY). (5.17)

Moreover, taking ul,(z) = u,(z + t&,(x)), we obtain (E.I5). This proves (a) and (b). We notice
that the only difference with Proposition is that in the present case, u,, is only a solution of
a variational problem in B, (zg).

Let now n be fixed and & € C®(B,.(z0); R?) be the vector field, from the proof of Proposition
B.12] associated to u. Then, taking uy(z) := u(z + t§y(x)), we have that

d
il o0l = [ diveor

and so, for n large enough, there is a unique t,, € R such that |€2,,,| = m, = [, |. In particular,
there are constants C' and ng, depending on u and &y, but not on n, such that

J(up) < J(ug,) < C  for every n > ng.

Then, by Remark B.10] (un)n21 is uniformly bounded in H}(D), so up to a subsequence, u,

converges weakly in H', strongly in L? and pointwise a.e. to a function us, € A(u,zg,7). Now,
since the pointwise convergence implies 1o, < liminf 1o, , we get that |Q, | < liminfm, = m.
In particular, J(u) < J(us). On the other hand, the weak H' convergence of u,, gives that

J(uso) < linl)inf J(up) < linl)inf J(ug,) = J(u),
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so, we get J(usx) = J(u), us is a solution of (BI0), |2,.| = m (by the saturation of the
constraint). Moreover, J(u,) — J(us) since we have

limsup J(uy,) < limsup J(ut,) = J(u) < J(uoo) < liminf J(uy).

n—00 n—00 n—o0

But w, strongly converges in L?(D) to us so that it gives [}, e=®|Vu, > dz — [, e™*|Vuo|* d,
which means that the convergence of u,, to u is strong in Hg (D).
We now check that the convergence of 1, to Lo,  is strong in L?. Indeed, for all non-negative
function ¢ € L?(D), the Fatou lemma shows that

/ﬂauwwé/li_mllnuncpsli_m/ La,, ¢ (5.18)
D D D

A Up to a subsequence, there exists h € L2(D) such that 1o, — hweakly in L?(D). Thus, (5.18)

yields 1q, < h. Moreover, ||h]|, < lim|/1q,_|,. As a consequence, |||, = m'/2, which entails

-
that 1o, — h strongly in L*(D). Since 1o, < h, we conclude that 1o, — Lo, strongly in
L?(D), and so, up to a subsequence Lq,, converges to 1, pointwise almost everywhere. This
proves (c) and (d).

In order to prove (e), we first notice that u and u, are both solutions of (B.8]) since J(uoo) =
J(u). Therefore, there is a Lagrange multiplier A, such that

0J (uso)[€] = Ao div&dx for every £ € C°(D;RY), (5.19)
Quoe

Moreover, by (c¢) and (d), we get that
0J (uxo)[€] = lim 6 (up)[¢] and / divédr = lim div ¢ dex,
QO n

i
n—o0 — 00 [¢)
Uoo un

for every ¢ € C°(D,(z0); R?). Now, choosing ¢ € C°(D,(xg); R?) such that / divEdz # 0 and
Qy

using (B.19) and (B.I7) we get that A,,, converges to A. Finally, if we have 0 < 12, \ Br(z0)] <
|D \ B,(x0)|, there exists £ € C°(D \ B,(z0); R?) such that / divEdz # 0, so that Ao = Ay,

Uoco

since u = uso outside the ball B, (xp).

The proof of the last statement of the Proposition is very similar. We have |Q,\ D, (zo)| < m =
|2, UD,(z0)| so that, since m,, < m, we have |, \ D, (z0)| < my,, < |Q,UD,(z¢)| for every n large
enough. It follows from Lemma [5.11] that the problem (G.I4]) has a solution w, with |, | = m,
and such that (5.I6) holds. Note also that there exists a vector field & € C$°(B,(z0), R?) such
that (Id+t&) (D, (x9)) C D, (z0) for every small ¢ > 0 and fQu div &y dx = 1 (consider a smooth
extension of the normal to the boundary of D on 0D N B (x0)). Moreover, we have t,, > 0 (since
m, < m) and hence u;, € Hi(D). The remainder of the proof is unchanged. O

5.5. Almost optimality of u at small scales. Let u be a solution of (5.I) in D C R?. For
zo € R% and h > 0, we define the upper and the lower Lagrange multipliers, p—(h,xo,r) > 0 and
M+(h,.%’(),7’) > 07 by

pt(h,zo,r) =inf{p >0 : J(u) + p|Q] < J(0) + p|Q|, Yo € A(u, zo,7), m < |Q| < m+ h},
p—(h,xo,m) =sup{p >0 : J(u)+ p|Q| < J(v) + p|Q], Yo € A(u,zo,7), m —h <|Q,| <m}.
Remark 5.14. We notice that if B,(x9) € R? is a ball such that D,(zo) := D N B,(xq) is
connected and 0 < |D,(zg) N Qy| < |Dy(x0)|, then

p—(h,zo,r) < Ay < pg(h,xo,7) for every h > 0.
Indeed, by Step 1 of the proof of Proposition [F.12] there is a vector field & € C°(D,(zo); RY)

such that / divédr = 1. Let w(z) = u(z + t&(x)). Then for |t| small enough u; € A(u, o, )
Qy
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and m — h < |Qy,| < m + h. Moreover, for every 1 > 0 we have
J () + pl€,| = J(u) + tAu + p(|Qu] — 1) + o(2). (5.20)
Now, if ¢ > 0 is small enough and A, < p, then m > |Q,,| and, by E20Q), J(us) + pu|Qqy,| <

J(u) + p|€y|, which proves that A, > u—(h,zo,r). Analogously, if ¢ < 0 and A, > u, then
m < |Q,,| and again J(ug) + p|Quy, | < J(uw) + 1|€], which gives that Ay, < py(h,zo,7).

Remark 5.15 (Monotonicity of p4 and pu—). We notice that the following inclusion holds:
A(u,z,7) € A(u, z9,7m9) for every By (x) C By, (o).
In particular, for every 0 < h < hy and every B,(z) C By,(xg), we have
p—(ho,zo,70) < pi—(h,z,r)  and  py(h,@,7) < py(ho, xo, o).

Theorem 5.16 (Convergence of the upper and the lower Lagrange multipliers). Let u be a
solution of (B.1)) in the bounded open set D C RY and let A, be given by Proposition 512 Then
there exists a constant ro > 0, which depends only on 7, \,, and d, with the following property:
for every ball By(xg) C R centred at xo € O, with v < ro and such that

D,.(zg) := B.(x9) N D is connected and 0 < |y N Dy(x0)| < |Dy(x0)], (5.21)

we have
lim g4 (h, xo,70) = lim pu_(h, 20,70) = Ay
h—0 h—0

If, moreover, D is of class C%', then there exists a constant r > 0, which depends only on
T, Am,d and D, such that, for every ball B,(xg) centred at ¢ € 00, N ID with r < r1, we have

li _ =A,.
hl_H)?(l),u (h7 Zo, TO)

Proof of Theorem [5.10: Let xy € 0€, be such that (5.2I]) holds and let A > 0 be small. We set
for simplicity r = ro, By(x0) = By, u4(h) := pi(h,zo,r) and p—_(h) := p—_(h,zqg,r). We proceed
in three steps.

Step 1. We first prove that py(h) is finite. Let, for any n € N, v,, € A(u, 2o, r) be a solution of
the variational problem

min { J(v) + n(|Q| — m); : v € A(u,z0,7), || < m+ h}. (5.22)
If there exists n such that |[Q,,| < m, then uy(h) < n and hence pi(h) is finite. Indeed,

by the minimality of u and the definition of v,, we have for every v € A(u,zg,r) such that
m<|Q <m+h

J(u) +n|Qu] < J(vn) +nlQu] < J(v) + 1[0,
so that p4(h) < n and the inequality p4(h) < oo holds.
Suppose, by contradiction, that |2, | > m for every n. First notice that since J(v,) is bounded
from below (see Remark B.I0) and J(v,) + n(|, | — m) < J(u), we have that [, | — m as
n — 00. Since vy, is a solution of (5.I4) with m,, := |, |, there is a Lagrange multiplier A,,, such
that (512) holds for v, and a vector field &, such that (5.I5) holds for v!(x) = v,(z + t&,.(x)).
For t > 0 small enough, v}, € A(u,zo,r) and m < [, | < m + h. Then, by the minimality of v,
we have

I (0n) +1(|Q, | = m) < J(v,) + n(|Qu | = m) = T (0a) + tAy, +n(|Q,| =t —m) +ot),
which implies n < A,, , in contradiction with lim A, = A, from Lemma
Step 2. }lLiLI%)qu(h) = Ay. Let (hn),>; ben;g)ecreasing sequence such that h, — 0. Since
Ay < py(h) and h — py(h) is non-decreasing, it is sufficient to prove that nh_)llolo tt(hy) = Ay
Fix € € (0,A,) and let 0 < ay, := py(hy) — € < pg(hy). Let uy,, be the solution of the problem
min {J(v) + an (|| —m)* 1 v e Ay, zo,7), [Q] <m+ hy}.

Notice that [y, | > m, since otherwise we would have J(u) < J(uy) 4+ ap(|Qu,| —m)™, which
contradicts the definition of p(hy,). For n large enough, (52I) holds with w,, and since u,, is
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solution of (B.I4]) with m,, = |Q,,|, by Proposition £.12] there is a Lagrange multiplier A,,, > 0
and a vector field &, such that (5.I5) holds for u,(x) := u,(z +t&,(x)). By the minimality of u,,
for £ > 0 small enough, we have

J(un) + an(|Qy,| —m) < J(u%) + an(|Qu$L| —m) = J(un) + tAy, + an(|Qu,| —t —m) +o(t),
which shows that A, > «,. By Lemma [5.I3] we have

B in) = € = [0 0n < 1 Aun = Ay
which proves the claim since € > 0 is arbitrary.
Step 3. fllin% p—(h) = Ay,. We prove this result for any zy € 0€2,, which will conclude the proof
%

of the Theorem. Note that the smoothness of D implies that there exists a constant c¢p > 0 such
that D, (xg) is connected for every r < rp and every zo € 9, N ID.

Let € > 0 and (h,)nen be a decreasing infinitesimal sequence. We will show that A, — e <
lim p_(hy,). Let u, be a solution of the problem

n—00
min {J(v) + (u—(hn) +)(|Q] — (M = hy))T v € A(u, o, 7), |QW] < m}. (5.23)
Up to replacing u, by u;", we can assume that u,, > 0 in B, (the argument is similar to the proof
of Lemma [5.1T]). We claim that
m — hy < Q| < m. (5.24)
Suppose that [Q,,,| = m. By the minimality of u and w,, we get

J(u) + (p=(hn) +&)[Qul < J(un) + (- (hn) + €)[Qu, | < J(0) + (- (hn) + €) |80,

for every v € A(u, zg,r) such that m—h,, < |Q,| < m, which contradicts the definition of p_(h,,).
Now, if |Qy,,| < m — hy, we have J(u,) < J(u, + te) for every ¢ € C°(D,(x¢)) with sufficiently
small compact support. Thus u, solves the PDE —div(e™®Vu,) = Ane~®u, in D,(zq). Since
U, > 0 in D,(zp), by the strong maximum principle, we have that either u, = 0 or u, > 0 in
D,(zg), in contradiction with (ZI6]). Thus, we proved (G.24]).

We have that w,, is solution of (I4) with m, := || which converges to m as n — oo.
By Lemma BI3] we have an Euler-Lagrange equation for w, in B, for some A, . Let &, €
C>(Dy(w0); R?) be the vector field from Lemma 13 (b) and let ul,(z) = wu,(x + t&,(x)). For
negative t < 0 and [t| small enough, u}, € A(u,zo,7) and |Q,,| < [Q,| < m. Thus, by the
minimality of u,,, we get

J(tn) + (i (hn) +€) (1Qu, | = (M = hn)) < T(un) + Ayt + (- (hn) +€) (|Qu, | =t = (m = hy)) +o(2),
which implies that Ay, < p—(hy) + €. Now, by Lemma [B.13] we get

Ay = nh_EI;O Ay, < n11_>11010 pi—(hn) + €,
which conclude the proof. O

Remark 5.17 (Quasi-minimality at small scales). Suppose that D C R? is just a bounded open
set. By the monotonicity of p4 and p— with respect to the inclusion (Remark [5.15]) and a covering
argument we get that for every compact set I C D there is 7(K) > 0 such that: for every € > 0
there is h > 0 such that

pr(hyz,r) —e < Ay < p_(h,z,r)+¢ forevery xe€ KN, andevery 0<r<r(K).

If, moreover, D is of class C1'!, then then exists 7p > 0 such that, for every ¢ > 0 there exists
h > 0 such that: for every 0 < r < rp and every xy € 90, we have

pi(hyz,r) —e < Ay < p(hyz,r) + & if [Qu N Dy(20)] < [Dr(20)],
Ay < p—(h,z,r) +¢e otherwise.
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5.6. Lipschitz continuity of the eigenfunctions on the optimal sets. In this subsection
we prove that the solutions of (5.]) are (locally) Lipschitz continuous in D. For § > 0 we set
Ds={x €D : d(z,0D) > 0} and let > 0 be given. By Theorem .16l and Remark 517 we get
that if u is a solution of (5.I) and u > A, then there is 79 > 0 such that, for every zg € 9, N Ds,
we have

J(u) + p]Qy| < J(v) + pl€y|  for every v € A(u,z9,79) such that [Q,] > [Q,].  (5.25)

Note that the condition |Q,| < ||+ h can be dropped by choosing ¢ such that |B,,| < h. We
will prove that if u € H'(B,,) is bounded, nonnegative and satisfies (5.5]) and (5.25)), then u is
Lipschitz in Dg. In particular, we will obtain the following proposition.

Proposition 5.18 (Lipschitz continuity of the eigenfunction). Let D C R? be a bounded open
set. Let 7 >0, m € (0,|D|) and ® € W1*°(D). Then, every solution of ([51) is locally Lipschitz
continuous in D. More precisely, it is Lipschitz in Dg for all § > 0. If, moreover, the box D is
of class C™1, then u (extended by 0 outside D) is Lipschitz continuous in RZ.

The proof is based on the following lemma, whose (more general) two-phase counterpart can

be found in [3], [5] and [10].

Lemma 5.19. Let u be a solution of ([L.8) and let ro > 0 be such that u satisfies (5.25]) for some
> Ny. Then, there is a constant C' > 0 such that for every xg € 082, N Dg we have

| div(e=®Vu)|(B,(z)) < Crd~? for every ball By (z) C By, (o). (5.26)
Proof. Let x =0 and n € C2°(Bay,) be such that
C

0<n<1, n=11in B, ||V77||L°° < —.
r

Using u + tn as a test function for J, and setting (f, g) := / fgdx, we get
D

d
L, _ r
2(div(e~®Vu) + Amue=®,n) < tJ(n) + %|B2T| <C <t\|vn||§2 n 7)
where the constant C' > 0 depends on d, ® and p. Now, minimizing over ¢ > 0 and using the
estimate |Vn||zz2 < Cyr2=!, we get
(div(e~®Vu) + Apue™® ) < Crit,

By Lemma [5.5] we have that div(e™®Vu) + \,ue™? is a positive Radon measure. Thus, the
inequality 7 > 1p, and the boundedness of u imply

|div(e™®Vu)|(By) < A | ue”®da + (div(e *Vu) + Apue™®, 1p,) < Créh. O
B,

Proof of Proposition [BI8. Let u be a solution of (51I). We proceed in four steps.

Step 1. Q, is open. Let T € 9Q, N D. We will prove that u(z) = 0. Let r; > 0 be such that
B, (%) C D and let x,, € B, /2(T) be a sequence converging to Z such that u(z,) = 0 (see Lemma
6.7). By Lemma [5.19 and Lemma [5.5] for every n and every r < r1/2 we have

][ ue™® dH! < w(ay,)e @) 4 Cr = Cr.
OBr(xn)
passing to the limit as n — oo, we get that

][ ue " dH < Cr  for every < 11/2,
9B, (7)

which, passing again to the limit as » — 0, proves that u(z) = 0.
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Step 2. Gradient estimate in §,. For every ball B,(z) C €, there is a constant C, depending
only on ®, d and \,,, such that

| Q

IVullpeo s, ,@) < —llullpe (s, ) (5.27)

~ 3

Indeed, suppose that z = 0 and set ®,(x) := ®(rz
div(e_q)*Vur) + )\me_cb"ur =0 in By,

and so, the interior Schauder estimate (see for example [26] Theorem 6.2 and Theorem 9.19))
gives

and wu,(x) = u(rz). Then u, is a solution of

[Ftrll e ) < oo, < Clusllzoesyy
which, after rescaling, is precisely (5.27).

Step 8. Proof of the local Lipschitz continuity. Let T € Q, N Dy and set r := dist(Z, 9€,). Let
o € (0,0/2) be such that u satisfies (5.25) for every y € 9, N Dsjp. If 7 > 19/6, the estimate
BE20) gives |Vu(z)| < Cy,. Now, if r < r9/6, let y € 99, be such that r = |z — y| and let
Z € B.(7). Then, by (0.3 and since i € 92, N Dj/9, we have have for every s <r

u(z) < C <][ wdH + s) .
9B (2)

Now, multiplying by s?~! and then integrating from 0 to r the above inequality, we get

u(z) < C (f wdH + 7‘) <C <][ wdHTt + 7")
B (2) B3, (1)
3r
<C (r_d/ s¢1 ds][ wdH + 7") < Cr
0 0Bs(y)

for every z € B,.(z), where in the last inequality we use Lemma (5.5]) and Lemma [5T9l Finally,
using the estimate (0.27) this gives

C
r

(Vu(@)| < IVl oo s, y@) < — lullze @, @) < C- (5.28)

This proves that |Vu| is bounded in Ds.

Step 4. Global Lipschitz estimate. We first notice that since D is Cb! regular, the radius r
for which (5.25]) holds does not depend on the point z¢ € 9€,. Now, let z € Q, \ D,, and set
r = dist(z,0,). We consider the projection y of  on 09, and we distinguish two cases. If
r < 6dist(z,0D), then we apply the estimate from Step 3 and we get that |Vu(z)| < C. If
r > 6dist(z,0D), we consider the solution w to the problem

—div(e™®Vw) =1 in D, w € HY(D),

which is Lipschitz continuous in R? since D is of class ™! (see for example [26, Theorem 9.13]).
Moreover, by the strong maximum principle, we have that u < Cw for some constant C' depending
on A, d and ®. Therefore, setting r; = dist(z,0D), we have for every z € B, (Z),

u(z) < Cw(z) <Oz —y| < Cr,
and we conclude by the gradient estimate (B.27)). O

5.7. Non-degeneracy of the eigenfunctions and finiteness of the perimeter of €,. Let
u be a solution of (5.I)) in the bounded open set D C R?. Let zy € 09, and 7o(zo) be such that
for every 0 < r < r(zg) the set D,(zg) := By(z9) N D is connected. Notice that such an r(z)
trivially exists if zg € 9, N D, while in the general case it is sufficient to assume some a priori
regularity of the box D. Then, by Remark 517 for every p < A, there is some rg > 0 such that,
for every xg € 02, we have

J(u) + p]Qy| < J(v) + pl€y|  for every v € A(u,z9,79) such that [Q,] <[Q,].  (5.29)
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This property was first exploited by Alt and Caffarelli to prove the non-degeneracy of the solu-
tions. More recently, it was exploited by Bucur who introduced the notion of a shape subsolution
which found application to several shape optimization problems (see for example [8] and [I1]).

The next lemma is a fundamental step in the proof of the regularity of the free boundary since
it allows to prove that the blow-up limits (see Subsection [0.8]) are non trivial. It is the analogue
of the non-degeneracy estimate from [2] and the proof is based on the same idea.

Lemma 5.20 (Non-degeneracy of the eigenfunctions). Let u be a solution of (5.1I) in the bounded
open set D C R, Suppose that xg € 0, 0 < p < Ay, and ro > 0 are such that E29) holds.
Then there are constants ¢ > 0 and r1 > 0 which depend only on T, Am, 1t and d, such that for
every ball By (z) C By (wo) with v < 11, we have that if ||ul| Lo (B, (x)) < cr, then u =0 on By(x).

Proof. Let r,x be such that By, (z) C By, (wo) with 7 <7y and ||u|| oo (p,, (2)) < cr. Assume x =0
and r; = r. Let n € H'(By,) be the solution of the problem

—div(e_q)Vn) =Be™® in By, \ By, n=0 in B, n=cr in D\By,,

for some 8 > 0 which will be chosen later. Note that (see for instance [26], Theorem 9.11 and
9.15]) we have the following estimate

— min 1 — min
IVl (B,) < Ca (56 ®r+ ;HTI”LOO(BQT)> < Cy(Be ®r+ o). (5.30)

Consider the test function % € H{ (D) defined as
u=uAn in By, @=u in D\By,.
Moreover, by ([5:29), we get

/ |Vu|2e_¢d:n—)\m/ u?e”Pdx + p|Q,| §/ |Vﬂ|2e_@d:n—)\m/ w?e”%dx + p|Qql.
D D D D

Now, set E(u,r) := / \Vul?e~®dz + p|Qy N B,| and use that |, — |Qa| = |2, N B, to obtain

T

E(u,r) < / (V> — |Vul*)e®dx + 46)\m/ (u—w)e”dr + )\m/ e %dz. (5.31)
BZT\BT' BZT\B’F [

We first estimate the first term of the right hand side of the inequality above. We have

\Va|? — |Vu? = —|V (@ —u)]? +2Va- V(i —u) <2V - V(i — u). (5.32)
Moreover, integrating by parts and using that (v — 1)y = 0 on 0Bs,, we get
/ Vi -V(i—u)e *dr = — / V- V(u—n)yle *de (5.33)
B, \Br By \Br

<5 [ et + Vil [ e tait
B\ By o

P

We now set 5 = 2cA,, so that, combining (5.31), (5.32) and (5.33]) we have

E(u,r) <2Cy(Be” min®,. c)/ ue ®dHT + N, w?e ®dz.
9B, B,

Now, for every s € (0,7], we have by the Wh! trace inequality in B

: 1
/ ue”PdHI < emmin®y </ |Vu| dx + —/ udx)
0Bs Bs s Bs

: 1 1
< e—mlnfbcvd <§/ |vu|2d$ + §|Qu N Bs| + C|Qu N Bs|>
Bs

<C (/ |Vu|2€_¢d:17 + p|Qy N Bs|> < CE(u,s) < CE(u,r),
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where we have set C' = e~ ™" ®(C; max {emaxq’, %(1 + 20)}. Moreover, since the above inequality

holds for every s € (0,7], we have

/ ue_q)da::/ ds/ ue”CdH < rCE(u,r).
B 0 OB

Finally, using the bound (30, we get
E(u,r) < (2C4(Be™ ™ %1 4 ¢) + r?cy,) CE(u, 1),

which, for ¢ and r small enough, implies that E(u,r) =0 and concludes the proof. O

Another consequence of property (5.29) is that the optimal sets have finite perimeter. This fact
is of independent interest but it can alo be used to estimate the dimension of the singular set of
the free boundary (see Subsection [0.I0]). The local finiteness of the perimeter was also obtained
in [2] in the case of the Laplacian by a completely different approach. Here we use an argument
which is the local version of an estimate that was used in [§] to prove that some optimal shapes
have finite perimeter.

Lemma 5.21 (Local finiteness of the perimeter). Let D C R? be a bounded open set and u a
solution of ([BI)). Then €, is a set of locally finite perimeter in D. Moreover, if D is of class
CYL, then , is a set of finite perimeter.

Proof. Let xy € 9, and 0 < p < A, be fixed. Let r > 0 be such that (@29 holds in D, (x¢) :=
B,(xzo) N D. Assume xy = 0 and 79 = r. In the sequel we denote by C' > 0 any constant, which
does not depend on t or zg. Let t € (0,1) and n € C°(B,) be such that

0<n<1l, n9=1 in By, n9=0 in RN\B, [Vy<

2 Q

We set uy :=n(u —t)4+ + (1 — n)u € A(u, xg,7). By the optimality of u, we have

/ (IVul* = Apu?) e~ *dx + p|Q, N B,| < / (V> = Apif) e~ dx + p|Q, N B,

T T

We now estimate

/ (u2 - u?) e Pdx < / onu(u— (u—t)4) e ®dx < Ct,

/ (]VUF — [ Vu|?) e Pdx > / |Vu|?e~%dz — Ct.

B {0<u<t}NB, /3

Therefore, combining the previous estimates and using 2ab < a? + b? for all a, b, we obtain

/ |[Vu|de < C / |Vul?e™®dx + pul{0 <u<t}NB, ;| <Ct
{0<u<t}NB, /2 {0<u<t}NB,/»

We now use the co-area formula to rewrite the above inequality as

t
%/ Per ({u> s};B,j5) ds < C.
0

Hence, there is a sequence t,, — 0 such that Per ({u > tn}; B, /2) ds < C, which implies that
Per (Qu; B, /2) ds < C. The last claim of the lemma follows by a covering argument. O
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5.8. Blow-up sequences and blow-up limits. Let u be a solution of (Gl in the bounded
open set D C R, For r > 0 and zy € 9%, we define the rescaled function

1
Uy r(T) 1= ;u(xo +rz).

Now since u is Lipschitz continuous in some ball B,,(z¢) (assume some regularity of the box if
rg € OD) we get that every sequence (ug,r,),~; such that r, — 0 admits a subsequence (still
denoted by r,,) that converges to a function ugy : R? — R uniformly on every compact set K C R,
We say that ug is a blow-up limit of u at z¢p and we use the notation BU,(xg) for the family of
all blow-up limits of u at xg. We notice that, due to the non-degeneracy of u, the blow-up limits
are non-trivial. Precisely, up # 0 and there is a constant ¢ > 0 such that ||lug||z~(p,) > cr.

The following proposition is standard. For a detailed proof we refer for example to [33, Propo-
sition 4.5].

Proposition 5.22 (Convergence of the blow-up sequences). Let u be a solution of (B.1l) and
let zg € 0Qy,. Assume moreover that D is of class CY' if xg € OD. Let ug € BU,(xo) and
Up 1= Uy, r, be a blow-up sequence such that w, — wugy locally uniformly in R? as n — co. Then

(1) The sequence (up),>, converges to ug strongly in H} (R%).

(2) The sequence of characteristic functions (Lg,, ), <, (R9).

(8) The sequences of closed sets (ﬁn)n21 and (Q7,),,>, Hausdorff converge locally in R? to Q
and Qf, respectively.

(4) If xg € 0, N D, then ug is a non-trivial global minimizer of the one-phase Alt-Caffarelli
functional with A = Aue®®0) (see Definition below).
If g € 00, N OD, then, up to a rotation, ug is a non-trivial global minimizer of the
one-phase constrained Alt-Caffarelli functional with A = A, e®®0),

converges to 1q, in L,

Definition 5.23 (Global minimizers of the one-phase problem). Let ug € H} (R?) be a non-

loc
negative function.
e We say that ug is a global minimizer of the one-phase Alt-Caffarelli functional with A > 0,
if
/ \Vul|?dz + Al{u >0} N B| < / |Vol2dz + Al{v > 0} N B, (5.34)
B B

for every ball B C R? and every function v € H'(B) such that u — v € H}(B).

e We say that ug is a global minimizer of the one-phase constrained Alt-Caffarelli functional
with A > 0, if Q,, C {z4 > 0} and (E34)) holds for every ball B C R% and every function
v € H'(B) such that u —v € H}(B) and Q, C {z4 > 0}.

Remark 5.24 (Optimality of the blow-up sequence). The last claim of Proposition follows
by a standard argument and by Theorem [5.16l Indeed, Theorem [(.16]implies that if zg € 0, ND
and B C R? are fixed, then for every £ > 0 there is ry > 0 such that for every 0 < r < ry we have
(setting ®,.(x) = ®(xg + rax))

/B (|Vu,1|2 — r2)\mu$) e ¥ de+(Ay—e)|Q, N B| < /B (|Vv|2 — 7‘2)\mv2) e~ dr+(Ay—e)|QN B,
for every v € H(B) such that u, —v € H}(B) and |Q, N B| < |Qy, N BJ;
/B (IVur > = r*Apu?) e~ *rda+(Ay+e)|Qy, N B| < /B (Vo] = r*Apv?) e P da+(Ay+€) QN B,
for every v € H(B) such that u, — v € H}(B) and |2, N B| > |©,. N B.

If D is of class CY! and z¢ € 99, NAD, then the same result holds with test functions v € H'(B)
such that Q, C {z4 > 0}.
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Remark 5.25 (Lebesgue density on the free boundary). For every v € [0, 1] we define

™) .— d iy [N Br(@)]
Q) {xE]R 712)1% B ’y}.

We notice that, as a consequence of Proposition (.22] we get that
0, NDNAY =0  and Q. NDNQY =0

Indeed, the first equality follows by the non-degeneracy of u, while the second one follows from
the fact that all the blow-up limits vanish in zero and are global solutions of the Alt-Caffarelli
problem.

5.9. Monotonicity formula. We prove in this section a monotonicity formula for the Weiss’
functional of a solution u to (B.I]) at every point of the boundary 9€2,. Let u be a solution (5.1
and A, be the constant given by Theorem [5.121 We define the Weiss’ functional as

1
prd+1

1 Ay
W(u, ®,xqg,7r) = r_d/B |Vul?e®dz — / u?e” PdHT! + r—deu N By (x0)].

T

Lemma 5.26 (Weiss monotonicity formula). Let u be a solution (5.1) in the bounded open set
D. Then, for every xg € 002, N D and every 0 < r < dist(zg,dD), the function W satisfies the
differential inequality

2€—nmx¢

d
——VV(U,¢,$OJO >

02 apd1
2 / Vi c (5.35)

rd+2

where C' > 0 is a constant depending only on A\p,, ®, L = |Vul|r~ and d.

If, moreover, D is of class OV, then there exists a constant ro > 0 depending only on D, such
that, for every xo € 02, NOD and every 0 < r < rq the inequality ([B.358]) holds for some constant
C > 0 which also depends on D.

Proof. We first prove the claim when zg € 9, N D. Assume zo = 0. We set

H(r) ::/ ule” PdH! and D(r) ::/ |Vul?e™?dz,
0By

r

Hy(r) := /aB wn-V®)e PdH! and  De(r) ::/B (IVul* = Apu®) (n- V®)e ®da,

where n(x) = x/r is the normal to the sphere OB, at z. As in Proposition [A] (notice that in
Proposition [AJ] Dg is defined differently) we have

- 1H(7‘) +2D(r) — 22X\, u?e™®dx — Hy(r).

D'(r):/ |Vu|2e_q>a€3'-ld_1 and H'(r) =
OB, r B

As in Step 2 of the proof of Proposition [AT] the optimality condition 6.J(u)[{] = A, / div&da
Qy

applied to the vector field £(x) = x¢.(x), gives that

Ay <d|Qu N B,| — rH Y (Q, N 8BT)) — (d—2)D(r) +rD'(r) — 2r / (Opu)® e Capd!
OB,

+ A (d/ wle™dr — 7‘/ uze_q)d’}-[d_1> +rDg(r),
T 0By
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where Opu := n - Vu. We now calculate

d 1 d+1

d 1
JW(U,Q%,?“) = r—dD,(T) - mD(T) - rdTH/(T) + mH(T)

Ay
+ i (r%d‘l(ﬂu NOB,) —d|Q, N BT,]>
2 2 @ pd-1 1 1
ZW/BTIVU"T_U’ e dH +mH{>(T)—T—qu>(T)

Am ( / 2 — % / 2 —% d—1>
—— [ (d+2 u“e “dr—r u“e “dH
ot | (d+2) T o,

2¢~ max ¢

27/ \Vu-z—u?dHT! - C
rit2 - Jop, ’

which gives the claim if zg € 09, N D.

Since D is of class Cb!, D satisfies a uniform exterior ball condition, that is, there exists a
constant rp > 0 such that, for every xg € 0D, there exists a ball of radius rp lying outside
D and touching D at zg. Let xg € 092, N ID and assume that zg = 0. Then, there exists
a constant ¢ > 0 which depends only on rp such that (Id + £)~'(D) C D where we have set
£(z) = (x— (20— cr®nyy ) ) de () and where ¢, is defined as in the step 2 of the proof of Proposition
A1l Tt follows that ug(x) := u(z + t€(x)) € H(D) for every small ¢ > 0. From Proposition
we have 6.J(u)[£] > A, Ja, div € dz which can be rewritten as

0J(u)&] > Ay div & dz — cr? <5J(u) [Penay] — Au div (penz,) dx),
Qu Qu

where £(z) = (x — x0)¢<(x). Then, letting £ go to 0, it follows that there exists a constant C
depending only on A\, ®, L,rp and d such that

SJ(u)[€] > A, / div & do — CrdtL,

29

We now conclude the proof with the same computations as above. O

Lemma 5.27 (Homogeneity of the blow-up limits). Let u be a solution ([&.1) in the bounded open
set D and let xo € 0Q,,. Assume moreover that D is of class C*1 if xg € 00, NOD. Then every
blow-up limit ug € BU,(xg) is one-homogeneous.

Proof. Let xog = 0 and W (u, ®,7) := W(u, ®,z0,7). Recall that u,(z) = Lu(rz) and &,(z) =
®(rz). We first notice that for every » > 0 and s > 0 such that rs < dist(zo,0D) we have

W (up, ®p,s) = W(u, ®,7s).
Moreover, since the function r — W (u, ®,t) + Cr is monotone, the limit
W(u,®,0) := lim W(u,®,r)
r—0+
exists (and is finite due to the Lipschtz continuity of ). On the other hand, for every blow-up
sequence u,, with blow-up limit ug, we have
W (ug, ®(0),s) = lim W(u, ,®, (0),s)= lim W(u,®(0),r,s) =W (u,®(0),0).
n— oo n—oo
Thus, the function

1 ) 1 o oae1  Ne?©
S'—)S—d/B‘VU()’ dx—m/aB UodH + usd \QuOﬂle,

is constant. Now, by [36] (or, simply by applying (538) to u = ug, Ay, = 0 and ® = 0), we have
that ug is one-homogeneous. O
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5.10. Regularity of the free boundary. In order to obtain our main regularity result, we first
show that the optimality condition |Vu|? = A,e® on the free boundary 9Q,ND and |Vu|? > A,e®
on 0¥, N AD holds in the viscosity sense.

Definition 5.28 (Optimality condition in viscosity sense). Let D be an open set and u € C(D).
e We say that ¢ € C(D) touches u by below (resp. by above) at xy € D if p(zg) = u(zg) and
¢ < wu (resp. ¢ > u) in a neighborhood of x.
e Let A be a non-negative function on D and assume that u is non-negative. We say that u
satisfies the boundary condition

Vu|=vA on 8Q,ND

in the viscosity sense if, for every ¢ € C%(D) such that ¢t touches u by below (resp. by above)
at some xg € 9, N D, we have |Vo|(zo) < VA (resp. |Vo|(x) > VA)).
Analogously, we say that u satisfies the boundary condition

Vu| > VA on 99Q,NdD

in the viscosity sense if, for every ¢ € C?(D) such that ¢t touches u by above at some x¢ €
9, N 0D, we have |V|(zg) > VA.

Lemma 5.29 (Optimality condition on the free boundary). Let D C R? be a bounded open set
of class CY1 and let u be a solution of (B)). Then u is a solution of the problem

—div(e %u) = Apue™® in Q,
Vu| = /Aue® on 99,0 D, (5.36)
|Vu| > VAue® on 9Q, NOD,

where the boundary conditions hold in the viscosity sense.

Proof. From Proposition [(.18] it follows that u is continuous in D. We only have to prove that u
satisfies the two boundary conditions in the viscosity sense. We first show that |Vu| = \/A,e®
holds on 9§, N D. Let ¢ € C?(D) a function such that ot touches u by below at o € 9§, N D.
Let r, be an infinitesimal sequence and

(

1 1
un(r) = —u(xg +ror) and @,(z) = —¢" (0 + rp).

n n
Up to a subsequence, u,, converges locally uniformly to some uy € BU, (o), while ¢,, converges to
wo(z) = x - V(zp). Since ug > o we have up > 0 in {x4 > 0}. Moreover, by Proposition [5.22]
ug is a local minimum of the Alt-Caffarelli functional for A = A,e®@0) and by Lemma ug
is a one-homogeneous function. Thus, uy = 0 on the hyperplane {z4 = 0} and, (see [2, Theorem
2.5]) ug satisfies (in the classical sense) the optimality condition

|Vuo| = VA on  {z4#0}.

Now, since ¢g touches ug from below at 0 € 98, we get that |V|(zo) = [Vo|(0) < [Vup|(0) =
V/A. The proof when ¢t touches u from above at z( is analogous.

We argue in the same way to prove the boundary condition |Vu| > /A on 9Q, N dD. Note
that, in this case, any blow-up ug € BU,(xg) at some point xg € 9, N ID is solution of the
Alt-Caffarelli constrained functional so that it satisfies the optimality condition

|Vuo| > VA on  {z4#0}.
U

Remark 5.30. Using an argument based on an internal variation of the boundary as in [2]
Theorem 2.5] we can get in a weak sense the optimality boundary condition given in Lemma
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529, namely: for every zo € 9Q, N D, r > 0 such that B,(zo) C D and ¢ € C§°(B,(x0), RY) we
have

lim (|Vul> = Aye®) e ® e vdni ! =0,

el0 Jofu>e}
while for every zo € 992,NdD, r > 0 such that D, (z¢) is connected and every ¢ € C5°(B, (), R?)
such that (Id + &)~*(D,(z0)) C Dy (z¢) we have

lim (|Vul? = Aye®) e ® - vadHI™ > 0.

el0 Jofu>e}
Definition 5.31 (Regular and singular parts of the free boundary). Assume that D is a bounded
open set of class C1!. We define the regular part of the boundary of Q,, Reg(9),), as the set of
points g € 99, such that there exists a blow-up uy € BU, (o) of the form

up(z) = VAue®@) (z-v), if xz9€0Q,ND, (5.37)
uo(z) = q(xo) (x - v) 4 if xzp€ 0Q,NaD, (5.38)

where v € 0By is some unit vector and ¢ : €, N 9D — R is a function bounded from below by
V/Ayue®@0) . The singular part of the boundary is Sing(0€,) := 982, \ Reg(9€,).

Proposition 5.32 (Regularity of the free boundary). Suppose that u is a solution of (B.1l) in the
bounded open set D C R? of class CV'. Then, Reg(0Sy,) is locally the graph of a C* function
for some a > 0, 9Q, N ID C Reg(d,) and H¥1(Sing(0Q,)) = 0. Moreover, if d < 4 then
Sing(0,) = 0.

Proof. We first notice that, since D is smooth, every point xzg € €, NOD is flat and hence every
blow-up at xzo € 92, NID is of the form (5.3])); in particular, 9Q, N 0D C Reg(9,). Now, the
regularity of the regular part of the free boundary Reg(92,) N D follows by Lemma [5.29 and the
improvement of flatness Theorem from [21], while the regularity of Reg(9€2,) N 9D follows from
[18]. Thus, we only need to prove the estimate on Sing(92,).

First, we notice that the reduced boundary 9*Q,, N D C Reg(0f),). Indeed, let xy € 0Q, N D

and u, = ug,,, be a blow-up sequence at z( converging to some wuy € BU,(zp) such that
g, converges in L} (RY) to lg,,. If 2o € 0" N D, then €y, is a half-plane of the form
H={xcR? : z-v >0} for some v € dB;. Now since ug is a solution of the one-phase

Alt-Caffarelli problem and is one-homogeneous, this implies that {ug > 0} = {z; > 0} (see
33l Remark 4.8]). Therefore, by uniqueness of the Cauchy problem and the optimal boundary
condition from Lemma [5.29] it follows that ug is of the form (537]).

Finally, since €2, has locally finite perimeter, the Federer Theorem and Remark give that

HEL (0, N D\ (7)) = HE! (8Qu D\ (8*Qu Uy Qg))) —0,

which proves that H4~1(Sing(0%,)) = 0.

In order to prove the last claim we recall that every blow-up ug € BU,(x¢) is a solution of the
one-phase Alt-Caffarelli problem. Thus, by [2] (for d = 2), [16] (for d = 3) and [30] (for d = 4),
the free boundary 0§, is locally a graph of a smooth function and so the blow-up ugy of ug in
0 is of the form (5.37)). Now since ugy € BUy,(xo) we get that zg € Reg(0),). O

Remark 5.33. The smoothness of the free boundary can be improved under an additional
regularity assumption on ®. Indeed, if V& € C*+12(D;R?) for some k > 1 and a € (0,1), then
by [32, Theorem 1], Reg(0Q*) N D is locally a graph of a C*+1:< function.

5.11. Further estimates on the dimension of the singular set. We prove in this section
that optimal sets to the problem (LAl are d*-regular, where d* is defined below.

Definition 5.34. We define d* as the smallest dimension which admits one-homogeneous global
minimizers of the one-phase Alt-Caffarelli problem with (isolated) singularity in zero.
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By [30] and [22] we know that d* € {5,6,7}. Weiss was first to prove that the monotonicity
formula implies the dimension estimate

dimy Sing(09,) = inf{a >0 : HY(Sing(0Q,)) =0} < d—d*

for every d > d* (see also [33] for an argument using only the monotonicity of ). Recently,
using the innovative approach of Naber and Valtorta [34], Edelen and Engelstein [23] showed
the the monotonicity formula implies the stronger estimate H* " (Sing(d€,)) < co. Thus, as a
consequence of Lemma [5.26] Lemma [5.27] and the results from [36], [33] and [23], we get

Proposition 5.35 (On the dimension of the singular set). Let u be a solution of (B.Il) in the
bounded open set D C R:. Then

o Sing(0,) =0 if d < d*,

o Sing(08,) is a discrete (locally finite) set if d = d*,

o HI=4"(Sing(0Q,) N K) < oo for every compact set K C D and d > d*.

APPENDIX A. EXTREMALITY CONDITIONS AND LEBESGUE DENSITY

In this section we prove Proposition [A1]l which we use in Proposition to show that the
Lagrange multiplier A, is strictly positive, but the result is of independent interest. For instance,
it applies to optimal partition problems (see, for example, [20] and [I7]). We first show that a
function which is critical for the functional

J(u) ::/ |Vu|2e_q>d:17—)\/ u?e® dz, (A1)
D D

with respect to internal variations that is

0J(u)[g] == }1_13% J(u(x +t&(x))) =0 for every vector field ¢ € C°(D;RY),

satisfies a monotonicity formula for the associated Almgren frequency function N(r). Now, by
the argument of Garofalo and Lin (see [25]) the monotonicity of the frequency function implies
that u cannot decay too fast around the free boundary points. If, in addition, u is a solution of
—div(e=®Vu) = Aue™?® on the positivity set Q, = {u > 0}, we can use a Caccioppoli inequality
to show that if the Lebesgue density of €2, is too small, then the decay of u on the balls of radius
r should be very fast. This, in combination with the monotonicity of the Almgren’s frequency
function, shows that the Lebesgue density of €, should be bounded from below everywhere (and
not only on the boundary of ,,). In particular, there cannot be points of zero Lebesgue density
for 2, in D.

Proposition A.1. Let D C R? be a bounded open set and ® € Wh°(D). Suppose that X > 0
and v € H'(D) is a nonnegative function such that

(a) u is a solution of the equation
—div(e™®Vu) = Xe™®u in Q, = {u>0}; (A.2)
(b) u satisfies the extremality condition
6J(u)[€] =0 for every €€ CX(D;RY),
where J is given by (AJ) and its first variation in the direction & is given by

5. (u)[€] == /D [2D£(Vu) Vu+ (Vul? = M) (Vo - € — div 5)] e ®dz. (A.3)

Then, |D \ Q,| = 0.



EXISTENCE AND REGULARITY OF OPTIMAL SHAPES 37

A.1. Reduction to the case A = 0. In this section we will show that it is sufficient to prove
Proposition [Ad] for A = 0. The general case will then follow by an elementary substitution
argument. In the next lemma we deal with the first variation of the functional J.

Lemma A.2. Suppose that D C R% is a bounded open set, a : D — R is a given Lipschitz
function such that 0 < e <a<e ! on D. Let A >0 and let ¢ € H*(D) be such that

—div(aVy) = Xay in D, p>e>0 on D.
For any v € HY(D), we set a(z) := ©*(x)a(x), @ = v/p,

J(u) = /D (IVul* = M?) a(x) dz and J(u) := /D |Vul?a(z) de,

5I(w)le] = /D [20DE(Vu) - Tu — (|Vul? — Xa?) div(at) | do,

5T (w)[e] == / [2&Dg(vu) Vu— \Vu]zdiv(df)}da: for any € € C2(D;RY).
D
Then, for every u € HY(D) and every & € C(D;R?), we have
dJ(a)[¢] = oJ(uw)[€] — 2/ V (u€-V(lnyp)) - - Vuadr + 2/ (u€ - V(Ing)) Aau dz. (A.4)
D D

Proof. Notice that we may assume u € C*°(D). First we notice that an integration by parts gives

6J(@)[€] = / 20;¢; 0;udjuadx —/ |Va|? div(aé) dz

D D

= —/ 2¢; 0;(a o) 05t dr — / 2¢; 0y Oijuadr — / \Va|? div(aé) dx

D D D
= —/ 2¢;0;(a o) Ot dw — / div(a|Vial*¢) de = —/ 2¢;0;(a o) 0ju dx

D D D

_— / 2(¢ - Vit) div(aVa) da.
D
and, analogously,

§J(u)[¢] = — /D 2(¢ - Vu) div(aVu) dz + A / u® div(af) da.

D
Now, since

div(aVa) = div(a(pVu —uVy)) = pdiv(aVu) — udiv(aVe) = o(div(aVu) + Aau),

we get

§J(a)[¢] = —2 /D§ - (Vu — ngo)(div(aVu) + Aau) da

= 2/ - V@E(div(aVu) + Aau) dz — 2/ (& Vu)(div(aVu) + Aau) dz
D ¥ D

- —Q/DV <§'Z(pu> .Vuad$+2/D <§.§¢u> Aawdx + 6J (u)[€],

which is precisely (A.4). O

Let now D C R? and v € H'(D) be as in Proposition [A] for some A > 0. In order to prove
that |D \ Q,| = 0, it is sufficient to prove that [(D N B) \ Q,| = 0 for any (small) ball B C D.
Let now zp € D and let R > 0 be such that A\;(Bgr(zo), V®) = A. Such a radius exists, since
the map f(r) := A\ (By(x0), V®) is continuous, f(0) = 400 and f(4o00) = 0. Notice also that we
may assume ® to be defined on the entire space R Let ¢ be the first eigenfunction on Bp(x)
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and let r = R/2. Then, we can apply Lemma[A.2 in the set DN B,(xo) with a = e~®. Moreover,
since u satisfies (A.2]), we get that

SJ(@)[E] = 6 (w)[g) =0, for every &€ C®(D N By(x);RY),

which proves that @ = u/, satisfies hypothesis (b) for A = 0. Finally, in order to prove that @
satisfies hypothesis (a), we notice that on €, = Q5 we have (in a weak sense)

div(aVa) = ¢div(aVu) — udiv(aVe) = ¢ (div(aVu) + Aau) = 0.
A.2. Proof of Proposition [A.1] in the case A = 0. Let A\ = 0. Then we have

J(u) ::/ |Vul?e™? du, (A.5)
D
ST (u)E] = / [2DE(Vu) - Vu + [VuP (V8 - € — dive)|e . (A6)
D
Let 7o =0 € D and 7 = |[|[V®|| o (py. We set
D
H(r) ::/ e PdHI!, D(r) ::/ |Vul?e™?da and N(r) = rD(r)
0B, S H(r)
Step 1. Derivative of H. We calculate
H'(r) = d- 1H(r) + rd_li / u2(7‘x)e_¢(m)d7-[d_1(a:)
r dr Jop,
_ - 1H(r) + 2/ u%e_q)d’}-ld_l - / u*(n - VO)e PdH!
r oB, On OB,
= EH(r) + 2/ |Vu|?e~®dx — / u?(n - VO)e PdH,
r B, OBy
which we rewrite as i1
H'(r) = %H(T) +2D(r) — Hy(r). (A.7)

where we have set
Ha(r) = / (- VO)ePdH  and  |Ha(r)| < TH(r).
OB,

Step 2. Equidistribution of the energy. Let ¢. be a radially decreasing function such that 0 < ¢, <

Lon By, ¢ =1 on By(1_.), ¢ = 0 on 9B, and |Ve.| < C(re)~!. The vector field &(z) := x¢e(x)
satisfies div&(z) = doo(x) + 2 - Voo and 0;§; = 6;j¢-(x) + x;0;¢-(x). Since A = 0 we have

5T(u)lg] = /D [2D€(Vu) - Vu + [VuP (V8 - £ — dive)| e *da
=/D [2\Vu!2¢5+2(a:-Vu)(V¢g'Vu)—]Vu\z(d(ba(a:)—ka:-Vqﬁe) e~ Pdx

+ / \Vu (VO - z)pee Pda,
D
and passing to the limit as e — 0, rearraging the terms and using the property (b), we get

0=—(d—2) / \Vul?e™®dx + 7’/ (Vul?e~PdH !
By OB

2
— 27’/ <@> e PaHI! +/ \Vul|?(V® - z)e d,
oB, \On B,

which we rewrite as

—(d—2)D(r) + rD(r) = 27“/

ou\’ ~® g9/d—1
. \an e YdH —rDg(r),
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where

Dg(r) = %/ |Vul>(V® - z)e Pdx and |Da(r)| < 7D(r).

T

Step 3. The derivative of N. We notice that N(r) is only defined for r such that H(r) > 0. In
what follows we fix 79 > 0 such that B, (z¢) C D and H(rg) > 0. Since u € H(D), there is an
interval (a,b) 3 19, on which H > 0.

D(r)H(r)+ rD'(r)H(r) — rD(r)H'(r)

M= 20
- D(r)H(r) 4+ rD'(r)H(r) — rD(r) (%H(T) +2D(r) — H@(r))
a H2(r)
_ —(d—2)D(r)H(r) +rD'(r)H(r) — 2rD*(r) + rD(r)Hg(r)
H2(r)
_ 9N’ e gpa1 pay ) TP He(r) — Da(r)H(r)
=0 (H (r) /6 5 < 3n> dH D(r) | + 0 (A.8)

Now we notice that, since u solves (A2) on Q,, we have

D(r):/ |Vu|2e_¢d3::/ u@e_q)d’}-ld_l,
B, 0B, On

and so, by the Cauchy-Schwarz inequality and (A.8)) we obtain

. 7 (D(r)Hg(r) — Dg(r)H(r))
Ni(r) 2 - H?(r) :

Step 4. A bound on N(r). Using the estimate (A9) from the previous step we get that the
function r + €*"N(r) is non-decreasing in 7 and so

> —2rN(r). (A.9)

N(r) < 70 IN(rg) < 2™ N(rg) for every a <1 < 17q.
Step 5. Strict positivity and doubling inequality for H(r). By the step 4 we have

£ ()] -2 52

and integrating we get

+ T, (A.10)

H H
log < Ttgiol)) — log <Td(_r1)> <log (7;,—0> 2N (ro) + 719, for every a <1 < 7.
0

In particular, H > 0 on every interval [erg, 7] and so, H > 0 on (0, ] and we might take a = 0.
Moreover, integrating once again the inequality (AQ) from r < r0/2 to 2r, we get

log <%> < ((d—1)log2 + 7r0) + 2log 2 2™ N (r) for every 0<r< T—20.
Taking rg < 1, there is a constant C', depending only on d and 7, such that
H(2r) < Cexp(CN(ro))H(r)  forevery 0<r< %0 (A.11)
Integrating once more in r we get
/B uw?e ® dr < C’exp(C’N(ro))/ u?e® dx for every 0<r< T—20. (A.12)
2 7"

Step 6. Caccioppoli inequality and conclusion. Let r € (0,70/2] and let ¢ € C§°(Ba,) be such that
¢=1in By, 9 =0o0n 9By, 0 < ¢ <1 and |V¢| < 2/r on By, \ B,. Using the fact that u is a
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solution of —div(e=®Vu) = 0 in Q,, we get the following Caccioppoli inequality:

/ |vu|2e—‘1’d:n§/B |V(u¢)|2e—¢dx:/3 (W?V)* + Vu - V(ug?)) e da
T 2r 2r

:/ u?|Ve|2e® d:E—/ ug? div (e_cqu)) d:z::/ u?| Vo2 ® dz.
B2»,« BZT

Bar
< % u?e™® dx. (A.13)
r Bar

On the other hand, there are dimensional constants Cy and £4 > 0 such that, if |2, N B, | < e4| B/,
then the following inequality does hold (see [I5, Lemma 4.4])

Q, N B, |\ ¥4
/ u? dx < Cgr? <g> / \Vu|? d,
: | B: | B,

which, taking C := Cyjexp(max ® — min ®), implies

/ u2e_q’dx§0r2<%> / |Vul>e™?® da.
r B,

This, together with (AI3]) and the doubling inequality (A12]), gives that there are constants C}

and Cs9, depending only on d and 7 such that

Q% N B, |
| Br|

where to be precise we recall that we assumed rg < 1. In particular, we have a lower density

bound for ©, at every point of D, which implies that |D \ 2,| = 0 and concludes the proof. [

T

min {e4, C; exp(—CaN(rp))} < for every 0<r< %0,
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