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Abstract

This paper highlights the importance of ergodicity of billiards in Statisti-
cal energy analysis (SEA), a statistical theory of sound and vibration. We
show that the main relationship of statistical energy analysis, the so-called
coupling power proportionality, is intimately linked with the establishment
of a diffuse vibration field in subsystems. In particular, we show that when
subsystems have ergodic geometries or when the nature of excitation enforces
a diffuse field, the energy exchange between two weakly coupled subsystems
is proportional to the difference of vibrational energies. But when the field
is not diffuse (either non isotropic or non homogeneous), the exchange of
energy does not generally follow this proportionality. Numerical simulations
are provided to support the discussion.

Keywords: Sound and vibration, Structural dynamics, High-frequency,
Statistical energy analysis, Ergodic billiard, Diffuse field

1. Introduction

Statistical energy analysis [1] (SEA) is an attractive theory of sound and
vibration elaborated in the early sixties [2, 3, 4, 5, 6]. Two reasons at least
may explain its popularity.

First, the theory is efficient at high frequencies where no other numer-
ical tool is available. In many industries, such as transportation, building,
aerospace, prediction of sound and vibration levels is important to ensure
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comfort to passengers or integrity of equipment, especially in the audio fre-
quency range. Most often, classical methods such as finite elements reach
their limit imposed by the capabilities of computers. Statistical energy anal-
ysis then takes over beyond this frequency limit.

Second, the concept of statistical energy analysis leads to a new scientific
method applied to sound and vibration. Instead of the classical approach of
mechanics in terms of strain and stress, statistical energy analysis proposes
an energetic description of systems. It becomes then easier to analyze the
systems as energy flowing from source to receiver with the possibility to
determine the transfer paths [7, 8, 9]. The second novelty is to introduce a
statistical description in vibroacoustics in the same spirit as Sabine’s theory
of reverberation [10] in acoustics. The gain is simplicity in the theory. But we
must give up the idea of a complete and deterministic description of systems.
Information on details is lost. And this may even be quantized by introducing
vibrational entropy [11, 12, 13]. This is a true change of paradigm [14].

The exact list of assumptions required in statistical energy analysis may
vary from one author to the next [15, 16, 17, 18, 19] but the main ones
are random forces, weak coupling and high reverberation in all subsystems.
Statistical energy analysis is a thermodynamical approach of sound and vi-
bration where the exchange of energy between subsystems is driven by the
notion of vibrational temperature. The requirement of reverberation and
its consequence - the diffuse field - means that subsystems must be in local
thermal equilibrium. Two adjacent subsystems weakly coupled may have
different vibrational temperatures leading to exchange energy from ’hot’ to
’cold’ subsystems.

Reverberation, ergodicity and wave chaos are the key concepts in room
acoustics [20, 21] as well as in statistical energy analysis [22]. The link
between statistical energy analysis and ray-tracing is particularly apparent
in dynamical energy analysis [23] or radiative transfer approach [24]. From
complexity in ray propagation emerges simplicity in macroscopic behaviour.
The geometrical conditions giving rise to disorder and chaos is a matter for
billiard’s theory.

The purpose of this paper is to highlight the link between statistical
energy analysis and ray dynamics in billiards and more specifically ergodicity.
The outline of the paper is as follows. Section 2 presents a short review of
statistical energy analysis with a special focus on its assumptions and main
result, the coupling power proportionality. The conditions which lead to
the emergence of diffuse field is investigated in Section 3. In Section 4, the
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validity of the coupling power proportionality is analysed. The paper finishes
by some concluding remarks.

2. Statistical energy analysis

The principle of statistical energy analysis is to subdivide a complex sys-
tem into subsystems and to analyse their exchanges of vibrational energies.
Generally, the subsystems correspond to structural elements such as plates,
beams, mechanical resonators and acoustical cavities but, more theoretically,
they correspond to groups of modes in thermal equilibrium. The vibrational
sources are random and have flat spectrum in the frequency band ∆ω centred
on ω.

Statistical energy analysis requires several assumptions [1, 18]. These are

(H1) Couplings between subsystems are conservative and weak

(H2) External sources are random, stationary, uncorrelated, and wideband

(H3) The field is diffuse in each subsystem

The diffuse field assumption (H3) is certainly the least understood assump-
tion and the most difficult to satisfy in practice. It is commonly admitted
that the diffuse field state of vibration naturally emerges in highly reverber-
ant structures, that is with a low damping and with a large number of modes
in the frequency band ∆ω. This is why (H3) is sometimes replaced by the
two following assumptions.

(H4) All subsystems contain a large number of resonant modes

(H5) All subsystems are lightly damped

As we shall see in this paper, (H4) and (H5) do not necessarily imply (H3).
We shall therefore consider systems verifying (H4) and (H5) and explore the
conditions for which a diffuse field state is established.

For the sake of simplicity, we limit the discussion in what follows to
systems made up with plates in bending vibration and coupled by mechanical
springs.

The modal density of plate i defined as the number of modes per unit
circular frequency ω (rad/s) is

ni =
Ai

4π

√
mi

Di

(1)
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where mi is the mass per unit area, Di the bending stiffness, and Ai the plate
area. The number of resonant modes Ni = ni∆ω must be large by (H4).

We denote by Ei the expectation of vibrational energy in subsystem i.
Expectation must be understood in the meaning of probability theory. This
is the mean value for several realizations of the random process associated
to excitation forces. By virtue of stationarity (H2), Ei does not depend on
time. We also denote by Pij the expectation of vibrational power exchanged
between subsystems i and j. Then, the main result of statistical energy
analysis states the power being exchanged between subsystems i and j is
proportional to the difference of modal energies

Pij = βij

(
Ei

ni

− Ej

nj

)
(2)

This is the coupling power proportionality. The conductivity factor βij ver-
ifies reciprocity βij = βji. For two plates coupled by a spring, its value is
given by [17]

βij =
K2

32πω2
√
miDimjDj

(3)

where K is the stiffness of the coupling spring.
Assumptions (H1) to (H5) are important requirements to guarantee the

validity of the coupling power proportionality. To satisfy (H2), we shall
introduce random forces whose spectrum S is constant in an octave band
∆ω. For the other assumptions, we may introduce several dimensionless
factors to check them a priori. The first one is the number of resonant
modes Ni = ni∆ω which must be large to satisfy (H4). Equivalently, the
wavelength λ = 2π(Di/mi)

1/4ω−1/2 must be short compared to the mean-
free-path l̄ = πAi/Li, Ai being the plate area and Li the perimeter. We
therefore introduce the number of wavelengths per mean-free-path l̄/λ. For
(H5) we must calculate the normalized attenuation factor [25] m̄i = ηiωl̄/cgi
where cgi = 2(Di/mi)

1/4ω1/2 is the group speed and ηi the damping loss
factor. A small value of m̄i ensures that rays will be reflected a large number
of times before to be dissipated. A large modal overlap Mi = ηiωni is also
of interest to check that no particular mode can dominate the dynamics.
The three dimensionless numbers, number of resonant modes, normalized
attenuation factor and modal overlap are sufficient to delimitate the diffuse
field zone in the ω, η-plane [26]. Concerning (H1), different parameters were
proposed in the literature to characterise the strength of coupling. The first
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criterion is the coupling strength [27, 28, 29] γ = 2βij/(πMiMj). We may
also introduce the connection strength [17] κ = K/(miAimjAjω

4)1/2 as the
quotient of coupling stiffness K divided by plate stiffness miAiω

2 in ∆ω (in
fact κω is called strength of connection in [17] but we have divided it by ω
to get a dimensionless number). A further factor is Smith’s criterion [30]
σ = βij(1/Mi + 1/Mj) defined as the ratio of coupling loss factor to damping
loss factor. A low value of σ ensures that loss of energy by coupling is
less than internal dissipation. Let us also mention a last definition of weak
coupling based on the ratio of decay time of dynamical correlation to escape
time of rays [31]. When these dimensionless parameters γ, κ, σ are much
lower than one, the weak coupling assumption is respected.

Since the objective of this article is only to investigate the geometrical
properties of subsystems, the rest of the discussion will be held under the
condition that (H1), (H2), (H4), and (H5) apply and that all above criteria
are satisfied.

3. Diffuse field

As we have underlined, the emergence of diffuse field is an imperative
condition in statistical energy analysis. A diffuse field is a special state of
vibration for which the vibrational energy is homogeneously distributed and
the energy propagation is isotropic [32]. These notions of homogeneity and
isotropy of vibration may be clarified in the context the mathematical theory
of billiards.

3.1. Ray dynamics

Billiards are dynamical systems of particles moving inside walls. A billiard
is defined by a bounded two-dimensional domain where a particle moves along
straight lines with a constant energy and is subjected to specular reflection
each time it impinges on the boundary [33].

The link between mathematical billiards and vibration in structures ap-
pears in the context of geometrical acoustics. In the limit of high frequency,
waves propagate as rays moving at sound speed and subjected to reflection,
refraction, diffraction, absorption. If one restricts to the phenomena of prop-
agation and reflection solely, rays of geometrical acoustics follow the same
laws of motion as particles in billiards, the particle path defining the ray.

Ergodicity is an important statistical property of billiards. An ergodic
billiard is defined as a billiard for which almost all rays pass through the
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vicinity of any point in any direction in the limit of arbitrary large time.
The phase-space of a particle moving at constant speed being defined as the
space of position and direction of velocity, this means that almost all rays
explore all points of phase-space. Of course, this is exactly what is required to
obtain a diffuse field. Since a single ray induces a homogeneous and isotropic
repartition of energy, a fortiori several rays will do the same. Consequently,
a strongly directional point source (all rays start from same point and take
same direction) but also point source with uniform directivity (all rays start
from same point but in any direction) and rain-on-the-roof sources (all rays
start from any point and take any direction) will indifferently lead to a diffuse
field in an ergodic billiard.

An example of ergodic billiard is the so-called Bunimovich stadium [34].
Fig. 1a top shows the propagation of a single ray in a stadium. Beyond the
overall appearance which presents a certain disorder, it is clear that the ray
explores all regions in the stadium. A larger number of reflections would
show that the stadium is uniformly colored by the ray path indicating an
uniform probability density function of presence in the stadium. Fig. 1b
top shows the resulting Poincare’s section. Each dot gives the position of
a reflection in the space position defined by the curvilinear abscissa along
the boundary and angular momentum defined as the sine of incidence angle
with the normal to boundary. The probability density function of presence
is uniform in the phase space.

An example of non ergodic billiard is the circular domain [34]. The circle
presents the geometrical property that the angular momentum is conserved
during propagation. This means that each ray will impinge on the boundary
with a constant incidence angle. The ray turns in the circle and may form a
closed path, in which case the orbit is periodic, or an open path, in which case
the orbit forms a caustic which delimits a shadow zone where the ray never
enters. In Poincare’s section shown in Fig. 1b middle, it is apparent that all
positions are explored but all with the same value of angular momentum.

The case of a rectangular billiard is intermediate. The examination of
ray paths immediately shows that on each edge, the incidence can take only
two values of opposite signs. Therefore the angular momentum can take
four values as can be observed from Fig. 1b bottom. Concerning the position
space, almost all rays entirely explore the domain and the probability density
function of presence is uniform in the position space but not in the angular
momentum space.
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Figure 1: Ray propagation in three billiards: top line, stadium; middle line, circle; bottom
line, rectangle. (a), Ray path with 200 reflections; (b), Poincare’s section.
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3.2. Vibrational field

We now examine the nature of vibrational field in the plates shown in
Fig. 2 excited in bending vibration by a time-varying normal force.

The force field has expression f(x, y, t) = F (t)δ(x−x0)δ(y−y0) where F (t)
is a random force with a power spectral density S constant in the frequency
band [ωmin, ωmax], δ denotes the Dirac function and the source position is x0,
y0. The transverse deflection at time t and position x, y is noted u(x, y, t).

The mean vibrational energy density is taken as twice the mean kinetic
energy density

W (x, y) = m〈u̇2(x, y, t)〉 (4)

where m is the mass per unit area, u̇ the vibrational speed of plate and
the probability expectation is noted with brackets. In principle, the elastic
energy should appear in the above expression but mean kinetic and elastic
energy densities are equal when averaged over a small area of the size of
a wavelength (except near the boundaries and singularities such as point
source or attachment point). Since the random force is stationary, the time
no longer appears as variable of W . The total vibrational energy is

E =

∫∫
W (x, y) dxdy (5)

where the integral is performed over the whole plate surface.
The mean energy density may be calculated by means of the receptance

H(x, y, x0, y0;ω) where x, y is the receiver position and x0, y0 the source
position with harmonic excitation of circular frequency ω. Since the power
spectral density S is constant in the band [ωmin, ωmax] and zero elsewhere,
the mean vibrational energy density is

W (x, y) =
S

π

∫ ωmax

ωmin

mω2|H(x, y, x0, y0;ω)|2 dω (6)

Note that W also depends on the source position x0, y0. The integral may be
approximated using the rectangle rule. The angular frequency step is chosen
as δω = ωminη/4 where η is the damping loss factor. The calculation of energy
field in a plate therefore reduces to the calculation of the receptance in the
frequency band. More details to calculate the receptance H(x, y, x0, y0;ω)
from modes are presented in Appendix.

In what follows, we observe energy fields with a point force excitation in
the three plates shown in Fig. 2. The first one is a stadium plate with clamped
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Figure 2: Geometry of plates in numerical examples. (a), stadium; (b), circle; (c), rectan-
gle.

edges, the second one is a circular plate clamped at its edges, and the third
one is a rectangular plate with simply supported edges. The geometrical
dimensions are chosen such that the surfaces are unity . In addition, the
length and width of the rectangular plate are chosen such that their ratio is
irrational in order to avoid regularity in the sequence of natural frequencies.
The excitation point is located at x = 0.1643 m, y = 0.1767 m in the
stadium plate, at x = 0.1419 m, y = 0.1592 m in the circular plate and
at x = 0.9689 m, y = 0.7617 m in the rectangular plate (the origin and the
reference frame are shown in Fig. 2). The natural frequencies ωi and mode
shapes ψi required for the calculation of receptances are obtained in two
ways, an analytical method and a finite element method. For rectangular
and circular plates, analytical expressions were used for calculation. An
additional calculation with the finite element software Nastran was carried
out to check the modes and mean vibrational energies under a random
excitation. For the stadium plate, modes were computed with Nastran and
used for the calculation of receptance as presented in Appendix.

The parameters of the simulations are the following. The plates are all
made of steel with Young’s modulus E0 = 210 GPa, density ρ = 7800 kg m−3

and Poisson’s ratio ν = 0.3. The plate thickness is 2 mm and the damping
loss factor is η = 0.001. The frequency band of excitation is an octave
centred on ωc = 2π× 4000 rad s−1. The receptances are computed by taking
into account all modes from 0 Hz to 11.3 kHz. In each simulation, 30000
receivers are chosen at random on plate to draw the energy density map. In
Table 1 are summarized values of number of wavelengths l̄/λ (ratio of mean-
free-path to wavelength), the number of resonant modes N , the normalized
attenuation m̄ and the modal overlap M .

Fig. 3 shows maps of energy level (dB, ref=mean value) and probability
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Plate # Wavelength # Modes Attenuation Modal overlap
Stadium 11.3 450 0.036 0.64
Circle 12.6 450 0.040 0.64

Rectangle 11.0 443 0.035 0.64

Table 1: Number of wavelength l̄/λ, number of resonant modes N , attenuation per mean
free path m̄ and modal overlap M of plate at 4 kHz

density distribution of energy level in the three plates at the octave 4 kHz.
It may be observed that diffuse vibrations appear on the stadium and

the rectangular plate but not on the circular plate. More specifically the
energy distributions in rectangular and stadium plates are close to a highly
peaked normal distribution while this is not the case for circular plate which
presents a wider distribution.

For the stadium plate, homogeneity and isotropy of vibration result from
the ergodic characteristic of the corresponding billiard. At 4 kHz the wave-
length is λ = 70 mm which is sufficiently small compared to the mean-free-
path l̄ = 0.79 m to consider that ray approximation is valid. Diffusiveness of
vibration in a stadium plate is therefore a consequence of the uniform prob-
ability distribution of presence in the phase-space even for a single ray. A
point source may be considered as sending rays in all directions. Since each
of them induces a diffuse field, the total field induced by all of them is also
diffuse.

For the circular plate, the ray dynamics is different since no ray can
give rise a diffuse field. More specifically, neither homogeneity nor isotropy
can result from ray propagation as it has been seen for a circular billiard.
Even though isotropy can originate from the uniform directivity of the point
source, the vibrational field never reaches homogeneity. This explains why
diffusiveness of vibration is not observed in a circular plate.

For the rectangular plate, homogeneity of vibrational field results from
the ray dynamics but not isotropy. However, a point force sends rays in
all directions with a uniform directivity under the geometrical acoustics ap-
proximation. Since ray direction has a uniform probability density, isotropy
is enforced into the vibrational field. In this situation, the vibrational field
possesses both homogeneity and isotropy, which creates diffusiveness in a
rectangular plate.

It should be noticed that in all these plates there exists a peak of en-
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Figure 3: Flexural vibration of three different plates excited by a point force: top line,
stadium; middle line, circle; bottom line, rectangle. (a) Distribution of energy density level
(dB, ref=mean value). The dotted line in each figure represents the geometry boundary
of plate. The cross indicates the force position. (b) Probability density function of energy
density level.
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ergy near the excitation point. This phenomena is caused by the near field
which reaches a high value near the excitation point and quickly decreases
with distance. Furthermore, the mean vibrational energy equals to zero at
boundaries due to the boundary conditions.

4. Energy exchange between ergodic or non ergodic subsystems

Let us now examine the validity of the coupling power proportionality (2).

4.1. Presentation of the different cases

The most important condition for validity of statistical energy analysis is
that the vibrational field is diffuse in all subsystems. There are mainly three
ways to satisfy the condition of diffuse field in a subsystem. The first one is
when the subsystem has a geometry which defines an ergodic billiard like
the Bunimovich stadium. This guarantees that the vibrational field will be
both homogeneous and isotropic. In this situation the nature of excitation
is less important for emergence of diffusiveness. The second situation cor-
responds to a subsystem whose ray dynamics of underlying billiard imposes
homogeneity or isotropy of vibrational field but not both at same time like
the example of rectangle discussed in Section 3. In this case a further prop-
erty of excitation is required to satisfy the counterpart condition in order to
get diffusiveness. In the third situation, the subsystem has a geometry whose
associated billiard is again non ergodic but whose ray dynamics does not im-
pose neither homogeneity nor isotropy like the example of circular billiard.
In this case, the excitation must enforce both homogeneity and isotropy in
order to create diffusiveness. This will be reached with a rain-on-the-roof
force field. In order to combine all possible ways to reach diffusiveness in
numerical examples, let us consider the three types of plates shown in Table
2 and the three types of excitation shown in Table 3 . The three considered
excitations are respectively a rain-on-the-roof force field (uniform distribu-
tion of uncorrelated point forces), a point force (localized excitation with
a uniform directivity), and a point torque (localized excitation with a non
uniform directivity).

Five simulations are carried out to check wether the coupling power pro-
portionality (2) is verified in these cases. In each simulation, two plates of
same type P1, P2 or P3 and referenced by the subscript i = 1, 2 are coupled
by a spring. The attachment point of spring is fixed to the centre on plate
2. Several different attachment points of spring on plate 1 are chosen for the
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Plate Geometry Homogeneity Isotropy
P1 Stadium Yes Yes
P2 Rectangle Yes No
P3 Circle No No

Table 2: Properties of three types of plates

Excitation Type Homogeneity Isotropy
E1 Rain-on-the-roof Yes Yes
E2 Point force No Yes
E3 Point torque No No

Table 3: Properties of three types of excitations

calculation. The coordinates of these attachment points on plate 1 are given
in Table 4. The excitation is applied on plate 1 with type chosen among E1,
E2 and E3. The vibrational energies in each simulation are estimated by
choosing 50 receivers at random on each plate.

The parameters for the simulation are the following. The plates are all
made of steel with E0 = 210 GPa, ρ = 7800 kg m−3, ν = 0.3, and η = 0.001.
The spring stiffness is K = 1× 105 N m−1. The frequency band is an octave
centred on ωc = 2π × 4000 rad s−1. All surface geometries are the same as
in Section 3. The only change to be noticed is that in each simulation, plate
1 has thickness 2 mm and plate 2 has thickness 2.5 mm. For plate 1, the
number of wavelengths, number of resonant modes, attenuation per mean-
free-path and modal overlap have same values as in Table 1. For plate 2,
these indicators are shown in Table 5.

The weak coupling condition is checked by values of connection strength
κ = K/(m1A1m2A2ω

4)1/2, coupling strength γ = 2β12/(πM1M2), and Smith’s
ratio σ = β12(1/M1 + 1/M2), where the modal overlap Mi = ηiωni is esti-
mated by Eq. (1) and β12 by Eq. (3). Their values are given in Table 6. Their
small values show that all these systems of coupled plates are in the weak
coupling regime (see [35] for comparison with other simulations from weak
to strong coupling).
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Case point 1 (m) point 2 (m) point 3 (m)
A (-0.3897, 0.2559) (-0.3912, 0.1973) (-0.3922, 0.1408)
B (0.0046, 0.0033) (0.0456, 0.0332) (0.0913, 0.0663)
C (0.0017, 0.0054) (0.0174, 0.0537) (0.0349, 0.1073)
D (0.0046, 0.0033) (0.0456, 0.0332) (0.0913, 0.0663)
E (0.0080, 0.3000) (0.1200, 0.3000) (0.2400, 0.3000)

Case point 4 (m) point 5 (m) point 6 (m)
A (-0.3943, 0.0194) (-0.4000, -0.2187) (-0.3993, -0.1730)
B (0.1369, 0.0995) (0.1826, 0.1326) (0.2282, 0.1658)
C (0.0523, 0.1610) (0.0697, 0.2146) (0.0872, 0.2683)
D (0.1369, 0.0995) (0.1826, 0.1326) (0.2282, 0.1658)
E (0.3600, 0.3000) (0.4800, 0.3000) (0.6400, 0.3000)

Case point 7 (m) point 8 (m) point 9 (m)
A (-0.2143, -0.1811) (-0.0747, -0.1784) (-0.0735, -0.0736)
B (0.2739, 0.1990) (0.3195, 0.2321) (0.3652, 0.2653)
C (0.1046, 0.3219) (0.1220, 0.3756) (0.1395, 0.4293)
D (0.2739, 0.1990) (0.3195, 0.2321) (0.3652, 0.2653)
E (0.8000, 0.3000) (0.9200, 0.3000) (1.0400, 0.3000)

Case point 10 (m) point 11 (m)
A (-0.3049, -0.1986) (-0.3564, -0.2220)
B (0.4108, 0.2985) -
C (0.1569, 0.4829) -
D (0.4108, 0.2985) -
E (1.1600, 0.3000) -

Table 4: Attachment points of spring on plate 1 in frames of Figs. 4-8

Plate 2 # Wavelength # Modes Attenuation Modal overlap
Stadium 10.1 360 0.032 0.51
Circular 11.3 360 0.035 0.51

Rectangular 10.0 352 0.031 0.51

Table 5: Number of wavelength l̄/λ, number of resonant modes N , attenuation per mean
free path m̄ and modal overlap M of plate 2 at 4 kHz
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Plates 1 and 2 Connection strength Coupling strength Smith’s ratio
Stadium 9.1e-6 8.2e-5 1.5e-4
Circular 9.1e-6 8.2e-5 1.5e-4

Rectangular 9.1e-6 8.2e-5 1.5e-4

Table 6: Strength of coupling and connection. Connection strength κ, coupling strength
γ, Smith’s ratio σ

4.2. Numerical simulation

The numerical simulations aim to check for which systems the coupling
power proportionality given in Eq. (2) applies. The factor βij is estimated
by two calculations. In statistical energy analysis calculation, the factor is
directly estimated by Eq. (3) and its value is noted β12,SEA. The reference cal-
culation is provided by a direct numerical simulation based on the following
equations. The receptances of coupled systems are finely calculated for all
frequencies in the band [ωmin, ωmax] by the technique presented in Appendix.
The factor is then estimated by

β12,REF =
Pij(

Ei

ni
− Ej

nj

) (7)

where the modal densities are given by (1).
For a point excitation, the mean vibrational energy in plate i is

Ei =
S

π

∫∫∫ ωmax

ωmin

miω
2|Hi1(x, y, x0, y0;ω)|2 dωdydx (8)

where Hi1(x, y, x0, y0;ω) denotes the receptance of coupled plates with a har-
monic source located at x0, y0 in plate 1 and a receiver at x, y in plate i.

The mean power flowing from subsystem i to subsystem j is Pij = K〈uiu̇j〉
where ui, uj are the plate deflections at the attachment point. Since the
power spectral density S is confined in [ωmin, ωmax], the exchanged power is
obtained as

Pij = K
S

π

∫ ωmax

ωmin

Re
[
jωH̄i1(χ, ξ, x0, y0;ω)Hj1(χ, ξ, x0, y0;ω)

]
dω (9)

where χ, ξ are the coordinates of the attachment point, the overbar denotes
the complex conjugate, Re the real part, and j the imaginary unit. Details
to calculate the receptance of coupled plates are given in Appendix.
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These expressions of mean vibrational energy and the exchanged power
can be generalised to a rain-on-roof excitation. A rain-on-roof excitation is
defined as a random force field δ−correlated in space and time. It may be
approximated by a large number of point forces randomly distributed in space
and uncorrelated to each other. Let the excitation be in the general form of
f(x, y, t) =

∑
l Fl(t)δ(x − xl)δ(y − yl) where Fl(t) is a random force with a

power spectral density S constant in the frequency band [ωmin, ωmax] and xl,
yl the source position. As the forces are uncorrelated, one has 〈FkFl〉 = 0 for
k 6= l that is the cross-power spectra are null. In this situation, the mean
vibrational energy is

Ei =
S

π

∑
l

∫∫∫ ωmax

ωmin

miω
2|Hi1(x, y, xl, yl;ω)|2 dωdydx (10)

The exchanged power is

Pij = K
S

π

∑
l

∫ ωmax

ωmin

Re
[
jωH̄i1(χ, ξ, xl, yl;ω)Hj1(χ, ξ, xl, yl;ω)

]
dω (11)

The point torque may be represented by two opposite forces separated
by a small distance. In this situation, the mean vibrational energy is

Ei =
S

π

∫∫∫ ωmax

ωmin

miω
2|∆Hi1(x, y, x0, y0;ω)|2 dωdydx (12)

where ∆Hi1(x, y, x0, y0;ω) = Hi1(x, y, x1, y1;ω) − Hi1(x, y, x2, y2;ω) and x1,
y1 and x2, y2 are the positions of the two forces and x0, y0 their centre. The
exchanged power is

Pij = K
S

π

∫ ωmax

ωmin

Re
[
jω∆H i1(χ, ξ, x0, y0;ω)∆Hj1(χ, ξ, x0, y0;ω)

]
dω (13)

4.3. Analysis of the results

Let us now analyse the results for these cases.

(A) Stadium plates excited by a point torque . In this case, homo-
geneity and isotropy of vibrational field are guaranteed by ergodicity of sta-
dium billiard , while a torque excitation provides neither homogeneity nor
isotropy. The point torque is simulated by two out-of-phase forces respec-
tively positioned at x0 = 0.1643 m, y0 = 0.1767 m and x0 = 0.1668 m,
y0 = 0.1810 m on plate 1. The result is shown in Fig. 4. Satisfying the diffu-
siveness condition in each subsystem, β1,2,SEA is found to be in fine agreement
with β1,2,REF.
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Figure 4: Comparison of energy transfer predicted by statistical energy analysis and ref-
erence calculation for two coupled stadium plates excited by a torque on plate 1. Factor
β given by Eq. (3) and (7) versus position of coupling spring (dashed line in left).

(B) Circular plates excited by a point torque . In this case, there is
no homogeneity nor isotropy from ray dynamics and there is no homogeneity
or isotropy from excitation. This is typical example where the energy field on
plate is much unevenly distributed violating the diffuse field assumption. The
positions of the couple of forces simulating the torque are x0 = −0.4514 m,
y0 = 0 m and x0 = −0.4513 m, y0 = −0.0028 m on plate 1. The result is
shown in Fig. 5. A huge discrepancy between β12,SEA and β12,REF is shown.

(C) Circular plates excited by a point force . In this case, isotropy
of vibrational field is guaranteed by point force excitation. However, neither
structure nor excitation implies homogeneity. Diffuse field is not established
in each plate. Fig. 6 shows the result for the point force position x0 =
0.16926 m, y0 = 0 m on plate 1. It is observed that there is a significative
discrepancy between statistical energy analysis and reference calculation but
less than the previous case.

(D) Circular plates excited by a rain-on-roof force field . In this
case, homogeneity and isotropy of vibrational field are guaranteed by ho-
mogeneity and isotropy of rain-on-roof excitation, while the circular plate
has neither of the two properties. To simulate the rain-on-roof excitation,
100 force positions are chosen at random on plate 1. The result in Fig. 7
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Figure 5: Comparison of energy transfer predicted by statistical energy analysis and ref-
erence calculation for two coupled circular plates excited by a torque on plate 1. Factors
β12,SEA and β12,REF given by Eqs. (3) and (7) versus position of coupling spring (dashed
line in left).
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Figure 6: Comparison of energy transfer predicted by statistical energy analysis and refer-
ence calculation for two coupled circular plates excited by a point force on plate 1. Factors
β12,SEA and β12,REF given by Eq. (3) and (7) versus position of coupling spring (dashed
line in left).
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shows that the prediction of statistical energy analysis and reference calcu-
lation are moderately in agreement. The reason for a moderate agreement is
that despite plate 1 is applied with rain-on-roof excitation, the excitation on
plate 2 caused by spring is always equivalent to a point force. Therefore the
diffusiveness condition is not totally guaranted on plate 2.
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Figure 7: Comparison of energy transfer predicted by statistical energy analysis and ref-
erence calculation for two coupled circular plates excited by a rain-on-the-roof force on
plate 1. Factors β12,SEA and β12,REF given by Eqs. (3) and (7) versus position of coupling
spring (dashed line in left).

(E) Rectangular plates excited by a point force . In this case, homo-
geneity and isotropy of vibrational field are guaranteed by homogeneity of
rectangular plate and isotropy of point force excitation. The result is shown
in Fig. 8 for the point force position x0 = 0.8 m, y0 = 0.56 m on plate 1.
It is observed that the prediction of statistical energy analysis and reference
calculation are again in fine agreement.

5. Conclusion

In this paper, we have highlighted that in statistical energy analysis, the
coupling power proportionality is valid if and only if a diffuse field is estab-
lished in all subsystems. In particular, we have shown that the conditions
of reverberation that is low damping and high number of resonant modes
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Figure 8: Comparison of energy transfer predicted by statistical energy analysis and ref-
erence calculation for two coupled rectangular plates excited by a point force on plate 1.
Factors β12,SEA and β12,REF given by Eq. (3) and (7) versus position of coupling spring
(dashed line in left).

are generally not enough to ensure the validity of statistical energy analy-
sis. The other assumptions, weak and conservative couplings and wide-band,
uncorrelated random sources, have not been discussed in this text but their
importance has been underlined by many authors.

Diffusiveness of sound and vibration, that is homogeneity and isotropy
of vibrational field, may result from two different causes. The geometri-
cal properties of the domain may impose either homogeneity, isotropy, or
both in case of ergodic billiards. This means that even if the source is a
point excitation with strong directivity (like the torque considered in the
examples), the resulting vibrational field will be diffuse in an ergodic billiard
and therefore statistical energy analysis will apply successfully. The stadium
plate presented in this paper is a good example. But the nature of sources
plays a dual role and may also impose homogeneity when many point sources
of same power cover the domain, or isotropy when directivity of sources is
uniform. Diffusiveness of vibration and therefore applicability of statistical
energy analysis may be obtained with rain-on-the-roof excitations even for
non ergodic billiards as it has been observed on the circular plate.
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6. Appendix

This appendix presents the calculation of receptance H(r, s;ω) where
r = (x, y) is the receiver position and s = (x0, y0) the source position. Details
to obtain receptance of single plates of Section 3 and receptance of coupled
plates of Section 4 are given respectively as follows.

Single plate. For a single plate, on which a harmonic force F exp(jωt) is
applied at point s, the equation of motion of plate is

−mω2v + jωcv +D∆2v = Fδs (14)

where v is the transverse displacement of the plate, m the mass per unit area,
c the viscous damping coefficient and D the bending stiffness. ∆2 denotes
the bi-Laplacian operator and δs the Dirac distribution centred on s.

Let ψn be the nth free mode (no resonator, no damping) of the plate
and ωn the eigenfrequency. The modes are orthogonal and conventionally
normalized by

∫
ψn(r)ψm(r)dr = δnm where δmn is the Kronecker symbol.

Since dissipation in Eq. (14) is modelled by a viscous damping coefficient
proportional to the mass density, the displacement field v(r) of the damped
plate may be developed in the series of the undamped modes

v(r) =
∑
n

Anψn(r) (15)

By substituting Eq. (15) into the equation of motion (14) and by using
the orthogonality property of normalized modes, v(r) could be expressed as

v(r) =
∑
n

Fψn(s)ψn(r)

m(ω2
n + j4ω − ω2)

(16)
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where 4 = c/m is the half-power bandwidth. If a damping loss factor η is
preferred then 4 = ηωn.

The receptance of the plate is H(r, s;w) = v(r), where a unit force F = 1
has been substituted. Thus, the expression of the receptance is obtained as

H(r, s;w) =
∑
n

ψn(s)ψn(r)

m(ω2
n + j4ω − ω2)

(17)

Coupled plates. Let Hij(r, s;ω) be the receptance of 2 plates coupled
through springs of stiffness K. Each plate has its proper uncoupled re-
ceptance noted Hi(r, s;ω), which can be calculated by the previous method.
Assuming that a harmonic point force F exp(jωt) is applied to plate j at
point s, the displacement in plate i at point r is

vi(r) = FδijHi(r, s;ω) +
∑
k

RikHi(r, rik;ω) (18)

where Rik represents the reaction applied by plate k onto plate i through the
coupling spring at position rik. The term δij means that the point load is
applied only on plate j.

The reaction Rik is

Rik = K[vk(rki)− vi(rik)] (19)

Then, by replacing Eq. (19) into Eq. (18) and taking F = 1, the receptance
Hij(r, s;ω) of the plate i in the coupled system is

Hij(r, s;ω) = δijHi(r, s;ω) +
∑
k

K[vk(rki)− vi(rik)]Hi(r, rik;ω) (20)

By substituting r = rik into Eq. (20), one obtains a set of linear equations
on the unknowns vi(rik). The set of linear equations is

vi(rik) = δijHi(rik, s;ω) +
∑
k′

K[vk′ (rk′ i)− vi(rik′ )]Hi(rik, rik′ ;ω) (21)

For the calculation of two coupled plates, a unique spring is attached at
r12 on plate 1 and r21 on plate 2. The excited plate is j = 1. The two
receptances Hi1(r, s;ω) form a column vector H = (H11, H21)

T given by

H(r, s;ω) = KΨ(r)V + F(r) (22)
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where V = (v1(r12), v2(r21))
T, F(r) = (H1(r, s;ω), 0)T and

Ψ(r) =

[
−H1(r, r12;ω) H1(r, r12;ω)
H2(r, r21;ω) −H2(r, r21;ω)

]
(23)

The unknowns are determined by the system

(I +KΦ)V = F0 (24)

where I is the 2× 2 identity matrix and F0 = (H1(r12, s;ω), 0)T. The matrix
Φ is

Φ(r) =

[
H1(r12, r12;ω) −H1(r12, r12;ω)
−H2(r21, r21;ω) H2(r21, r21;ω)

]
(25)

With the unknowns solved by Eq. (24), the receptances can be determined
by Eq. (22) at all points r for any excitation point s.
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