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ABSTRACT: The multicellular chopper connected with a nonlinear load is investigated by detailed theoretical and 
analysis as well as dynamic simulation, including some basic dynamical properties, Lyapunov exponent, fractal 
dimension, bifurcation diagrams and routes to chaos. In the parameter space where the equilibria of the system are both 
asymptotically stable, chaotic attractors coexist with period attractors and stable equilibria. Our system displays 2 scroll 
chaotic attractors for certain values of its parameters.  
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I.INTRODUCTION 
 

The power electronics knows important technological developments. This is carried out thanks to the developments of 
the semiconductor of power components but also of new systems of energy conversion. Among these systems, 
multicellular converters are based on the association in series of the elementary cells of commutation. This structure 
appeared at the beginning of the 90’s [1], makes it possible to share the constraints in tension and/or while running in 
high voltages installations by the cells of commutation series-connected and also to improve the harmonic contents of 
the forms of waves. To benefit as well as possible from the large potential of the multicellular structure, research then 
went in various directions. Initially models were developed to describe their instantaneous behaviors [2], harmonic [3] 
or averaging [4] and [5]. These various models were used at the base for the development of laws of open-loop control 
[6] and closed-loop [7]. Modeling is a very important phase for the synthesis of the laws of order. 
In recent decades, it was discovered that most of static converters were the seat of unknown nonlinear phenomena in 
power electronics [8 – 11]. It is for example the case of multicellular choppers that can exhibit unusual and sometimes 
chaotic behaviors. Obviously this may generate dramatical consequences. There have been many methods for detecting 
chaos from order [12]. They include Poincaré sections, Lyapunov exponents [13], fast Lyapunov indicators [14], 
Smaller Alignment Index (SALI) [15] and its generalized alignment index [16], bifurcations, power spectra [17], 
frequency analysis [18], 0-1 test [19], geometrical criteria [20, 21], fractal basin boundaries [22], etc. Each of them has 
its advantages and drawbacks in classifying the attractors. Here, we investigate the level of chaos in our system through 
numerical simulations by means of computing the Lyapunov Exponents, bifurcation diagram, first return map to the 
Poincaré section, and the phase diagram. 
In this article, we study the dynamical properties of a two cells chopper connected to nonlinear load. For that, the 
instantaneous model of the two-cell chopper is considered. The paper is organized as follows: In the first section, some 
definitions and notation used for instantaneous model of p-cell chopper are introduced. Basic dynamical properties of a 
two cells chopper connected to nonlinear load are also investigated in section 3. Finally, chaotic behavior and 
simulation results are presented in section 4. 
 

II.P-CELL CONVERTER MODEL  
 

Throughout the paper, the p-cell converter connects in series p elementary cells and a passive load R and L as 
illustrated in figure 1. Each switching cell is controlled by a binary input signal 푢 (푡) for 푘 = 1 …푝. This signal 푢 (푡) 
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is equal to 1 when the upper switch of the cell is conducting and 0 when the lower complementary switch of the cell is 
conducting. In order to ensure that, we must determine the floating capacitor voltages: 

푉 =  푉 −  푉 = 푘
퐸
푝  ;       푘 = 1 … … 푝                            (1) 

where 푉 = 0 ;  푉 = 퐸, 
From equation. (1), for 푘 = 1, we have: 

푉 =  푉 −  푉 =
퐸
푝   ⇒   푉 =  

퐸
푝                                                (2) 

Increasing 푘, we find the general expression for the capacitor voltages: 

푉 = 푘
퐸
푝                            (3) 

In order to determine the converter model, we consider two adjacent cells: 푐푒푙푙  and 푐푒푙푙  connected with the 
capacitor 퐶  (Figure 1). The capacitor voltage 푉  is determined by the evolution of the capacitor current. This, in turn, 
is given by the configuration of the switches: 

푖 =  (푢 −  푢 )푖                             (4) 
where 푢 = 1 if the upper switch in 푐푒푙푙  is conducting and 푢 = 0 if the lower switch in 푐푒푙푙  is conducting. The 
capacitor voltage is then given by equation (5): 

푖 =  퐶
푑푉
푑푡   ⇒   

푑푉
푑푡 =  

푢 −  푢
퐶 . 푖              (5) 

Equation (5) can be generalized for all capacitors. Next we determine the output voltage as the sum of all cell voltages: 

푉 =  푉 =  푉 −  푉 푖              (6) 

From equation (6), we note that we can have multiple voltage levels at the output, depending on the configuration of 
the switches. For a converter with 푝 cells, we have 푝 + 1 voltage levels: 0, , , … , ( ) ,퐸. This means that the 
voltage jumps at the output are smaller than the ones in classical structures. For the multicell converter with an 푅퐿 load 
in figure 1, the output current 푖  is given by: 

푑푖
푑푡 =  

푉
퐿 −  

푅
퐿 푖                          (7) 

From equations. (5), (6) and (7) we get the instantaneous model of the multicell converter in figure 2: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
푑푖
푑푡     =  

푢 − 푢
퐿 푉 +

푢 − 푢
퐿 푉 +⋯+

푢 − 푢
퐿 푉 +

푢
퐿 퐸 −

푅
퐿 푖

푑푉
푑푡   =   

푢 −  푢
퐶 푖                                                                                                    

푑푉
푑푡   =    

푢 −  푢
퐶 푖                                                                                                   

.                                                                                                       

.                                                                                                       

.                                                                                                       
푑푉
푑푡   =  

푢 −  푢
퐶 푖                                                                                            

  (8) 
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Figure 1: A p cells converter connected to RL load 

 
where 푉  is the 푘  flying capacitor voltage and 푖  is the output load current, which is the only measurable output. 퐶  
for 푘 = 1 …푝; are the capacitors, E is the voltage of the source, R is the resistance and L is the inductance. 
 

III.TWO CELLS MULTICELLULAR AND METHODS TO QUANTIFY THEIR BEHAVIORS 
 

The two-cells multicellular chopper (figure 2) system is described as: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 퐿

푑푖
푑푡 =  (푢 −  푢 ).푣 −  푣 − 푅. 푖 + 푢 .퐸                                                

                                  

퐶
푑푣
푑푡 = (푢 −  푢 ). 푖                                                                                          

                                           

퐶
푑푣
푑푡 =  푖 −  푔 푣                                                                                         

 

(9) 

where 푔(. ) is a piecewise – linear function 
푔 푣 =  퐺 푣 + 0.5. (퐺 −  퐺 ) 푣 + 퐵 −  푣 − 퐵                    (10) 

which is the mathematical representation of the characteristic curve of nonlinear load. The slopes of the inner and outer 
regions are 퐺  and 퐺 , while 퐵  indicates break points. Rescaling equation (2) as 푣 =  푥 퐵 , 푣 =  푥 퐵 ,  푖 =
푥 퐺퐵 , 퐺 =  , 푡 = 휏 and then redefining 휏 as t the following set of normalized equations are obtained: 

푥̇ =  훽(휀푥 −  푥 −  훾푥 ) +  훼푢
푥̇ =  휀푥                                             
푥̇ =  푝 푥 −  푔(푥 )                       

               (11) 

where 휀 =  푢 −  푢 , 푝 =  ,훽 =  , 훾 = 푅퐺,훼 =   

Obviously 푔(푥 )  = 푏푥 +  0.5(푎 − 푏)[|푥 +  1|−  |푥 −  1|], or 

푔(푥 ) =  
푏푥 +  푎 − 푏 ,      푥 > 1         
푎푥    ,                        |푥 | ≤ 1   
푏푥 −  푎 + 푏 ,      푥 < −1      

                      (12) 

here 푎 =   , 푏 =  . 
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Figure 2: Two cells chopper connected to a nonlinear load 

 
Its function is to supply a passive load (푅퐿) in series with another nonlinear load connected in parallel with a capacitor 
[23]. Four operating modes are then possible as shown in figure 3. Note that the floating source takes part in the 
evolution of the dynamics of the system only to the third and fourth mode. In the third mode, the capacity discharges 
and charge during the fourth mode. Thus, if these two modes last same time with a constant charging current, then the 
average power transmitted by this floating source over one period of commutation is null. We also notice that these two 
modes make it possible to obtain by commutation the additional level  on the output voltage 푉 . As the switches of 
each cell are regarded as ideals, their behavior can be to model by a discrete state taking of the values 0 (표푛) or 
1 (표푓푓). In practice, some of these states never will be visited for reasons of safety measures or following the strategy 
of order adopted or because of the structure of the converter him finally to even or comply with the rule of adjacency. 
The transitions are not necessarily controlled 

 

 
Figure 3: Switching cell and its configurations. 

 
Some important basic features of this system are: 
1. It is autonomous, which means that time does not explicitly appear on the right hand side. 
2. The equations involve only first order time derivatives, so the evolution depends only on the values of 푥 , 푥 , and 푥  
at the time. 
3. Due to the piecewise-linear function in the third equation, the system is non-linear. 
4. The system is dissipative when the following inequality holds: 

∇푉 =  
휕푥̇
휕푥 +

휕푥̇
휕푥 +

휕푥̇
휕푥 =  −훽훾 − 푝푏, |푥 | > 1

−훽훾 − 푝푎, |푥 | ≤ 1      (13) 

Since parameters 훽, 훾, 푝, 푏 and 푎, denoting the physical characteristics of the air flow, are positive, the inequality 
always holds and, thus, solutions are bounded and, thus, solutions are bounded. 
5. The system is symmetric, with respect to the 푥  axis, which means it is invariant for the coordinate transformation: 
(푥 ,푥 ,푥 )  → (푥 ,−푥 ,푥 ) 
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Chaos is described as the irregular, unpredictable behavior of deterministic, non-linear dynamical systems. In order to 
have chaotic behavior, simultaneous stretching and folding in the dynamics of the system are essential [24, 25]. 
Stretching ensures the sensitivity to initial conditions and folding guarantees that the attractor is bounded. Stretching 
and folding are equivalent to positive and negative Lyapunov Exponents, respectively. Therefore, in chaotic dynamics, 
stretching in one direction is observed by the existence of one positive Lyapunov Exponent in that direction [26]. Using 
the method reported by Wolf et al. [27], the corresponding Lyapunov exponent of the real multicellular chopper 
connected with a nonlinear load system is computed by fixing 푝 = 25. 10 ,   훼 = 2. 10 , 푎 =  −15, 푏 = 5, 훾 = 1 
and varying 훽, as the control parameter. The initial conditions in all these simulations are the same and are equal to 
(푥 ,푥 ,푥 ) = [0, 5, 4]. 
According to the detailed numerical as well as theoretical analysis and (13), the Lyapunov exponents are found to be:  

 For 휀 =  ±1, 푙 = 0.0318, 푙 =  −0.0319, 푙 =  −0.0128  
Therefore, the Lyapunov dimension of this system is: 

퐷 = 푗 +  
∑ 푙
푙

= 2 +  
0.0318− 0.0319

|−0.0128| = 2.0078125                  (14) 

 For 휀 = 0, 푙 =  −1.4029. 10 , 푙 = 0, 푙 =  −0.0126 
Therefore, the Lyapunov dimension of this system is: 

퐷 = 푗 +  
∑ 푙
푙

= 2 +  
−1.4029. 10

|−0.0126| = 1.98886587                   (15) 

Equation (14) and (15) means system (11) is really a dissipative system, and the Lyapunov dimensions of the system 
are fractional. Having a strange attractor and positive Lyapunov exponent, it is obvious that the system is really a 3D 
chaotic system. The null Lyapunov exponent is obviously related to the critical nature between expansion and 
contracting nature of different directions in phase space. 
In addition, the bifurcation diagram was plotted for our systems, which is the most useful graphical representation of 
the sequence of bifurcations that take place in the system when the control parameter changes. The bifurcation 
diagrams of the state variable 푥  in system (11) are shown in figure  

 
Figure 4: Bifurcation diagrams 

 
The first return map to the Poincaré section (figure 5) is a common tool for analyzing the existence and stability of 
periodic trajectories of dynamical systems. It is defined on a hyper-surface formed by a Poincaré section (figure 6), 
which is transverse to the trajectory of the system [28]. In this study, these maps were formed by plotting the local 
maxima of the variable 푥 , and the real part of the variable. 

                         
                       Figure 5: First return map                     Figure 6: The Poincaré section of x1 – x2 plane 
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IV.DYNAMICAL ANALYSIS OF THE TWO-CELLS MULTICELLULAR CHOPPER ASSOCIATED WITH 
A NONLINEAR LOAD 

 Equilibria 
The equilibria of (4) can be calculated by solving the following algebraic equations simultaneously 

 푥̇ =  훽(휀푥 −  푥 −  훾푥 ) +  훼푢 = 0
푥̇ =  휀푥 = 0                                          
푥̇ =  푝 푥 −  푔(푥 )  = 0                     

  

Case 1.  휺 =  ퟏ, i.e.,  풖ퟏ = ퟎ,풖ퟐ = ퟏ 

i. 푥  > 1, the equilibrium point is : 퐸 =  

0
−  

ii. |푥 |  ≤ 1, the equilibrium point is : 퐸 =
0
−
0

 

iii. 푥  <  −1, the equilibrium point is : 퐸 =  

0
−  

Case 2.  휺 =  −ퟏ, i.e.,  풖ퟏ = ퟏ,풖ퟐ = ퟎ 

i. 푥  > 1, the equilibrium point is : 퐸 =  

0

 

ii. |푥 |  ≤ 1, the equilibrium point is : 퐸 =
0
0
0

 

iii. 푥  <  −1, the equilibrium point is : 퐸 =  

0

 

Case 3 : 휺 = ퟎ 
a) 풖ퟐ = 풖ퟏ = ퟏ 

i. 푥  > 1;  the equilibrium point is : 퐸 =  

⎝

⎜
⎛ 푥

( )

⎠

⎟
⎞

 

ii. |푥 |  ≤ 1 ;  we obtain:  퐸 =

⎝

⎜
⎛ 푥

⎠

⎟
⎞

 

iii. 푥  <  −1;  we obtain : 퐸 =  

⎝

⎜
⎛ 푥

( )

⎠

⎟
⎞
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b) 풖ퟏ =  풖ퟐ = ퟎ 

i. 푥  > 1;  the equilibrium point is : 퐸 =  푥
( )

 

ii. |푥 |  ≤ 1 ;   the equilibrium point is:  퐸 =
0
푥
0

. 

iii. 푥  <  −1;  the equilibrium point is: 퐸 =  푥
( )

 

 Stability 
Let us study the stability of different equilibrium points. 

1. For |풙ퟑ| > 1, the Jacobian matrix is defined as 퐽 =  
−훽훾 훽휀 −훽
휀 0 0
푝 0 −푏푝

 

The eigenvalues are: 
i. If = ±ퟏ; 휆 =  0.0140; 휆 =  −0.0141; 휆 =  −0.0126 ; here 휆  is a positive real number, 휆  and 휆  are two 

negatives real numbers. Therefore, the equilibrium 퐸   푎푛푑 퐸   are a saddle point in the plane (푥 ,푥 ) and 
(푥 ,푥 ); these equilibrium are unstable. 

ii. If 휺 = ퟎ ; 휆 =  −0.0002; 휆 =  −0.0125; 휆 =  0 ; Then 퐸   푎푛푑 퐸 ,   are stable equilibrium points within 
the meaning of Lyapunov for all 푥 . 

2. For |풙ퟑ| ≤ ퟏ, the Jacobian matrix is defined as 퐽 =  
−훽훾 훽휀 −훽
휀 0 0
푝 0 −푝푎

 

Three characteristic values of the Jacobian matrix J can be obtained from |휆퐼 −  퐽| = 0 as follows: 
i. If = ±ퟏ; 휆 =  0.0140; 휆 =  −0.0143; 휆 =  −0.0375 ; here 휆  is a positive real number, 휆  and 휆  are two 

negative real numbers. Therefore, the equilibrium 퐸   푎푛푑  퐸  are a saddle foci in the plane (푥 ,푥 ) and 
(푥 ,푥 ); these equilibrium are unstable. 

ii. If 휺 = ퟎ ; 휆 =  −0.0002; 휆 =  −0.0375; 휆 =  0 ; 퐸  is a stable equilibrium point within the meaning of 
Lyapunov for all 푥 . 

3. For |풙ퟑ| < −ퟏ, the Jacobian matrix is defined as 퐽 =  
−훽훾 훽휀 −훽
휀 0 0
푝 0 −푏푝

 

The eigenvalues are: 
i. If = ±ퟏ; 휆 =  0.0140; 휆 =  −0.0141; 휆 =  −0.0126 ; here 휆  is a positive real number, 휆  and 휆  are two 

negatives real numbers. Therefore, the equilibrium 퐸   푎푛푑 퐸   are a saddle point in the plane(푥 ,푥 ) and 
(푥 ,푥 ); these equilibrium are unstable. 

ii. If 휺 = ퟎ ; 휆 =  −0.0002; 휆 =  −0.0125; 휆 =  0 ; then 퐸12  푎푛푑 퐸13,   are stable equilibrium points within 
the meaning of Lyapunov for all 푥2. 

Regarding the figure 4, it is obvious that this system is chaotic for small ranges of parameter f.  
The behaviors of system (11) changes for different values of parameter 훽. Figure 7 demonstrate some phase portraits of 
system (11) for some of these values when the behaviors are periodic, quasi-periodic, chaotic or hyper-chaotic. 
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Figure 7: Phase portraits: (a) 훽 = 5. 10 ,퐿 = 0.02퐻; (b): 훽 = 2,5. 10 , 퐿 = 0.04퐻; (c): 훽 = 2. 10 ,퐿 = 0.05퐻; 

(d): 훽 = 10 ,퐿 = 0.1퐻; (e): 훽 = 0,2. 10 ,퐿 = 0.5퐻; (f): 훽 = 10 ,퐿 = 1퐻; (g): 훽 = 10 ,퐿 = 10퐻; (h): 
훽 = 10 ,퐿 = 100퐻 

 
V. CONCLUSION 

 
This paper explains the dynamics of the multicellular chopper connected with a nonlinear load. This system is 
autonomous, non-linear, dissipative with bounded solutions, symmetric with respect to the 푥2 axis, and they involve 
only first order time derivatives. The phase portraits, Lyapunov Exponents, bifurcation diagrams, first return maps to 
the Poincare sections and Poincaré section of the system prove that it is possible to have chaos in the system expressed. 
Indeed, the steady state trajectory of this system can be attracted to a limit cycle, a torus, a chaotic attractor as shown in 
figure 7. 
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