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Abstract

Background: Information and theory beyond copula concepts are essential to understand the dependence
relationship between several marginal covariates distributions. In a therapeutic trial data scheme, most of the time,
censoring occurs. That could lead to a biased interpretation of the dependence relationship between marginal
distributions. Furthermore, it could result in a biased inference of the joint probability distribution function. A
particular case is the cost-effectiveness analysis (CEA), which has shown its utility in many medico-economic studies
and where censoring often occurs.

Methods: This paper discusses a copula-based modeling of the joint density and an estimation method of the costs,
and quality adjusted life years (QALY) in a cost-effectiveness analysis in case of censoring. This method is not based on
any linearity assumption on the inferred variables, but on a punctual estimation obtained from the marginal
distributions together with their dependence link.

Results: Our results show that the proposed methodology keeps only the bias resulting statistical inference and
don’t have anymore a bias based on a unverified linearity assumption. An acupuncture study for chronic headache in
primary care was used to show the applicability of the method and the obtained ICER keeps in the confidence interval
of the standard regression methodology.

Conclusion: For the cost-effectiveness literature, such a technique without any linearity assumption is a progress
since it does not need the specification of a global linear regression model. Hence, the estimation of the a marginal
distributions for each therapeutic arm, the concordance measures between these populations and the right copulas
families is now sufficient to process to the whole CEA.

Keywords: Cost-effectiveness analysis, Censored data, Copulas, Parametric models, Subgroups analysis

Background
Due to the variety of treatments for a specific health
problem and in conjunction with their increasing costs,
cost-effectiveness studies of new therapies is challeng-
ing. These studies could achieve to a statistical analysis
since that the common practice in laboratories is to collect
individual patient cost data in randomized studies. Fur-
thermore, it is now possible to compute the incremental
net benefit from the use of a new therapy in comparison
with the common-in-use therapy.
In the last decades, the cost-effectiveness analysis (CEA)

of new treatments became an actual subject of work for
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statisticians. It is used in two particular designs: decision
modeling-based CEA and trial-based CEA. Themajor dif-
ference between both approaches is that in the case of
trial-based CEA, data are gathered at the patients level
in particular studies and it may lead to overlearning from
the study, which may lead to mistakes in interpretation
when the results are inferred for populations. In con-
trast, decision modeling-based CEA are based on easily
generalizable data.
The cost-effectiveness analysis is used to measure the

incremental cost-effectiveness ratio (ICER) and the incre-
mental net benefit (INB). The ICER is defined as the
ratio:

ICER = E(C1) − E(C0)

E(T1) − E(T0)
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where C1 is the cost of the tested therapeutic, C0 is the
cost of the control group which is usually measured in
term of a given monetary unit, T1 is the effectiveness of
the tested therapeutic which is usually measured in term
of survival life years, T0 is the effectiveness of the control
group and, E(•) is the expectation function. Therefore,
it is an indicator of the monetary cost of using a new
therapy in terms of survival time. On the other hand, the
INB is defined as the following difference:

INB = λ(T1 − T0) − (C1 − C0)

where λ is the willingness-to-pay for a unit of
effectiveness.
In the literature, many articles propose ways to estimate

these quantities. At first, Willan and Lin [1] proposed
an approach which is based on the sample mean. It was
applied directly to survival time years. In case of censored
data, they proposed to estimate the survival function for
each arm using the product-limit estimator [2] and then
to estimate the survival time by integrating the survival
functions until a time τ (i.e. μj is the life expectancy until
τ ), themaximal time of follow-up. Concerning the estima-
tion of costs in case of censoring, many estimators may be
used. Zhao et al. [3] have shown the equivalence among
them.
The quality adjusted life years (QALY) concept was

introduced in 1977 by Weinstein and Stason [4], and is
still actually one of the most important notions in the
cost-effectiveness theoretical framework. In the paper of
Willan et al. [5], the concept of quality of life adjusted to
the survival time is defined as follows. Let qji be the quality
adjusted survival for the period of interest for the patient
i which follows the treatment j and let qjki be the observed
quality of life for the patient i receiving treatment j, j = 0, 1
during the interval of time ak . In fact, this is a represen-
tation of the standard survival times scaled down by the
quality of life experienced by patients. One note that the
duration of interest of a study (0, τ ] is divided in K (arbi-
trary, relative to the data) sub-intervals [ak , ak+1) where
k = 1, 2, . . . ,K and where 0 = a1 < a2 < . . . < aK+1 = τ .
Thus, one can determine the value of qjki in the follow-
ing path: let a patient i be on treatment j with Bji quality
of life measured at times tji1, tji2, . . . , tjimji with respective
scores Qji1,Qji2, . . . ,Qjimij . These scores are nothing more
than the utility values. Therefore, qjki = ∫ ak+1

ak Q(t)dt is a
weighted sum of times spent in the different quality of life
states where:

Q(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qji1 if 0 ≤ t < tji1;
Qjih + (Qji,h+1−Qjih)(tji,h+1−tjih)

tji,h+1−tjih if tjih ≤ t < tji,h+1;
Qjimji if tjimji ≤ t < Xji;
0 if ≥ Xji,

and where Xji = min(Tji, ηji), δji = 1{Tji<ηji} where η

represents the censoring random variable. Furthermore,
let Yjki = 1(Xji ≥ ak and [Xji ≥ ak+1 or δji = 1] ),
which indicates if a patient i on the treatment arm j is
alive at time ak and is not censored on [ ak , ak+1) and let
Yjk = ∑nj

i=1 Yjki. If one notes q̄jk = ∑nj
i=1(Yjkiqjki)/Yjk ,then

using a known expression of variance [5], one obtains
the estimation of μj, the expected value of effectiveness
adjusted to QALY, with

μ̂j =
K∑

k=1
Ŝj(ak)q̄jk .

More recently, Willan et al. [6] proposed to realize
the whole cost-effectiveness analysis using linear regres-
sion methods. Let Ci be the observed cost for patient
i, then E(Cji) = βT

Ci
ZCji , i = 1, 2, . . . , nj,ZCji is a vec-

tor of covariates affecting costs and βCj is a vector of
unknown regression parameters. Then, using the inverse
probability of censoring weighting (IPCW) methods, they
proposed a way to estimate the second component of βCj
which is the mean difference in costs between random-
ization groups adjusted to other covariates, �̂c, and its
associate variance. The same methodology is done there
to estimate the mean difference in mean survival between
randomization groups adjusted for the other covariates,
�̂e. Thus, they proposed to estimate the ICER adjusted
for the quality of life by �̂c/�̂e and used this time again
the Fieller’s theorem to find a 100(1 − α) confidence
interval. For the adjusted INB, they proposed to estimate
it by b̂λ = λ�̂e − �̂c with variance σ̂ 2

λ = λ2σ̂ 2
�e

+
σ̂ 2

�c
− 2λσ̂�c�e . Thus, if the INB is positive, the therapy

is cost-effective and if it is negative, there is no cost-
effectiveness. One remarks that it is possible to determine
the cost-effectiveness under a significance level α using
a statistic of test: if b̂λ/σ̂λ is greater than the test level
z1−α , at a level α, the therapy is cost-effective compared to
the standard.
From that linear regression approach, many variants

exist either parametric or semi-parametric [7]. The main
problem of the estimator for cost-effectiveness analysis
based on the linear regression is that even if the inverse-
probability censored weighting estimator is consistent,
it is not efficient because if an individual is censored
before or at time aK+1, the patient does not contribute
to the sum that constitutes this estimator and the prac-
titioner may lose some statistical significant information.
Furthermore, when there is no censoring, it is equivalent
to the solve ordinary least squares equations; for which
the linearity assumption may lead to serious bias in case
of non-linearity. In the case of a semi-parametric esti-
mator, the main problem is that the estimation of the
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conditional moments may be hard to find accurately or
may lead to some bias in function of the used estimator.
For these reasons, we introduce a new cost-effectiveness
analysis methodology and a modeling of the joint density
function between costs and QALY using parametric cop-
ulas. It is therefore based only on the dependence between
covariates and the prior information on the variables
distributions.

Methods
Copula function
To introduce the theory beyond the new proposed estima-
tor for cost-effectiveness analysis, it is crucial to present
the concept of modeling the dependence among two or
more variables, namely the copula function concept. The
idea of the copula started with Sklar [8] who formulated
his famous theorem as follows: a d-dimensional multi-
variate distribution H(x1, x2, . . . , xd) = P(X1 ≤ x1,X2 ≤
x2, . . . ,Xd ≤ xd) from a random vector (X1,X2, . . . ,Xd)

T

with marginal distributions Fi(x) = P(Xi ≤ x) can be
written as:

H(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd))

whereC is the cumulative distribution functionof the cop-
ula. In fact, it is a cumulative distribution function from
[ 0, 1]d to [ 0, 1] with uniform margins over the unit inter-
val [ 0, 1] such that: C(u1,u2, . . . ,ud) = P(F1(X1) ≤
u1, F2(X2) ≤ u2, . . . , Fd(Xd) ≤ ud). Therefore, the copula
density can be written as follows:

c(u1,u2, . . . ,ud) = ∂dC(u1,u2, . . . ,ud)
∂u1,u2, . . . ,ud

.

Thus, for a bivariate model, the joint density function of
stochastic variables X1 and X2 is:

f (x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2).

Note that parametric and nonparametric copulas esti-
mation exists. Also, one has to remark that given two
marginal distributions, the copula that joins them is
unique if and only if these margins are continuous. In
the literature, few papers deal with copula and costs data.
At first, Embrechts et al. [9] present an original article
about the correlation measurement with those data. How-
ever, the copula concepts presented there are more about
generalizations of the copula theory than about a mod-
eling methodology. Secondly, Frees and Valdez [10] use
copulas for costs data in the insurance area. Their work
explains how to fit copulas and measure the mortality

risks. Thirdly, there is Hougaard [11] who uses copula with
costs data in a multivariate survival analysis context. Also,
there is Zhao and Zhou who work with copula models
using medical costs, but in a stochastic process context,
which is not adapted to QALY and costs data when the
information is limited.
In this paper, we assume the copula to be parametric,

which means that the copula can be written in a particular
way as a function of the chosen family, with one parameter
who summarizes the dependence between the variables,
and the marginal distributions to be continuous. For more
about copulas, see Nelsen [12].

Model
Determination of QALY in terms of time and quality of life
If the survival time adjusted for the quality of life is already
measured, one should directly estimate the parameters of
its distribution. However, most of the time, practition-
ers only have two variables: time and quality of life. As
shown in the previous section, the classical adjustment
method for time on quality of life is given by Tadj(w) =
∫ T(w)

0 Q(v(t))dt where Q(v(t)) is the adjustment of qual-
ity of life scores on the interval of time of interest. Since
that the function H(t) = ∫ t

0 Q(v(y))dy is monotonically
increasing, it is possible to rewrite the cumulative dis-
tribution function of Tadj as a composition of functions
such as:

Fadj(y) = F ◦ H−1(y)

where H−1()̇ is the generalized inverse function, and the
probability density function such that:

fadj(y) = f [H−1(y)]
1

Q[v(H−1(y))]

where fadj is the density function of Tadj and f is the den-
sity function of T. Therefore, for an individual i on treat-
ment j, the practicioners have the following measures,
Eadjji , which is such that:

Eadjji = inf i
[
Tadjji , ηadjji

]

where ηadjji represents the censoring adjusted on quality
of life and Tadjji the survival time having the same adjust-
ment. Also, let Cji the cumulative cost for individual i on
arm j. Thus, we get the following dependency evidences:

1. Tadjji and ηji are dependent,
2. Tadjji and ηadjji are independent,
3. Cji and ηji are dependent.

Proofs are provided in the “Appendix” section.



Fontaine et al. BMCMedical ResearchMethodology  (2017) 17:27 Page 4 of 15

Estimation of the parameters of the distributions
Even if, to begin, the right distributions for costs and
QALY are unknown, it is possible to infer their two
main parameters: mean and variance. In fact, we will
consider here each arm of the trial as a distinct ran-
dom variable with distinct mean and variance but with
the same probability distribution. Furthermore, we will
assume that non-administrative censoring exists as the
main consideration of the estimation. Let ZC

ji be the d-
vector of covariates that affect costs for arm j, j = 0, 1,
for the grouped population, and ZE

ji be the one for QALY.
Then, as proposed by Thompson and Nixon [13] and
Stamey et al. [14], the costs mean function, on an arm j, is
defined as:

μC
j = α0 + α1zC1j + . . . + αdzCdj,

and, the QALY variable mean function given costs is
defined as:

μ
Tadj
j = β0 + β1z

Tadj
1j + . . . + βdz

Tadj
dj .

As these models are, in fact, linear regression models
with censoring on covariates, using the method of Lin
[15], one can estimate the regression coefficients vector
αC by the sum over the k periods of time of interest
α̂C = ∑K

k=1 α̂Ck using an inverse probability weighting
method (IPCW) such that, for an individual i belonging to
arm j,

α̂Ck =
⎛

⎝
n∑

i=1

δ�
jki

Ĝ
(
X�
jki

)ZC
j

(
ZC
j

)t
⎞

⎠

−1 n∑

i=1

δ�
jkiCjki

Ĝ
(
X�
jki

)ZC
j

where X�
jki = min(Xji, ak+1), Ĝ(•) is the Kaplan-Meier

estimator of G(•), δ�
jki = δji + (1 − δji)1(Xji ≥ ak+1) and,

as described in “Background” section , Xji is the minimum
between time from randomization to death and time from
randomization to censoring, and δji = 1(Tji ≤ ηji). The
same approach is used to find β , the vector of regression
coefficients for QALY. Thus, from the inference on coef-
ficients, it is possible to determine the adjusted mean on
survival.
In terms of variance, we propose the use of the result

of Buckley and James [16] (see also Miller and Halpern
[17]), which is a generalization of the IPCW techniques.

Thus, the approximate variance of the cost distribution on
a given arm is:

σ̂ 2
Cj

= 1
∑n

l=1 δl − 2

n∑

i=1
δi

⎛

⎝ê0i − 1
∑n

l=1 δl

n∑

j=1
δjê0j

⎞

⎠

2

where êi0 is an error term such that êi0 = Ci − ZC
j α̂j. A

similar approach is done for QALY.

Determination of the parametric distributions
To model costs, three common distributions are fre-
quently used: Gamma, Normal and Lognormal distribu-
tions. Their parametrization is easily done given the mean
and the variance of the distribution. Let μC be the mean
and σ 2

C be the variance of costs for any clinical arm j.
Then, the parametric distribution choice will be one of the
following:

1. Cj ∼ Normal
(
μCj , σ 2

Cj

)
,

2. Cj ∼ Gamma(μCj , ρCj),
3. Cj ∼ Lognormal

(
νCj , τ 2Cj

)
,

where νC and τ 2C are mean and variance of the log-
costs, i.e. νC = 2log(μC) − 1

2 log
(
σ 2
C + μ2

C
)
and τ 2C =

log
(
σ 2
C + μ2

C
) − 2log(μC). Furthermore, ρC is the shape

parameter of the Gamma distribution, which is such that
ρC = μ2

C/σ 2
C . Thus, once each modeling is achieved,

a selection of the better parametric distribution has to
be done using the deviance criteria. The best fit to the
data corresponds to the distribution that has the lower
deviance, which is minus two times the log-likelihood.
In the case of QALY, the choice may be any symmetric

or skew-symmetric distribution. We propose two options
here, but the classical way here is to consider only a gaus-
sian distribution following the work of Thompson and
Nixon [13]. One notes that, even if it may look strange
to use a real defined function for a real positive distribu-
tion, the distribution of Tadj usually has a high mean with
a low standard error such that the negative part of the fit-
ted distribution is in fact negligible. Then, the proposed
options are:

1. Tadjj ∼ Normal
(
μTadj , σ 2

Tadj

)
,

2. Tadjj ∼ Gamma(μTadj , ρTadj).

Inference on Kendall’s tau
To further compute the copula parameter for each tested
copula in the selection process, one has to get the global
dependence parameter: Kendall’s tau. The idea is that per-
forming inference on Kendall’s tau instead of directly on
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the copula parameter for each tested copula leads to only
one estimation process instead of as many inferences as
the quantity of tested models. Surely, the maximum like-
lihood estimator can be used in order to get the copula
parameter. However, in this paper, we suggest the use of
Kendall’s tau for non-randomized data in reason of the
easiness of the method. Furthermore, as shown by Genest
et al. [18, 19], the difference between both inference
methods is slightly significant compared to the gain in
computational efficiency. Note that in case of randomized
data, the exchangeability phenomenon among individuals
occurs and concordance measure may be biased. Hence,
in this case, we suggest the use of a standard maximum
likelihood estimation for the copula parameter.
The Kendall’s tau inversion method to infer a cop-

ula parameter has been shown to be consistent under
specific assumptions, which holds here [20]. In fact, for
every parametric copula family, there exists a direct rela-
tionship between the copula parameter and the Kendall’s
tau. For example, with Clayton copula, one has θ̂ =
2τ/(1 − τ) and for Gumbel copula, θ̂ = 1/(1 −
τ). These relationships are clearly given in almost all
the literature about parametric copulas [12]. Let con-
sider the couple of random variables (C,Tadj) on a
fixed therapeutic arm j, j = 0, 1. Furthermore, let
consider

(
C{1},T {1}

adj

)
and

(
C{2},T {2}

adj

)
two independent

joint observations of the couple (C,Tadj). Then, the pair
is said concordant if

(
C{1} − C{2})

(
T {1}
adj − T {2}

adj

)
> 0

and discordant elsewhere. The Kendall’s tau, which
is in fact a concordance measure, is defined in
Kendall [21] by

τK = P

[(
C{1} − C{2}) (

T {1}
adj − T {2}

adj

)
> 0

]

−P

[(
C{1} − C{2}) (

T {1}
adj − T {2}

adj

)
< 0

]

= 2 · P
[(

C{1} − C{2}) (
T {1}
adj − T {2}

adj

)
> 0

]
− 1

= E

[
(2 · 1

[
C{1} − C{2} > 0

]
− 1)

×
(
2 · 1

[
T {1}
adj − T {2}

adj > 0
]

− 1
)]

= E[ a12b12]

where E is the expectation, 1 is the indicator function,
a12 = 2 · 1[C{1} − C{2} > 0]−1 and b12 = 2 · 1

[
T {1}
adj−

T {2}
adj > 0

]
− 1. In a more general frame, one has the

couples
(
C{1},T {1}

adj

)
,
(
C{2},T {2}

adj

)
, . . . ,

(
C{n},T {n}

adj

)
where

all the values of C{r},T {r}
adj, r = 1, . . . , n are unique. Thus,

one can write ars = 2 · 1[C{r} − C{s} > 0]−1 and
brs = 2 · 1

[
T {r}
adj − T {s}

adj > 0
]

− 1 where r and s are

the index of the independent replications. In absence
of censoring, the estimation of τ is given by its sample
version:

τ̂K =
(
n
2

)−1 ∑

1≤r<s≤n
arsbrs,

where n is the sample size. In fact, it is simply the
n(n − 1)/2 pairs of bivariate observations that could
be constructed, multiplied by the subtraction of the
number of discordant pairs to the number of con-
cordant pairs. Under censoring, the approach of
Oakes [22] propose to add an uncensoring indicator Lrs =
1

[
min

(
C{r},C{s}) < min

(
U{r}
C ,U{s}

C

)
, min

(
T {r}
adj,T

{s}
adj

)
<

min
(
U{r}
Tadj

,U{s}
Tadj

)]
to that equation such that:

τ̃K =
(
n
2

)−1 ∑

1≤r<s≤n
Lrsarsbrs,

where U{r} and U{s} represent the censoring variables
under each independent replication. The problem with
that estimator is the lack of consistency on a high-
dependent scheme. Therefore, one advocates the use of
the renormalized Oakes’ estimator [23] for which consis-
tency has been shown. Therefore, the estimator

τ̂K =
∑

{1≤r<s≤n} Lrsarsbrs∑
{1≤r<s≤n} Lrs

is simply the ratio of the subtraction of the number of
uncensored discordant pairs to the number of uncensored
concordant pairs over the total of uncensored pairs.

Bayesian selection of the copula
Inference here may be done on any consistent parametric
copula. To select the right copula, few alternatives are pro-
posed in the literature. For complete data distributions,
Genest and Rivest [18] proposed a procedure based on
a probability integral transformation. Furthermore, based
on the goodness-of-fit, Lakhal-Chaieb [24] proposed a
procedure for censored data when the distributions are
estimated by the survival functions. However, when avail-
able, a prior knowledge of the distribution of the margins
in a copula is not a negligible information. It should be
taken into account for the inference of the copula model
when the latter is unknown, to minimize the risk of errors.
In their paper, Dos Santos Silva et al. [25] proposed a
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method of selection based on the information criterion.
Let note FTadj(y) and FC(χ) the cumulative distribution
functions for QALY and costs for a given randomization
arm. Thus, one gets:

f (y,χ |�) = c(FTadj(y|�Tadj), FC(χ |�C)|�θ)

× fTadj(y|�Tadj)fC(χ |�C)

where �C stands for a parameter vector comprising
parameters of the distribution of costs,�Tadj is the param-
eter vector for QALY distribution, �θ is the dependence
parameter which is functional of the Kendall’s tau and
� = �C ∪ �Tadj ∪ �θ is the union of all these vectors of
parameters. Also, f and F respectively stand for the den-
sity probability function and the cumulative probability
function. Note that a similar writing could be done for a
multivariate modeling. As shown in Genest et al. [26], one
can find the copula parameter of any parametric copula
while just having the Kendall’s tau [21] measure, even in
multivariate models [27].
Let x be a bivariate sample of size n of that density func-

tion. Also, let Mk a copula model for k = 1..m where m
is the quantity of models one wants to test. Therefore, the
likelihood function is given by:

L (x|�,Mk) =
n∏

j=1

[
c
(
FTadj

(
yj|�Tadj ,Mk

)
, FC

× (
χj|�C ,Mk

)|�θ ,Mk
)
fTadj

(
yj|�Tadj ,Mk

)
fC

(
χj|�C ,Mk

)]δj

×
[
1−C

(
FTadj

(
yj|�Tadj ,Mk

)
, FC

(
χj|�C ,Mk

)|�θ ,Mk
)]1−δj

×
[
c
(
Fηadj

(
yj|�ηadj ,Mk

)
, FC

(
χj|�C ,Mk

) |�θ ,Mk
)

× fηadj
(
yj|�ηadj ,Mk

)
fC

(
χj|�C ,Mk

)]1−δj

×
[
1 − C

(
Fηadj

(
yj|�ηadj ,Mk

)
, FC

(
χj|�C ,Mk

) |�θ ,Mk
)]δj

,

where δj indicates if an individual is censored or not.
Then, using the deviance function which is D(�k) =
−2ll(x|�,Mk)where ll stands for the log-likelihood func-
tion, Dos Santos Silva et al. [25] proposed to use the
deviance information criterion (DIC) which is:

DIC(Mk) = 2E[D(�k)|x,Mk]−D(E[�k|x,Mk] ).

They proposed to use the Monte Carlo approximations
to E[D(�k)|x,Mk] and E[�k|x,Mk] which are respec-
tively L−1 ∑L

l=1 D
(
�l

k

)
and L−1 ∑L

l=1 �l
k . Here, one sup-

poses that
{
�

(1)
k , . . . ,�(L)

k

}
is a sample from the posterior

distribution f (�k|x,Mk). Then, one chooses the copula
model in all the chosen range with the smaller DIC.

One remarks that such a selection process requests
parametric copulas with a limited quantity of parame-
ters. Hence, one suggests the use of archimedean and
elliptic copulas families for these modelings. In fact,
the range of dependance structure models provided by
archimedean copulas is enough large to cover the depen-
dance parametrisation in a cost-effectiveness analysis. For
example, a Clayton copula may represent a study where a
small QALY is directly linked to small costs, but a huge
QALY is independent of costs. Also, one remarks that if
costs and QALY are independents, then the independence
copula is selected and one gets directly the values that
constitute the ICER.

Incremental cost-effectiveness ratio
From the estimated joint densities f (yj,χj), j ∈ {0, 1}, one
writes, for costs:

E[Cj] =
∫

DCj

∫

DTadjj

χjf
(
χj, yj

)
dyjdχj

≈
∫

DCj

∫

DTadjj

χjc(i)
θ̂

(
F̃Tadj

(
y|�̂Tadj

)
, F̃C

(
χ |�̂C

))

×f̃C
(
y|�̂C

)
f̃Tadj

(
χ |�̂Tadj

)
dyjdχj

where DCj and DTadjj
are respectively the domain of defi-

nition for the random variables C and Tadj for arm j. For
QALY, one has the following:

E[Ej] =
∫

DTadjj

∫

DCj

yjf
(
χj, yj

)
dχjdyj

≈
∫

DTadjj

∫

DCj

yjc(i)
θ̂

(
F̃Tadj

(
y|�̂Tadj

)
, F̃C

(
χ |�̂C

))

×f̃C
(
y|�̂c

)
f̃Tadj

(
χ |�̂Tadj

)
dχjdyj.

Thus, given the expected costs and survival time
adjusted to quality of life, the adjusted ICER is
estimated by

ÎCER = Ê(Cj=1) − Ê(Cj=0)

̂E(Tadjj=1) − ̂E(Eadjj=0)

and using Fieller’s theorem (Fieller [28], Willan and
O’Brien [29], Chaudhary and Stearns [30]), one gets the
100(1 − α)% confidence interval such that
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ÎCER

⎛

⎜
⎝

(
1 − z21−α/2σ̂�C�Tadj

)
± z1−α/2

√
σ̂ 2

�Tadj
+ σ̂ 2

�C
− 2σ̂ 2

�C�Tadj
− z21−α/2

(
σ̂ 2

�Tadj
σ̂ 2

�C
− σ̂ 2

�C�Tadj

)

1 − z21−α/2σ̂
2
�Tadj

⎞

⎟
⎠ .

In this formula, z1−α/2 represents the 100(1− α/2) per-
centile of the standard normal distribution. Furthermore,
σ̂ 2

�Tadj
represents the variance of the distribution for effec-

tiveness where �Tadj is the difference between Tadjj=1 and
Tadjj=0 . The same scheme arises for σ̂ 2

�C
. For σ̂�C�Tadj

, it
is nothing more than the estimated covariance of the dif-
ferences, between j = 0 and j = 1, in costs and in quality
adjusted life years.
The reason to use Fieller’s theorem is to avoid standard

ways of using bootstrap. As shown by Siani and Moatti
[31], Fieller’s method is often as robust as bootstrap meth-
ods are (both parametric and non-parametric ways), even
in problematic cases. However, for non-common situ-
ations, an approach based on the ICER graphical plan
(as proposed by Bang and Zhao [32]) is recommended.
Indeed, in such a case, a graphical approach minimize the
use of biased or non-sufficient statistics in a parametric
confidence interval model.

Incremental net benefit
The adjusted INB(λ) is estimated by ÎNB = λ( ̂E(Tadjj=1)−
̂E(Tadjj=0)) − (Ê(Cj=1) − Ê(Cj=0)) with variance σ̂ 2

λ =
λ2σ̂ 2

�Tadj
+ σ̂ 2

�C
− 2λσ̂�C�Tadj

where λ is the willingness-
to-pay for a unit of effectiveness.

Subgroups analysis
It is possible to accomplish a cohort analysis using that
procedure. The main idea here is to perform a cost-
effectiveness analysis while achieving a discrimination
between two or more subgroups. The principle is that
there exists a baseline variable Zk , k ∈ {1, 2, . . . , d}, even
for costs than for QALY, which is in fact a categorical vari-
able (dichotomous or multichotomous) and for which one
should determine a marginal INB. Such subgroups have
to be based on clinically important covariates. Since that
these subgroups are in the therapeutic arms, it is not pos-
sible to assume that they are balanced. As shown in Nixon
and Thompson [33], and Tsai and Peace [34], a naive use of
these subgroups information without any adjustment may
lead to serious bias.
Let ZC

jki,Z
Tadj
jki be some population attribute indicator

covariates (e.g. sex, smoking status, etc.) for costs and
QALY on an individual i belonging to the clinical arm j.
For the sake of illustrating the concept here, let say that
one tests the therapeutic effect on smokers. Therefore,
there will be four subgroups: smokers in the treated group,

non-smokers in the treated group, and the same for the
control groups.
Let Tadjj=1,k=1,i be the effectiveness for smokers individ-

uals i on the treated arm, Tadjj=1,k=0,i be the effectiveness
for non-smokers individuals i on the treated arm; and the
same for the control arm. One does a similar writing for
costs. Let E(Tadjj) = E(Tadjj,k=1) − E(Tadjj,k=0) and the
same for costs. Then, the interest in this discrimination is
on the incremental net benefit marginalized to the smok-
ers cohort, which is INB(λ) = λ(E(Tadjj=1)−E(Tadjj=0))−
(E(Cj=1)−E(Cj=0)). Since that subgroups are inside clin-
ical arms, the main issue is to establish the expression
of variance. Adjusting Fieller’s method to the subgroups
context, one has

Var(INB(λ)) = λ2σ 2
�Tadj

+ σ 2
�C

− 2λσ�Tadj
�C

= λ2Var
(
Tadjj=1 − Tadjj=0

)

+Var
(
Cj=1 − Cj=0

)

−2λcov
(
Tadjj=1 − Tadjj=0 ,Cj=1 − Cj=0

)

where variances are computed in the standard path. For
the covariance term, σ�Tadj

�C
, there are two possible

scenarios. Firstly, when the assumption that subgroups
in treated and control arms are randomized is possible,
one has

cov
(
Tadjj=1 − Tadjj=0 ,Cj=1 − Cj=0

)

= cov
(
Tadjj=1 ,Cj=1

)
+ cov

(
Tadjj=0 ,Cj=0

)

which can be found easily using standard techniques. Sec-
ondly, when the randomization assumption between sub-
group is not possible because the cohorts are unbalanced
in the clinical arms, then the covariance is:

cov(Tadjj=1 − Tadjj=0 ,Cj=1 − Cj=0)

=cov
(
Tadjj=1 ,Cj=1

)
+ cov

(
Tadjj=0 ,Cj=0

)

− cov
(
Tadjj=1 ,Cj=0

)
− cov

(
Tadjj=0 ,Cj=1

)
.

Here, the terms cov(Tadjj=1 ,Cj=1) and cov(Tadjj=0 ,Cj=0)
are computed in a standard way similarly to the ran-
domized case. However, for the crossed-arms covari-
ance terms, cov(Tadjj=1 ,Cj=0) and cov(Tadjj=0 ,Cj=1), the
approach that we suggest is to estimate the cumulative
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joint distributions F(Ej=1,Cj=0) byCθ̂
(F̂Ē(yj=1), F̂C̄(χj=0))

and F(Tadjj=1 ,Cj=0) by C
θ̂
(F̂ ¯Tadj

(yj=1), F̂C̄(χj=0)) and F
(Tadjj=1 ,Cj=0) by C

θ̂
(F̂ ¯Tadj

(yj=1), F̂C̄(χj=0)) according to
the methodology shown in this paper, and then using
the covariance definition cov(C,Tadj) = E[Tadj,C]−
E[Tadj]E[C], compute the desired covariance from the
estimated joint density function and the estimated
marginal density functions.
In the spirit of the test of Willan et al. [6], one can test

the equality of the INB between cohorts, which can be
rejected at a level α if

∣
∣INB(λ)

∣
∣

√
Var(INB(λ))

is greater than the z1−α/2 percentile of a standard gaussian
distribution.

Results and discussion
This section gives an illustration of the performance of the
copula which provides the best estimate of the true copula
and the cumulative joint distribution of costs and QALY
respectively, according to the method presented above.
Let the exact copula beC(�)

θ (FTadj(y|�Tadj), FC(χ |�C)) and
its estimate be C(i)

θ̂
(F̃Tadj(y|�̂Tadj), F̃C(χ |�̂C)) where (i) is

the copulamodel selected among all the testedmodels and
(�) the exact copula model. Furthermore, F̃ is the chosen
distribution for F. Then, the objective of these simulations
is to show that the bias generated by the approximation
of θ by θ̂ ,� = �C ∪ �Tadj by �̂, the selection of C(i) as
the copula model and F̃C , F̃Tadj as the marginal parametric
models, is relatively weak.
In order to evaluate the performance of the proposed

method in non-trivial cases, we performed Monte-Carlo
simulations on 27 different simulation schemes. The
methodology was to simulate bivariate data (representing
costs and QALY) from three specific copulas. For each
copula, we simulated the three possible configurations
for the marginal distributions (costs are either normally
distribute or lognormally distributed or follow a gamma
distribution, while QALY is normally distributed). Then,
we applied three different levels of randomly censoring
on the marginal distribution of QALY (15, 30 and 70%).
Hence, there were nine possibles copulas configurations;
for these nine, we also challenged our methodology with-
out any censoring to get a point of comparison for the
inference of the Kendall’s tau part of the model. For all the
simulations, we assumed that Tadj follows a normal dis-
tribution. Alternatively, we could have set Tadj following
a Gamma distribution. However, in the present core, the
goal relatively to margins was to check that the determina-
tion of the marginal distributions criterion was adequate,

which may be tested on only one margin (to simplify the
text). The censoring followed an exponential distribution
such that λs=15 = 0.041, λs=30 = 0.090 and λs=70 = 0.308
where s represents the censoring percentage simulated.
For all data generating processes (DGP), the Kendall’s tau
was identical and represented an intermediate level of
dependence betweenmarginal distributions to be fair with
the reality: τK = 0.60. Then, we computed the right cop-
ula parameter, for each copula, based on this Kendall’s tau.
We also used a relatively standard mean and variance in
cost-effectiveness analysis, following parameters used by
Thompson and Nixon [13], such that μC = 1500, σC =
400; μTadj = 4, σTadj = 0.75, and we parametrized each
marginal distribution to keep close to these values. For the
choice of generating copulas, we selected the three most-
known ones with the biggest difference: Gaussian, Clayton
and Gumbel copulas. The DGPs schemes is shown on
Table 1.
The simulation of linearly dependent and uncensored

covariates for costs leads to a bias in our advantage for
the computation of the mean and the variance, com-
pared to the estimation performed according to a standard
clinical scheme. We decided therefore to challenge our
method using the Kaplan-Meier mean estimate of the sur-
vival function and its associated variance (which is the
appropriate approach in absence of covariates of interest)
instead of the presented procedure based on the covari-
ates. Then, we applied the following steps: selecting a
parametric distribution for the margins, selecting a para-
metric copula using the information criterion and finally,
looking for the copula parameter. We replicated this pro-
cedure 500 times for n = 1000 data, then we collected the
provided information on the frequency of successful pro-
cedures for the inference on the margins, the estimated
Kendall’s tau and the choice of copula, respectively.

Inference on Kendall’s tau
The proposed way to infer Kendall’s tau under censoring
gives results close to the real τK measured on data just
before applying the censoring. On Fig. 1 and Table 2, one
can see the dispersion of the computed Kendall’s tau. We
remind the reader that the theoretical value of tau used
for simulations is 0.6, and that we performed simulations
without censoring to give an idea of the Kendall’s tau mea-
sure on complete data. Thus, firstly, all simulations were
performed without any censoring. Secondly, a 15% rate of
censoring were applied on data. Thirdly, for all the sim-
ulations, we used a 30% rate of censoring and, for the
last case, we applied a 70% rate of censoring. Therefore,
the vector that contains all the inferred Kendall’s tau for
a (un)censoring level has a length of 4500. One observes
that the estimated values of τ̂K are relatively closes to the
theoretical value of 0.6, but one remarks that the disper-
sion of values for some θ̂ is not close to the expected value
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Table 1 Scheme of the 27 data generated cases

Generating copula Costs distribution Censoring level DGP

Gaussian copula FC ∼ N (μC = 1500, σC = 400) 15% DGP 1

θ ≈ 0.809 30% DGP 2

70% DGP 3

FC ∼ �(shapeC = 12, scaleC = 125) 15% DGP 4

30% DGP 5

70% DGP 6

FC ∼ logN (νC = 7.30, τC = 0.25) 15% DGP 7

30% DGP 8

70% DGP 9

Clayton copula FC ∼ N (μC = 1500, σC = 400) 15% DGP 10

θ = 3 30% DGP 11

70% DGP 12

FC ∼ �(shapeC = 12, scaleC = 125) 15% DGP 13

30% DGP 14

70% DGP 15

FC ∼ logN (νC = 7.30, τC = 0.25) 15% DGP 16

30% DGP 17

70% DGP 18

Gumbel copula FC ∼ N (μC = 1500, σC = 400) 15% DGP 19

θ ≈ 0.809 30% DGP 20

70% DGP 21

FC ∼ �(shapeC = 12, scaleC = 125) 15% DGP 22

30% DGP 23

70% DGP 24

FC ∼ logN (νC = 7.30, τC = 0.25) 15% DGP 25

30% DGP 26

70% DGP 27

Fig. 1 Inference on Kendall’s tau according to the simulations. Dispersion of the estimated Kendall’s tau according to the censoring level around the
theoretical value of tau used to generate data: 0.6
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Table 2 Information on the estimation of the Kendall’s tau for
each censoring level

Censoring level Mean (τ̂K ) Var (τ̂K ) Min (τ̂K ) Max (τ̂K )

Censoring =0% 0.6002 0.00019 0.5488 0.6476

Censoring =15% 0.6011 0.00024 0.5416 0.6539

Censoring =30% 0.6030 0.00035 0.5319 0.6648

Censoring =70% 0.6089 0.00146 0.4624 0.7257

The outputs of the 9 simulations with a censoring of 0% are joint together in the
information on the first line and the same for simulations censored at 15% on the
second line, 30% at the third line and 70% at the last line

as is the dispersion on τ̂K , since τK ranges in [−1, 1] while,
for example, for Clayton copula, θ ranges in [−1,∞)\ {0}.
Inference on themarginal distribution for the costs
To select the right marginal distribution for costs on
each of the 500 simulations and for each DGP, we used
the proposed criteria based on the deviance. Thus, on
Fig. 2, one can see the performance of this criterion. One
may remark that, even with a 70% rate of censoring, the
chosen parametric distribution is almost always correctly
estimated.

Inference on the copulamodels
There exists a bunch of parametric copula families, but
for the purpose of these simulations, we limited our
selection to the most well-known ones: Gaussian, Stu-
dent, Clayton, Gumbel, Frank and Joe copulas. However,
with a real dataset, the reader may test any consistent

parametric copula using the proposed way. During sim-
ulations, for each iteration, we collected the information
about the selected family using the information criterion.
At Tables 3 and 4, one can see these results for each DGP.
We indicated, in bold, the copula that was selected the
most in the 500 iterations and claimed that it was the
copula to be retained for the mentioned DGP. When the
selection of the copula was only in-between those used to
simulate the data (as on Table 3), it was obvious that the
chosen copula family is the one used for the generation
process. Otherwise, when intermediate copulas (for which
dependence adequation is close to the one provoked by
the generating copula) are introduced in the selection pro-
cess, the results may differ as shown on Table 4. For the
DGPs where the costs were simulated following a normal
distribution (1,2,3,10,11,12,19,20 and 21), the choice of the
copula was influenced by the dependence caused by the
type of copula retained to generate the data. In facts, when
the costs margin follows N (μC = 1500, σC = 400) and
the QALY margin follows N (μTadj = 4, σTadj = 0.75),
using τK = 0.60, if the dependency distribution is mostly
normal (i.e. comes from a Gaussian or a Gumbel copula),
there will be a moderate tail on both tails of the distri-
bution with an uniform cloud along the correlation path.
For these reasons which are attributes of the Frank cop-
ula, it was the chosen copula for DGPs 1,2,3,19,20 and
21. However, when, from the generating Clayton copula,
a strict dependence was imposed to the left-tail while a
mostly total independence was imposed to the right-tail,
only a Clayton copula appeared appropriate to modeling

Fig. 2 Frequency of selection of parametric marginal distributions for costs from the deviance criteria for each data generating process (DGP). The
black bar represents the selection of the Normal distribution, the dark-gray bar represents the selection of the Gamma distribution and the light-gray
stands for a logNormal distribution
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Table 3 Frequency of choice of a copula for each DGP given 500
iterations for the three main copulas

DGP Gaussian Clayton Gumbel
copula copula copula

DPG 1 460 0 40

DGP 2 454 0 46

DGP 3 25 94 381

DGP 4 415 0 85

DGP 5 429 0 71

DGP 6 140 21 339

DGP 7 473 0 27

DGP 8 490 0 10

DGP 9 261 10 229

DGP 10 0 500 0

DGP 11 0 500 0

DGP 12 0 499 1

DGP 13 18 482 0

DGP 14 11 489 0

DGP 15 68 371 61

DGP 16 2 498 0

DGP 17 6 493 1

DGP 18 177 531 62

DGP 19 2 0 498

DGP 20 9 0 491

DGP 21 1 9 490

DGP 22 123 0 377

DGP 23 109 0 391

DGP 24 36 0 467

DGP 25 80 0 420

DGP 26 84 0 416

DGP 27 121 0 379

The chosen copula is in bold font

these data. That’s the reason why it was the chosen copula
for DGPs 10,11 and 12. In the situation where QALY fol-
lows N (μE = 4, σE = 0.75) while costs follows a skewed
marginal distribution (gamma or lognormal), in any case,
there was not a right-tailed distribution, but mostly a left-
oriented data cloud with a fat left-tail. That is the reason
why, even when the data were generated from a Clayton
copula, the Student (t) copula was the chosen one. There-
fore, the simulations showed that the Bayesian criterion
of selection of the copula was in accordance with the
theoretical properties of the parametric copulas.
According to the structure of the marginal distributions,

the choice of the copula could only be done in a limited
spectrum of families. Therefore, when one seeks to find
the best structural copula family, it appears essential to
include the most known copula families covering as many

Table 4 Frequency of choice of copula for each DGP on 500
iterations beyond the three main copulas and intermediate
copulas

DGP Gaussian Student Clayton Gumbel Frank Joe
copula copula copula copula copula copula

DPG 1 7 45 6 25 415 2

DGP 2 2 44 4 25 425 1

DGP 3 4 54 4 17 421 0

DGP 4 32 297 0 56 112 3

DGP 5 26 291 0 59 120 4

DGP 6 23 284 0 79 113 1

DGP 7 47 343 1 45 38 26

DGP 8 55 344 0 43 33 25

DGP 9 55 328 0 56 37 24

DGP 10 0 12 364 0 124 0

DGP 11 0 17 372 0 111 0

DGP 12 0 5 385 0 110 0

DGP 13 0 427 56 0 17 0

DGP 14 2 433 55 0 10 0

DGP 15 1 431 58 0 10 0

DGP 16 1 477 19 2 1 0

DGP 17 2 476 18 0 4 0

DGP 18 4 472 19 0 4 1

DGP 19 0 18 0 110 196 176

DGP 20 0 20 0 107 214 159

DGP 21 0 17 0 109 202 172

DGP 22 13 236 0 153 67 31

DGP 23 19 231 0 157 58 35

DGP 24 23 161 0 204 75 37

DGP 25 32 198 0 177 13 80

DGP 26 39 213 0 148 13 87

DGP 27 37 210 0 167 17 69

The chosen copula is in bold font

dependence states as possible. Thus, in harmony with
Table 4, a selected copula which is not the generating one
is only performing a better adequacy to the dependence
between margins structures than the original one.
One remarks that an high censoring level does not really

impact the issue of the copula estimation. Indeed, for all
DGPs with 70% censoring level, there is only one case
where the result changes: DGP 24. In fact, the Gumbel
copula is left-skewed, as Student copulamay be; which can
explains the wrong estimation of the copula in this case.

Example: acupuncture for chronic headache in primary
care data
We used the acupuncture for chronic headache in pri-
mary care data from Vickers et al. [35–37] containing
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Table 5 Information gained in the analysis process for costs and QALY in both arms

Modelisation process Control arm Acupuncture arm

Kendall’s tau (τ̂K ) −0.1065 −0.1232

QALY distribution Tadj ∼ N (μ̂Tadj = 0.7083, σ̂Tadj = 0.1118) Tadj ∼ N (μ̂Tadj = 0.7268, σ̂Tadj = 0.1190)

Costs statistics μ̂C = 217.20 μ̂C = 403.40

σ̂C = 486.00 σ̂C = 356.59

Costs distribution C ∼ logN(ν̂C = 4.4844, τ̂C = 1.3390) C ∼ logN(ν̂C = 5.7111, τ̂C = 0.7600)

Selected copula family Gaussian Student (t)

Copula parameter (θ̂) −0.1664 −0.1923

migraine and chronic tension headache of 401 patients
aged 18 to 65 years old who reported an average of at
least two headaches per month. Subjects were recruited
in the general practice context in England and Wales
and they were allocated to receive until 12 acupunc-
ture treatments for a period of three months. For
the sake of the study, acupuncture intervention was
provided in the community by the United Kingdom
National Health Service (NHS). The study starts in 2002
with a time horizon of 12 months and was registered
ISRCTN96537534.
The data collection focuses on the measure of effective-

ness in terms of QALY gained and the cumulative cost
associated in UK pounds (£). Patients themselves reported
unit costs associated with non-prescription drugs and pri-
vate healthcare visits. The cost of the study intervention
was estimated from the standard cost for a NHS profes-
sional multiplied by the contact time with the patient.
Thus, patients in the treated arm had a mean time of
4.2 hours with study acupuncturist. No imputation for
missing data was done if the three questionnaires were
not complete and consequently for which QALY cannot
be measured. Therefore, in the acupuncture arm, there
was 136 participants and in the control arm, 119. The
modeling process of both joint distributions function for
QALY and costs in the two clinical arms is presented
on Table 5. We remark that in both cases, dependence
is weak since that Kendall’s tau ranges between -0.10
and -0.15. Here, for the distribution of Tadj, we com-
pared two possibles choices: a Gamma distribution and
a gaussian one. The normal distribution has the small-
est deviance. For the choice of distributions for costs,
in the two arms, the lognormal distribution was con-
sidered as the one with the smallest deviance. For the
copula family selection using deviance information cri-
teria, we compared, for each arm, Gaussian, Clayton,
Student, Frank, Joe and Gumbel copulas. In the treated
arm, Student copula was the considered one while in the
control arm, it was the Gaussian copula. Therefore, the
joint distribution function of the acupuncture arm was
estimated by:

F̂
(
Cj=1,Tadjj=1

)
= C(Student)

θ̂=−0.1923

×
(
FC ∼ logN

(
ν̂C = 5.7111, τ̂C = 0.7600

)
,

FTadj ∼ N
(
μ̂Tadj = 0.7268, σ̂Tadj = 0.1190

))

while, for the control arm, the estimation is:
F̂

(
Cj=0,Tadjj=0

)
= C(Gaussian)

θ̂=−0.1664

× (
FC ∼ logN

(
ν̂C = 4.4844, τ̂C = 1.3390

)
,

FTadj ∼ N
(
μ̂Tadj = 0.7083, σ̂Tadj = 0.1118

))
.

Using the approach given from the copula densities, the
ICER is estimated such that ˆICER = 10082.68£/ unit of
effectiveness, with a confidence interval which is:

ˆICER

⎛

⎜
⎝
1 + 12.44z21−α ± z1−α/2

√
365336.81 − 9744.36 × z21−α/2

1 − z21−0.0266α/2

⎞

⎟
⎠

where z1−α is the 100(1 − α/2) percentile of the standard
gaussian distribution. It means that it costs approximately
10082.68 per year to get an additional unit of effectiveness
using acupuncture for headache.
The plot of the estimated INB with his 90 percent

confidence limits versus lambda in presented on Fig. 3.

Fig. 3 Plot of INB versus λ for acupuncture for headaches in primary
care example. λ stands for the willingness-to-pay for a unit of
effectiveness
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Table 6 Information gained in the analysis process QALY in both arms, where an artificial censoring around 30 percents has been
created

Modelisation process Control arm Acupuncture arm

Kendall’s tau (τ̂K ) −0.1388 −0.1011

QALY distribution Tadj ∼ N (μ̂Tadj = 0.7133, σ̂Tadj = 0.1026) Tadj ∼ N (μ̂Tadj = 0.7304, σ̂Tadj = 0.1005)

Selected copula family Gaussian Gaussian

Copula parameter (θ̂) −0.2163 −0.1582

The vertical intercept shows the negative value of the
variability of costs and its confidence interval while the
horizontal intercept shows the estimated ICER. Since the
number of covariates was limited, it has not been pos-
sible to determine the existence of subgroups. Whether
available, the search for subgroups is possible using our
approach.

Impact of an artificially created censoring on the
acupuncture example
To challenge our methodology via a censored dataset, we
decided to create an artificial censoring on QALY variable

(since that costs are assumed to always be observed). This
censoring variable followed an exponential distribution
where λ = 0.30. Hence, the QALY variable has been
censored on approximately 30% of data. Using the same
methodology than for the acupuncture original dataset,
we obtained the information shown on Table 6. One notes
that we did not report the costs information on this table
since that it does not change from the information on
Table 5 (costs is not a censored variable).Using these infor-
mation, one obtains an estimated ICER such that ˆICER =
10879.89£/ unit of effectiveness, with a confidence inter-
val which is:

Fig. 4 Schema of the procedure to perform cost-effectiveness analysis using copulas as shown in this paper
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ˆICER

⎛

⎜
⎝
1 + 11.33z21−α ± z1−α/2

√
360533.67 − 7443.98 × z21−α/2

1 − z21−0.0206α/2

⎞

⎟
⎠.

Hence, with a certain level of censoring, the estimation
of ICER loses accuracy, and the confidence interval gets
larger. However, the estimated ICER in case of censoring
stay relatively close to the estimated ICER with original
data, and stays in his confidence interval.

Synthesis on the acupuncture example
Firstly, let take a look at the conclusions ofWonderling et al.
[36], who were the first to work on these original data.
Without totally detailing their methodology, they used a
linear regression adjusted on covariates of interest (age,
sex, diagnosis, severity of headache at baseline, number
of years of headache disorder, baseline SF-36 results and
geographical site) to evaluate themean difference for costs
and effectiveness (in terms of QALY). Hence, from a lin-
ear model, they have got an ˆICER equals to 9180 £with
a mean health gain for acupuncture treatment of 0.021
QALY.
Using the copula-based methodology presented in this

paper, we get, with these original data, a mean health
gain for acupuncture treatment of 0.026 QALY and when
we apply an exponentially distributed censoring around
30% on QALY variable, we get a mean health gain for
acupuncture treatment of 0.021 QALY. The major differ-
ence between both approaches is on the estimated ICER
value. However, we remark that the value of 9180 £keeps
in the confidence interval of the copula-based ICER.

Conclusion
One motivation for this work was generated by the lim-
itations of the at standard regression models applied
to the cost-effectiveness analysis where the dependence
structure between costs and utility along with time was
not taken into account. We provided a simple step-by-
step procedure to find INB and ICER and their confidence
intervals, even in case of censoring.
On Fig. 4, one sees the schematized method from the

observational data produced by both clinical arms to the
complete cost-effectiveness analysis. In a parallel way, one
accomplishes steps 1 and 2 which are the measure of
the dependence between QALY and cumulative costs in
each arm via Kendall’s tau and the determination of the
marginal distributions of both random variables. Then, at
step 3, one generates copulas from information gained in
steps 1 and 2 and, using the information criterion, one
selects the closest copula to the right joint distribution
function at step 4. Finally, at step 5, one determines the
INB and the ICER using joint cdf. In case of subgroups
cohorts analysis, one reiterate the procedure from step 1
to 5 to get two supplementary copulas and then, the joint

cdf of costs and QALY for the crossed-arms covariance
terms.
The methodology presented here can easily be imple-

mented on computational software. Indeed, on R, using
the packages copula [38] and CDVine [39], one can eas-
ily apply the whole process to a dataset, either censored or
not. On SAS, the use of a PROC COPULA will be enough
to fit a certain copula on a whole dataset.

Appendix
Proposition 1 The random variables Tadjji and ηji are

dependent.

Proof To simplify the notation, let assume the follow-
ing being for an individual i on a therapeutic j. Also, let
Tadj(ω) = ∫ T(ω)

0 Q(t)dt. Given the observed times E(ω) =
inf(η(ω),T(ω)). If η(ω) ≤ T(ω), one gets

Tadj(ω) =
∫ η(ω)

0
Q(t)dt +

∫ T(ω)

η(ω)

Q(t)dt

= ηadj(ω) +
∫ T(ω)

η(ω)

Q(t)dt

= ηadj(ω) + f (η(ω))

where f is a function of η(ω). Thus, Tadj(ω) is dependent
of η(ω).

Proposition 2 The random variables Tadjji and ηadjji are
independent.

Proof Let

Tadj(ω) =
∫ T(ω)

0
Q(t)dt

= H[T(ω)]

and

ηadj(ω) =
∫ η(ω)

0
Q(t)dt

= H[η(ω)]

whereH is an invertible Borel function (hencemonotone).
Since that T(ω) and η(ω) are independent, consequently
H[T(ω)] and H[η(ω)] are independent. Thus, Tadjji and
ηadjji are independent.

Proposition 3 The random variables Cji and ηji are
dependent.

Proof To simplify the notation, let assume the following
be for an individual i on a therapeutic arm j. One has:

C(ω) =
{ ∫ T(ω)

0 Ck(t)dt if T(ω) ≤ η(ω);
∫ η(ω)

0 Ck(t)dt if η(ω) ≤ T(ω).
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Then, with E(ω) = inf(η(ω),T(ω)),

Ck(E(ω)) = 1[T(ω)≤η(ω)]C(T(ω)) +1[η(ω)≤T(ω)]C(η(ω)).

Thus, assuming that T(ω) is independent from η(ω),
one sees that η(ω) and C(ω) are dependent.
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