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Flexibility of nanolayers and stacks: implications in
the nanostructuration of clays’

Tulio Honorio,* Laurent Brochard, Matthieu Vandamme, and Arthur Lebée

The basic structural units of adsorbing microporous materials such as clays and cementitious ma-
terials are flexible nanolayers. The flexibility of these layers is reported to play a crucial role in the
structuration of these materials, potentially affecting therefore the thermo-mechanical behavior of
such materials. Adsorbing fluids are structured in a discrete number of layers within the space
between the nanolayers in these materials. This discrete nature of adsorption states may lead
to micro-instabilities due to non-convex energy profiles. The transition between adsorption states
may involve the bending of layers. Bending contributes to metastability, which is reported to be
a potential source of the irreversibilities notably in clay behavior. In this paper, we determine the
bending modulus of clays nanolayers by the combination of plate theory with molecular simula-
tions of sodium montmorillonite. The case of clays is illustrative of the behavior of phyllosilicates
(i.e. sheet-silicates) which are ubiquitous minerals in Earth’s crust. We discuss the conditions in
which clay particles, i.e. a stack of nanolayers, can be viewed as thin plates. Estimations of the
bending modulus according to the hydration state and dimensions of clay particles are provided.
We analyze the implications of the flexibility of the layers in the behavior of a stack of layers as
well as in the transitions between adsorption states. The energy barrier associated with bending
of clay layers and the characteristic length of bending in such transitions are provided. Our results

contribute to a better understanding of the nanostructure of layered adsorbing materials.

1 Introduction

Nanolayers, i.e. solid layers with thickness on the order of a
nanometer and much larger in-plane dimensions, are present in
a variety of materials. Several studies have been devoted to
understanding or controlling the stability of nanolayers in var-
ious applications from acoustic cloaking and energy harvesting
to tissue engineeringl"®. Another class of materials that is often
also nanostructured in layers are geomaterials such as clays and
cement-based materials. The basic structural unit of clay miner-
als, one of the most abundant material in Earth’s crust, are layers
with in-plane dimensions of 10 nm to 20 um and a thickness
of circa 1 nm”. Calcium silicate hydrates is the major phase in
cement-based materials, which are the most man-made produced
material in volume®. These silicates are also structured in lay-
ers that may present a certain flexibility?. Other phyllosilicates
(or layered silicates) include micas and serpentines, which are all
ubiquitous in nature.

The case of clays can be considered as illustrative of the behav-
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ior of phyllosilicates. Locally, in solid clay samples, clay nanolay-
ers are in general structured in ordered (stacked) domains with
adsorbed fluid in-between the layers. The stacking process likely
stems from the attractive component of the electrostatic inter-
actions modulated by the hydration forces1!. These locally or-
dered domains are sometimes designated as crystallites or clays
platelets. Experimental results point out a polydisperse distribu-
tion of the sizes of clay platelets!
degree of disorder often appears, leading to translational and ori-
entational decorrelation1213 to the bending of clay layers. The
flexibility of clays is deemed to affect the pore sizes in clays4,
which are in turn associated with key engineering properties such
as permeability?, diffusivity!®1Z and failure behavior (ductile
or brittle)42, Furthermore, the possibility of a single clay layer
being part of a different particle (i.e. of another domain with dif-
ferent orientational or translational parameters) is reported to be
a cause of the structural continuity of larger structural units of
clays, such as clay aggregates1®. The effect of the flexibility of
the nanolayers constituting these materials on their microstruc-
turation remains unclear.

Indeed, in the literature, both experimental and simulation
studies indicate that single clay layers are quite flexibled2"23, Sato
et al. 12 analyzing atomic-force microscopy profiles of thin bei-
delite layers?® observed that a single clay layer deposited over
another single or double stacked clay layer bends over a transi-
tion length that is less that 50 nm long. Manevitch et al.2l ob-

. At larger scales, a certain



tained, by means of molecular simulations, a bending modulus of
1.25% 1077 N.m for montmorillonite, with an effective "mechan-
ical" thickness of the clay layer (6.78 A) similar to the distance
between the centers of the outermost sheets of atoms of a sin-
gle layer. Suter et al.2¥ performed large length scale molecular
simulations of clay layers and observed, analyzing the undulatory
modes at finite temperature of clay sheets, homogeneous bend-
ing in the clay sheet for in-plane lengths above 15 nm. The same
authors estimated a flattening transition for an in-plane length
above 140 nm. In this case, the resulting bending modulus would
be scale-dependent?? and the crumpling transition (at longer lay-
ers) is also computed. The same authors reported a bending
modulus of clay layers of 1.6x10~!7 N.m, valid on the range of
15 to 140 nm of in-plane lengths. Furthermore, the flexibility
of nanolayers is directly associated to the change, with respect
to the equilibrium state, in the angles between pairs of atomic
bonds. The consideration of this kind of three-body interaction is
important in the developement of enriched descriptions of mate-
rial constitutive behavior2.,

Apart from structural considerations, the flexibility of clay
nanolayers might play an important role in the transition occur-
ring between hydration states. Hydration transitions in adsorbing
layered materials are a type of "discrete phase transformation"2>
leading to snap-through instabilities. This type of phase transi-
tion is at the heart of various phenomena leading to non-linear
and inelastic behaviors at the macroscale regarding various ma-
terials including alloys, lithium-ion batteries and macromolecular
materials (e.g. DNA, spider silk, biopolymers, polysoaps and ar-
tificial elastomers)2927, Also, swelling clays and cement-based
materials are also recognized as materials presenting this kind of
snap-through transitions which result in hysteresis at meso- and
macro-scales“8%30,  Given the dimensions of single clay layers,
hydration transition presumably involves bending of the layers
in such a way that only a limited portion of the layer surmount
the energy barrier associated with such transition between two
hydration states. Indeed, the flexibility of nanolayers is reported
to be a key element in the snap-through behavior of nanolay-
ered materials with non-convex energy, or micro-instabilities®.
Water (as well as other adsorbing fluids) is structured in a dis-
crete number of layers within the space between clay solid layers.
The hydration states are often associated with a specific basal dis-
tance d. In the case of smectites, dehydrated (d = 9.7-10.2 A),
mono-hydrated (d = 11.6-12.9 A), bi-hydrated (d = 14.9-15.7
A) and tri-hydrated (d = 18-19 A) states as well as a "pore wa-
ter" state for large pore sizes, can be identified2132/ (each one of
these hydration states is often represented, respectively, by OW,
1W, 2W, 3W and «W). Therefore, the transition between hydra-
tion states is associated with volume changes that must be accom-
modated within the microstructure of swelling clays. The energy
barrier associated with transitions involving the whole extension
of the clay layer, i.e. not accounting for the flexibility of the lay-
ers, have been computed for swelling clays=%33-33 The obtained
values well exceed the thermal fluctuations energy, thus swelling
clays at this scale are prone to metastability. This metastability
is a likely source of irreversibility of the thermo-mechanical be-
havior of swelling clays. The role of the flexibility of the layers in
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the metastability of swelling clays is, to the best knowledge of the
authors, still to be elucidated. So is the influence of the hydration
state on the flexibility of a clay particle.

In this paper, we study the factors affecting the flexibility of clay
layers and particles, notably their dimensions and hydration state.
The goal is to provide tools adapted to study the effect of the flex-
ibility of phyllosilicates in general from the illustrative case of
clays. To do so, we first determine the bending modulus of clays
by combining plate theory with molecular simulations for sodium
montmorillonite (Na-Mmt) in a multiscale framework. The bend-
ing modulus is computed for both in-plane orthogonal directions.
We discuss the range of in-plane and out-of-plane dimensions in
which clay particles can be viewed as thin plates. Then, we an-
alyze the implications of the found values in the behavior of a
single clay layer as well as that of a clay particle. Loads repre-
senting stirring, flexure and buckling are examined. Next, we
investigate the role of the flexibility of clays in adsorption states
transitions. We provide estimations of the energy barriers associ-
ated with bending in swelling clays during hydration transitions.
The characteristic length in which bending takes place during a
transition is also estimated. Finally, we discuss the implications
of the layer and particle flexibility on the microtexture of clays.
Throughout the article, we provide the scaling laws governing
the behavior of clay single layers as well as stacked layers. Pre-
vious studiesT!2638/ demonstrate the importance of such kind of
result regarding the behavior of flexible layers or materials pre-
senting non-convex energy landscapes. In these cases, length and
time scales associated with phenomena of different physical ori-
gins may be superposed in some intervals. Therefore the identi-
fication of the associated scaling laws is valuable information in
order to understand and control the behaviour of such materials.
The results obtained here are easily transferable to the study of
other phyllosilicates as we demonstrate in the Section |3.4]

2 Models and methods

2.1 Flexibility of single clay layers

Clay layers can be treated as homogeneous sheets bending
smoothly provided the length of the layer is much larger than
the atomic granularity and much smaller than the persistence
length??, The atomic granularity corresponds to the typical size
of an atom (a few A), while the persistence length is the length for
which the sheet crumples under thermal agitation. At scales ap-
proaching the atomic granularity, the discrete (atomic) nature of
the clay layers must be accounted for. At scales approaching the
persistence length, the layers exhibit crumpling transition, i.e.,
the displacements orthogonal to the basal plane become uncor-
related under the effect of thermal agitation. Crumpling transi-
tion occurs when bending energy approaches thermal agitation
energy, that is for a length of the order of the ratio between the
bending modulus (introduced below) and k7. With the estimates
of bending moduli provided in this paper, this length widely ex-
ceed the maximum length of clay layers. Therefore crumpling
transition is not expected for clay layers.

We consider a relaxed clay layer, roughly symmetric with re-
spect to the mid-plane (the asymmetries due to random substi-
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Fig. 1 Periodic plate with period L subjected to punctual forces in a
direction x (the forces a constant along y direction)

tutions in octahedral and tetrahedral sheets within the solid lay-
ers are neglected), that undergoes no topological changes under
moderate loads. At first order, the mechanical behavior is lin-
ear elastic and the free energy associated with bending takes the
form:

%u; d%u,
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where the D;j;; are the bending moduli; and u; is the displace-
ment orthogonal to the plane of the plate. This expression cor-
responds to Kirchhoff-Love (or thin-) plate theory which neglects
the energy of shear in the x — z and y — z directions. The bending
modulus is a key property in the characterization of phyllosili-
cate nanotexture. In particular, as will be discussed in Section
the bending modulus is directly related to the propensity of
clay to bending in hydration transitions contributing, therefore,
to the metastabilities observed in clays. For a thin plate of thick-
ness & made of a homogeneous orthotropic material, the bending
moduli of the plate are related to the plane stress stiffness of the
material, for instance :

B E
Dixxx = = (2)
121 ViV

where E; is the Young’s modulus in the i direction and v;; is the
Poisson’s ratio in the i direction under a load in the j direction. In
thin plate theory, the bending moduli D;j; can be obtained from
the variations of energy during a bending test. In this work, to en-
sure periodic boundary conditions in the molecular simulations,
we perform the periodic bending test depicted in Figure 1] For
this particular test, the elastic free energy is a quadratic function
of the displacement 6 (see Supporting Information):

4 3
U=6 (Z) Dxxxx62 (3)

2.2 Flexibility of a clay particle: a simplified upscaling strat-
egy
The flexibility of a clay particle can be approximated by consid-
ering a laminated plate with clay solid layers, with thickness A,
intercalated by pore spaces filled by confined electrolyte. Con-
sider a stack of N layers with thickness hwot = N (hs + hy) = Nd,
where h,, = d — h; is the thickness of the interlayer pore and d is
the basal spacing. As detailed in[Honorio et al.]*Y, in response to a
given thermo-mechanical load, clay particles may mix hydration
states. This means that, at the scale of a particle an average (d),

corresponding to a unstable basal distance d at the layer scale,
may exist. However, in this paper, we consider that a single hy-
dration state prevails in a stack of layers.

If hwor > d, the scale of the clay layer and slit pore can be sep-
arated from the scale of the clay particle as sketched in Figure
The clay particle can be viewed as made of a homogeneous ma-
terial. Experimental evidence, according to different techniques
(small angle X-ray scattering, X-ray diffraction, transmission elec-
tron microscopy and scanning electron microscopy) on a variety
of smectites and illites, shows that the average number of solid
layers per particle is from few units up to few tens of layers=Z42l
In some cases, such as Na-fluorohectorite particles in aqueous so-
lutions, up to 100 solid layers in average can be observed4®. The
distribution of particles’ thicknesses can be modeled with a log-
normal distribution12:3714748| with the tail of the distribution ex-
tending up to a few tens of nanometers=Z, Assuming a few tens
of stacked layers, the separability of scales holds and the stack of
layers can be viewed as a homogeneous plate at the clay particle
scale.

If L >> hyot, then the assumption of thin plate theory still holds.
Regarding in-plane dimensions, clay layers are reported to be
equidimensional with sizes ranging from 50 nm up to 20 umZ42,
In such large range of particle sizes, the hypothesis of clay par-
ticles behaving as thin plates may not be necessarily verified. In
the following, we determine the range of sizes for which clay par-
ticles can be viewed as thin plates. Indeed, besides particle di-
mensions, the properties of the confined fluid play a crucial role.
Confinement modifies the property of the fluid and, in particu-
lar, the confined fluid can support moderate shears and exhibit a
non-zero shear modulus. Nonetheless, the elasticity of the con-
fined ﬂuid is orders of magnitudes smaller than that of the solid
layers: v v2 and G, = (1+v) > 2(1+v y = = Gy,. Although
the propertles of confined fluids are expected to be anisotropic
and heterogeneous because of the layered structure and the dis-
tribution of counterions, we assume here an isotropic behavior for
simplicity. Indeed any variation of properties at this level is negli-
gible with respect to the high contrast of properties between the
fluid and the solid. The same assumption is valid with respect to
the heterogeneities (due to isomorphic substitutions) within the
solid layer. A stack of clay layers alternates mineral layers and
confined water layers. Reasonable estimates of the effective elas-
tic moduli of a stack are obtained by assuming uniform strains
in the in-plane directions x and y (Voigt hypothesis) and uniform
stress in the orthogonal direction z (Reuss hypothesis). Removing
the negligible contributions (E,,,G,, < Es,G) one obtains:

hs hs
Ex ~ Ey ~ mES, ny = Vyx = Vq and ny ~ mGs (4)
hs + hy, hy+h
L ] E, and Gy, ~ Gy, ~ Sh+ "G, (5)
w w

Accordingly, the in-plane behavior is controlled by the solid
phase, while the orthogonal behavior is controlled by the con-
fined water. Since the solid and the confined fluid are as-
sumed isotropic, the resulting homogenized medium is trans-
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Fig. 2 Separation of scales in clay layer and particle levels: conditions under which the assumptions of homogeneous plate theory still holds.

versely isotropic with a high stiffness contrast: Ey,Gy, > E;,Gx.
In thin plate theory (Kirchhoff-Love), only the terms associated
with strong stiffness (Ey,G,y) are taken into account and con-
tribute to the bending modulus : Dy = Duyy — Dy _

WYy T Tve T v
Mo B _ ho b _E Iy s
12 1*(")0‘)2

3
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Let us consider a plate of length L and bending modulus
Dixx submitted to a longitudinal flexural load F (in out-of-plane
z—direction) distributed along in-plane y—axis. The scaling rela-
tion between force and displacement can be deduced by dimen-
sional analysis and takes the general form &6 %F . The multi-
plicative constant depends on the precise loading conditions. By

introducing the expression of Dy, the scaling laws can be ex-
pressed in function of the plate dimensions and mineral elastic
modulus only:

L3
apure bending mF (6)

Kirchhoff-Love’s theory neglects the shear orthogonal to the
plane (Gy; and G,;). Since the homogeneous medium is very
compliant in this direction, it is likely that the plate exhibits shear.
Reissner-Mindlin (or thick-plate) theory takes this shear into ac-
count in a first-order approximation by assuming constant shear
through the thickness of the plate. Two new force resultants ap-
pear, namely the shear resultants (Q, and Q,), conjugated to the
angles between the section and the normal to the mid-plane. The
elasticity associated with these new resultants are the moduli:
Byx = Byy o< hiotGy; = hiotGy;. Under a flexural load F, by dimen-
sional analysis, the displacement &, associated with shear only
follows the scaling:

s L F L
pure shear By TtotGr

(7

Thus, taking into account shear at the first order, the total dis-
placement due to the flexural load takes the form:

E; (hiot\’
0 o< Bpure bending 1+ K? I ®
w

where yyre bending 1S the displacement when shear is neglected

4| 115

(Eq. [6), and « is a dimensionless constant depending on inital
and boundary conditions of the problem. The scaling of Equation
shows that shear deformation is significant when the following
dimensionless quantity becomes non negligible:

_Es (ot :
Y= Gu (T) C))

In the limit case of a very thin plate, or of a fairly stiff water
layer, ¥y < 1; so shear can be neglected. In this regime, the be-
havior of the plate is given by Kirchhoff-Love’s theory (Eq. [6).
Conversely, in the limit case y>> 1, (i.e. thick plate and very soft
fluid layer) the behavior of the plate follows a different scaling
given assuming pure shear:

s L

ure shear
P htot GW

(10

In this case, the behavior of the plate is dictated by the shear
modulus of the confined fluid (G,,) and the displacement becomes
linear with the aspect ratio L/hw. As will be discussed in the
Results and Discussion section, in the case of clays, both situations
are possible.

The profiles of shear stresses 7., and 7,, across the thickness &
of a clay particle can be estimated from the static equilibrium of a
section. The shear stresses are maximum near the mid-plane and
the maximum scales as :

Tz < — an

where Q, is the shear resultant. For a flexural load F in a 1D

problem in x (translational symmetry in y), the shear resultant
3

scales as Q, « F which leads to Q, o< h“’iif‘s in pure bending regime

hiotGw
and to Qy oc Tof

in pure shear regime.

2.3 Molecular simulation of clays

Molecular simulations of clay layers can be used to evaluate the
elastic energy U in the bending test of Figure [I] for each in-plane
direction of the clay layers. We simulate a layer of sodium-
saturated montmorillonite (Na-Mmt). The atomic structure of
montmorillonite is based on the structure of pyrophyllite deter-



Kol
DA RNHA
A;i\ 7R
e \J\\ﬂ
ROV o 4
g SF LY
’(,\ ﬁ\f{\ 't:;ﬁ{\ }K\
BB L0
e\
Hedisditoied
RIAT eI R
T b

Direction b
0% e e
Ve Bk, &
51

x=-L/2 x=-L/4 x=L/4 x=L/2

Fig. 3 Snapshot of initial and deformed states (bottom) of clay solid
layers under flexion in both directions (top) of the basal plane according
to the unit vectors a and b of the reference clay supercell. Na ions are
depicted as purple spheres; O atoms are red, H white, Mg green, Si
beige and Al gray.

mined by X-ray diffraction®?. The reference montmorillonite su-
percell is obtained by replicating the unit cell of pyrophyllite in
each direction of the basal plane. Following |Carrier?Y, in each
layer, one of the 8 octahedral aluminum atoms is substituted by
a magnesium atom and one of the 32 tetrahedral silicon atoms
is substituted by an aluminum atom. The substitutions follow
Loewenstein rule®2. The total charge density of the layers is -
0.124 C.m?, which is compensated by the appropriate number of
sodium cations in order to ensure electroneutrality. The result-
ing structural formula is Nag[SigAl][Mg4Alyg]O160(OH)3,.nH,O.
This reference supercell has in-plane dimensions L, = 21.18 A and
L,=18.28 A and a thickness L, = 6.56 A.

Following the results of Ngouana W. and Kalinichev>®, we as-
sume that the specific locations of isomorphic substitutions has
little effects on the thermodynamic and structural properties of
the system (especially in the case of the studied Na-Mmt with
moderate structural charge and a monovalent counterion).

To apply plate theory, one has to consider a thin layer. We repli-
cate the reference supercell of Na-Mmt 10 times in the direction
of unit cell vector a and in the direction orthogonal to a (direction
b). Figure (top) displays both directions. Note that the in-plane
tilt, that is the tilt with respect to unit cell vectors a and b for
the reference cell is small (0.018 A) and therefore o = 90°. Thus,
the direction orthogonal to a is approximately parallel to the unit
cell vector b. The aspect ratio of the simulated layers for each di-

rection are, respectively, L. /L, = 0.039 (dir. a) and L;/L, = 0.036
(dir. b), which justifies the application of the thin plate theory.

The simulations are performed with LAMMPS software4 in the
canonical ensemble (NVT) at 0.1 K with a Nosé-Hoover thermo-
stat. The interactions between atoms are described by Lennard-
Jones and Coulombic interactions. The Lennard-Jones parame-
ters and the partial charges are obtained from the ClayFF force
field>>. Lennard-Jones parameters for cross interactions are de-
rived following Lorentz-Berthelot mixing rules. A cutoff distance
of 8.9 A is adopted for the short range dispersive interactions.
We employ the Ewald sum method for long range electrostatic in-
teractions with a relative precision of 10~ in forces. Simulations
are run with periodic boundary conditions, required by the Ewald
sum implementation. To reduce the influence of periodic images
on the behavior in the direction orthogonal to the plane of the
layer, 4 nm are added to the length of the simulation box in that
direction. The ratio of the total extended volume compared to
the volume of a simulation box (corresponding to a basal space
of 12 A (1W)) is 3.3, thus limiting the electrostatic interactions
between parallel periodic replicas to negligible values.

For each simulation point (in both in-plane directions), a dis-
placement §; = 6;_1 + A§;, with A§; = 0.02 A is imposed at a dis-
tance of one-quarter box from each edge of the simulation box.
For each increment A§;, a 5 ps-simulation is run and the potential
energy U; is sampled during the last 1 ps. The final configura-
tion of the previous simulation (§;_) is used as the initial con-
figuration. The elastic bending energy U; is determined by the
difference between the potential energy W, of the relaxed state
and the potential energy W; associated with the displacement 6;,
i.e. U; = Wy — W,. Figure [3| (bottom) shows relaxed and deformed
configurations for both a and b directions.

In order to account for the influence of the position of counteri-
ons (here, forming inner-sphere surface complexes), ten different
configurations are tested, each one with Na ions being randomly
located in the free space of the simulation box. The standard de-
viation in the elastic energy is provided with respect to these 10
simulations. We do not account for the interlayer water and its
likely screening effect. Manevitch and Rutledge2! also performed
molecular simulations of clay in vacuum. The values of bending
modulus and in-plane Young modulus obtained by these authors
are in fair agreement with the simulations explicitly accounting
for water and with larger clay layers2?. However, it is argued in
the literature?? that the presence of interlayer water molecules
and counterions may lead to stiffer clay layers.

3 Results

First, we present the estimations of the bending modulus of a sin-
gle mineral layer of clay. With these estimations, some scenarios
can be studied in order to get insights into the behavior of clay
particles. Here, we consider two cases: (1) the flexibility of a sin-
gle clay layer and of a clay particle (i.e. a stack of layers) and (2)
the characteristic length in which a transition of hydration state
occursin swelling clays.



3.1 Bending modulus of a single clay layer

Following Eq. 3} the bending moduli in the in-plane directions are
estimated from the elastic energies U, and Uy, (Figure left) ob-
tained by molecular simulations. The results are shown in Table
The values are in agreement with the bending moduli of clays
estimated by other authors: 1.6 x10~!7 N.m by Suter et al.|? and
1.25x107'7 N.m by Manevitch and Rutledge(?!. As also observed
by|Sato et al.1?, the clay layer is found to be more flexible in the
a direction than in the b direction. Both bending moduli have the
same order of magnitude, which is consistent with the observa-
tion that the flexibility of a clay layer, in both in-plane directions,
is related to the broadening of the distribution of Si-O-Si angles
within tetrahedral sheets!?, In our simulations, the positions of
Na counterions are responsible for a standard deviation of less
that 10% of the bending modulus.

The Young modulus of a single layer, in each in-plane direction,
can be obtained by adopting an effective thickness of the clay
layer A, in Equation [2| The in-plane Poisson ratios of clay layers
are reported to be approximately Vyp, & Via = 0.362%, The effective
thickness can be chosen according to two effective 'mechanical’
thicknesses of the solid layers:

e a) hy = 6.42 A, which corresponds, in this study, to the dis-
tance between the center of the out-most O atoms in each
surface of the solid layer.

e b) hy = 9.10 A, which corresponds to 6.42 A plus the twice
the van der Waals radius of O atoms (rgDW = 1.34 A)20,

Similar reasoning was used by Suter et al.2?, The Young modulus
found here for i; = 9.10 A is closer to the values found by these
authors considering the van der Waals radius of O atoms in the
effective thickness of the solid layers. With h; = 6.42 A, the bend-
ing modulus of the clay particles are roughly 3 times that of the
case with effective thickness i, = 9.10 A. For the Young moduli
of Table|[1} the positions of the Na counterions are responsible for
a standard deviation of less that 10%.

Figure [4 (right) displays the components C;;; (with i = a,b) of
the stiffness tensor of a clay particle computed with both values of
hs and compared to values reported in the literature®57, In our
estimations, we employed the range of basal spacings, mentioned
in the introduction of this paper, corresponding to the various hy-
dration states as reported by [Ferrage et al.[*L. The in-plane elastic
properties of clay particles computed considering h; = 9.10 A are
closer to the values reported in the literature. This effective "me-
chanical" thickness is retained in the following in the computation
of the bending moduli of clay particles.

With the estimates of bending moduli, we can discuss the flex-
ibility of a single clay layer. Apart from the crumpling transition
that we already discarded, a plate can exhibit two main types
of out-of-plane deformations, namely bending and buckling in-
stability. Which of the two mechanisms prevails depends on the
length of the plate and on the magnitude of loading. In thick
plate theory, the critical axial force triggering buckling takes the

72D
the pure bending regime and the second term to the pure shear
regime. Therefore, in pure bending regime, which is the case of

2 -1 .
form F, = ( L é) 28 where the first term corresponds to
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a single clay layer, there exists a critical length of the plate be-

low which bending always prevails over buckling: L. = 717\/? .

Considering force magnitudes corresponding to stirring in so-
lution (F ~ 10 kPa x hy), the critical length is about 5um and
buckling is not expected even for the longest layers. Consider-
ing force magnitudes corresponding to geomechanical conditions,
(F ~ 1 MPa x hy), the critical length is about 500 nm. Buckling
is theoretically possible for a layer free of constraints over this
length'“2, which is unlikely since clays are usually densely packed
in geomechanical conditions. Therefore bending is expected to be
the major type of flexural deformation of clay layers. This conclu-
sion remains true for stacks of layers with higher bending moduli.
Let us consider the bending deformation of a clay layer sub-
mitted to a distributed out-of-plane loading f. The mechanical
behavior of a single clay layer is well described by the pure bend-
ing regime and the out of plane displacement scales as follows:
fr

Molecular simulations of clay layers with reactive force fields
show that the solid layers can support curvatures with radius of
bending as low as 1 nm and stresses up to 800 MPa before frac-
ture. In the case of a single clay layer, for a range of pressures
corresponding to vigorous stirring (=~ 107 to 10° PaR?), the scal-
ing law is shown in Figure[5] The displacement § is of the
order of L for clay layers with length L exceeding 100 nm. There-
fore, a single (exfoliated) clay layer can exhibit a highly bent form
even due to stirring in solution.. Experimental observations sug-
gest that suspesions of Lit and Na™' exchanged smectites present
exfoliated layers1%43, and this occurs even if the multiple hydro-
dynamical interactions tend to put particles parallel to each other.

3.2 Bending of a stack of layers

As discussed in Section out-of-plane shear may or may not
be negligible for the bending of clay particles depending on the
interplay between the aspect ratio of the stack A/L and the con-
trast between the elasticity of the solid layer and that of the fluid
E,/G,. For the E;/G,, ratio, it is necessary to well define the
mechanical properties of the confined fluid phase, notably with
respect to its shear bearing capacity. The behavior of confined
fluids often differs from the behavior of bulk fluids. Confined wa-
ter is reported to present solid-like and glassy behaviors in pores
of circa 1 nm®Y, Due to the structuration of water in clay inter-
layer pores, a certain resistance to shear can emerge. Indeed,
the elastic tensor computed at the layer scale with molecular sim-
ulations®® identified a non-zero shear stiffness in out-plane di-
rections, which can be used to estimate the shear moduli of the
confined electrolyte (see Tab. [2). Considering these values, the
ratio E;/G,, varies from roughly 200 to 3000.

The dimensionless number y (Eq. [0) determines whether the
shear of interlayer water dictates the behavior (y>> 1 - pure shear
regime) or whether shear can be neglected (y < 1 - pure bending
regime). Figure[6] (left) displays a chart of in-plane length L and
number of stacks N of a clay particle for which y=1, i.e. hwt/L =
/Gy /E; for the various hydration states OW, 1W, 2W and 3W.
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Fig. 4 At left, elastic energy U, and U, obtained from molecular simulations. The dashed curves are the results of each one of the 10 simulations
with different initial positions of Na counterions; the solid curves are the average for each direction. At right, components C;; (with i = a,b) of stiffness
tensor of clay layers computed by molecular simulations. The curves from this work (purple lines for i, = 9.10 A and blue lines for i, = 6.42 A) are
obtained by averaging the estimates corresponding to the lower and upper values of basal spacing associated with the hydration states of smectites:
OW (d=9.7—102 A), TW (d = 11.6— 12.9 A), 2W (d = 14.9—15.7 A) and 3W (4 = 18 — 19 A)31 Dashed lines correspond to direction a and full lines, to

direction b.

Table 1 Bending and Young moduli in the a and b directions for a single Na-Mmt layer. The Young moduli are obtained from Eq. Two effective
thicknesses h; are considered: a) the distance between the centers of the outermost oxygen atoms of both surface of a single layer after relaxation (A
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= 6.42 A) and b) this same distance plus twice the van der Waals radius2? of oxygen atoms (i, = 9.10 A)

Direction Dy (x107'N.m)  E,(hy = 6.42A) GPa  Es(hy = 9.10 A) GPa
a 1.811+0.147 714.8+58.0 251.0+20.4
b 2.023+0.140 798.5+55.2 280.4+19.4

Table 2 Shear modulii computed at the layer scale’® and estimated for the electrolyte (index w) confined in clay nanopores according to Eq. 5, adopting

hs=9.10 A and the experimental basal spacings®.

Direction ow 1w 2W 3W
d=97A d=11.6A d=149A d=18.0A

a Gaz (GPa) 10.6 1.7 1.6 0.2

Gazw (GPa) 0.65 0.36 0.62 0.09

b G, (GPa) 18.5 1.9 0.3 0.9

Ghe.w (GP2) T.14 0.40 0.11 0.44
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Fig. 5 Scaling of the out-of-plane displacement for a single layer submit-
ted to distributed forces of amplitude f (Eq. [12). The line § = L displays
the limit of highly deformed configuration, for which the theory assuming
small deformation is no more valid. We consider the bending modulus in
direction b (Tab. .

The range of values considered in this chart is representative of
the observed length and number of clay layers. According to this
chart, clay particles can present either deformation regimes: pure
bending above the line, and pure shear below.

Figure [6] (center and right) shows the scalings of out-of-plane
displacement & (Eqs. [6]and[10). Figure[6] (center) shows the scal-
ing in function of the length L for two number of stacks N, and
Figure [f] (right) shows the scaling in function of the number of
stacks N for two in-plane lengths L. Both regimes, related to pure
bending and pure shear approximations, are relevant for the di-
mensions of clay particles considered. Particles with few long lay-
ers behave in pure bending regime (scaling in L?> and N—3), and
particles with many shorter layers behave according to pure shear
regime (scaling in L and N~1). The transitions between these two
regimes depend on the dimensions of the clay particles and on the
hydration state. To get the measure of the quantity & x (Es/F) dis-
played in Figure [6] one can consider the case of geomechanical
applications for which F/L is of the order of 1MPa: in that case,
Es/F ~10""'m~! for L ~ 1um and & x (E;/F) ~ 10'1§ in units of
m. Therefore, values of § x (E;/F) exceeding 10° correspond to
very significant deformations (6 ~ L) under geomechanical load-
ing. According to Figure[6] such a level of deformation is possible
only in pure bending regime for stacks less than 20 layers thick and
more than 0.5 um long.

Let us define an effective bending stiffness of a clay particle as
the ratio between the loading force and the associated displace-
ment : F/S. In pure bending regime, the effective stiffness is
F/8 o< D/L3, while in the pure shear regime it takes the form
F /8 o« B/L. Since the moduli D and B strongly depends on the
total thickness h;,; = Nd, one expects a dramatic increase of the
effective stiffness with N. The effect of the basal spacing d is more
complex to anticipate since the material elasticity depends on the
hydration state. The scaling of the effective stiffness in the two
regimes can be rewritten :
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FL3 N3d?

bendi ime : —— o< —— 13
pure bending regime Do 2 (13)
FL* 1 Nd

pure shear regime :S—D0 o v

14)
where Dy = i’—;Eé is the bending moduli of a single solid layer and

2
Y = 1‘—2 <%> g—: We display the scaling of the effective bending

stiffness in Figure [7|for L = 100 and 500 nm and N = 10 and 50.
Only the basal spacings corresponding to stable hydration states,
mentioned in the introduction of this paper as reported by|Ferrage
et al.l*L] are considered. In all cases, including both pure bending
and pure shear regimes, a stack of layers is less flexible than a
single clay layer ((FL3)/(8Dg) = 1). The particle with N = 10 and
L =500 nm is in pure bending regime for OW to 2W hydration
states. In pure bending regime, the effective bending stiffness
increases with the basal spacing or number of water layers in a
pore. Increasing the number of solid layers leads to a pure shear
response associated with hydration states with higher water con-
tent. In pure shear regime, the scaling of effective bending with
the basal spacing is complex since the hydration state affects the
magnitude of the shear modulus G,,. Since the shear modulus G,,
of confined water reported in>!/ does not evolve monotonously
with the hydration state (Tab. [2)), in pure shear regime the result-
ing effective bending stiffness is not monotonous with respect to
the hydration state. Note however that this observation is ques-
tionable since the estimation of G,, is not accurate, and more pre-
cise estimates could well decrease monotonously with the hydra-
tion state. According to Figure[7] the effective bending stiffness of a
clay particle appears very sensitive to the size L and number of lay-
ers N but less sensitive to basal spacing d and changes in hydration
state.

In the case of a stack of layers, the energy of bending and dis-
placement scales with N3 (pure bending) or N (pure shear) de-
pending on the particle dimensions and hydration state. We can
estimate that even for large clay particles (e.g. L = 1000 nm) un-
der vigorous stirring, for a stack of few tens of clay solid layers, the
maximum ¢ is in the order of a nm or less. So, clay particles exhibit
very little bending in disperse solutions, in contrast with the case of
single exfoliated layers.

Shear stresses induced by bending within clay layers and par-
ticles can be estimated using Eq. These shear stresses may
induce losses in translational correlation (i.e. the solid layers
keep the same orientation but move in an in-plane direction) be-
tween the layers or delamination of clay particles according to
their in-plane dimensions, number of stacks and hydration state.
Carrier?! simulated shear of clay layers and observed that the
viscous behavior of a stack of layers corresponds to a yield stress
fluid: for stresses below a yield stress 7., no irreversible defor-
mation is observed; whilst, for stresses above 7., the shear rate
is proportional to the difference between the shear stress and 7.
The values of 7. estimated by (Carrier}>!' for Na-Mmt are given in
Table [3] These values indicate the maximum shear stresses that
can be supported by the interlayer water in a clay particle before
irreversible deformations of the stacks take place.
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Fig. 7 Dimensionless effective bending stiffness as a function of the
basal spacing d for L = 100 and 500 nm and N = 10 and 50 solid layers.
The range of basal spacings associated with OW, 1W, 2W and 3W hy-
dration states are shown!. Pure bending regime is identified by the full
lines, and pure shear regime by the dashed lines. We consider the values
of Gy, and E; provided in Table [2|and|[f] (direction @ with i, =9.10 A).

Table 3 Yield stress of the confined fluid under shear in Na-Mmt=!

Hydration state 1w 2W 3w
7. (MPa) 185+1.2 1.0+£1.1 05=£0.3

When a clay particle is submitted to distributed forces of mag-
nitude f, the shear resultant is of the order of Q « fL and does
not depend on the regime of deformation (pure bending or pure
shear). Therefore the shear stress within the clay particle (Eq.
scales as :

fL
T g (15)

Note that, under displacement control, the scaling differs be-
tween pure bending and pure shear regimes. However, displace-
ment control is irrelevant when comparing particles of different
dimensions because of the huge difference in bending stiffness.
Accordingly, we limit ourselves to loading in force. We display
the scaling of Equation [15]in Figure [8| for moderate distributed
forces (f = 10 kPa) corresponding to stirring of a suspension and
for strong distributed forces (f = 1 MPa) corresponding to geome-
chanical conditions. We considered two particle lengths L = 100
nm and L = 1000 nm and all the hydration states (OW, 1W, 2W
and 3W). We also display in Figure|[§]the yield stresses of the con-
fined fluid (Tab. [3). The shear stress decreases significantly with
the hydration state and with the number of layers. The shear re-
sulting from stirring (f = 10 kPa) may exceed the yield stresses of
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Fig. 8 Scaling of the shear stresses 7 (Eq. as a function of the
number of solid layers N, for two lengths (L = 100 nm and L = 1000 nm)
and two loadings (f = 10 kPa nm and f =1 MPa). The yield stresses
(Tab. [3) of the different hydration states are displayed.

2W and 3W clay particles with L = 1000 nm and N < 20 solid lay-
ers; in this case, stirring seems to be enough to induce irreversible
deformations in particles. The shear resulting from a geomachan-
ical load stirring (f = 1 MPa) may exceed the yield stresses of 2W
and 3W for particles with clay particles with N < 70 solid layers
L > 100 nm. In the specific case of long layers (L = 1000 nm)
and strong distributed forces, irreverssible deformations induc-
ing translational decorrelation of clay particles also occur for 1W
state and N < 50 solid layers.

3.3 Bending during transitions between hydration states
An interesting question is the role of clay flexibility in the tran-
sitions between hydration states in swelling clays. An energy
barrier of few kT per nm? separates stable hydration states in
swelling clays=%33. Since the size of clay layers ranges from tens
of nanometers up to tens of micrometers, transition presumably
involves bending of the layers in such a way that only small por-
tions of the layers overcome that energy barrier. To investigate
this question, one has to estimate how the bending energy com-
pares to the energy barrier. Metastability is claimed to play an
important role in the irreversibilities observed in swelling clays’
thermo-mechanical behavior®3/61764, Since bending controls the
overall energy barrier between hydration states, it may play a ma-
jor role in the occurrence of metastability during the hydration
transitions.

Let us consider the hydration transition from (n+ 1)W to nW
state sketched in Figure [9] (a). We assume symmetry with re-
spect to the dashed horizontal and vertical lines so that we can
limit our analysis to the study of a single half-layer. The up-
per surface of the layer is subjected to an uniformly distributed
imposed pressure P, While the lower surface is subjected
to a non-uniformly distributed pressure P(8) that depends on
the half basal spacing 6 = d/2. Static equilibrium requires:
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P.ontrol = %fOL P (6 (x))dx. To estimate the minimal energy bar-
rier needed to accomplish the transition (n+ 1)W to nW, we make
the half basal spacing 6 (0) evolves from the value correspond-
ing to hydration state (n+ 1)W to the value corresponding to nW.
The system adopts the configuration minimizing the thermody-
namic potential: A = ® — u,N,, + fOL Prontrol 6 (x) dx, where @ is
the Helmholtz free energy and p,, is the chemical potential of wa-
ter. At fixed temperature and water chemical potential, there are
two contributions to this energy: that of the hydration and that
of the bending of the clay layer. These two contributions are:

L D L(d*§\’
A= Ahyd + Apena = / A«PI.(WM (6 (x)dx+—= / - dx (16)
0 2 Jo \dx

where Ap 303335

o (O 18 TEferred to as the swelling free energy
and can be obtained by integration of the confining pressure
isotherms over the basal spacing. Molecular simulation can be
used to compute these pressure isotherms. A transition of hy-
dration state involves an energy barrier Adp of a few kT per

nm? when the control pressure is the pressure of stable transition
(AP, e <6(n +1)W> = APy (0nw))- AS Peopiror increases, the energy

barrier decreases (see=2).

Without going as far as solving this mechanical problem in de-
tail, one can already provide some estimations by comparing the
magnitudes of the two contributions (namely, hydration transi-
tion and bending). Let us assume that the hydration transition oc-
curs over a length /4,5 (depicted in Figure E] (b)). The hydration
energy barrier is of the order AAp,,, ., - lirans, Whereas the bending
Ad

trans

of basal spacing between the two hydration states. Minimization
of the total energy A requires dA/dlyqns = 0, which leads to the
following estimates of the length of hydration transition :

as2p\"*
ltrans ~ W a7

energy is of the order % . ( ) “lirans, Where Ad is the difference

ontrol

In the limit /4,5 > L, the bending energy dominates the me-
chanical behavior. The layer is very rigid and very little bend-
ing is observed. Therefore, the energy barrier per unit length in
the orthogonal y in-plane direction, associated with the hydra-
tion transition has the order of magnitude of LAAp,, ,. In con-
trast, in the limit /;,4,s < L, the layer is very flexible and deforms
within a short distance compared to the length of the clay layer.
The resulting energy barrier has, then, the order of magnitude of

LiransAAp,,,,,- Accordingly, one can determine which of the two
regimes applies by estimating the dimensionless quantity:
1/4
lrans _ [ (88)*D (18)
L L4AA’PLm1rmI

The energy barriers AAp,,,, for OW/1W and 1W/2W transi-
tions are of the order of a few kT/nm?. The authors computed
in a previous work®? AAp  for Na-Mmt according to the tem-
perature and adsorption state transitions (Tab. [4). These values
are in agreement with the results of Tambach et al.?3. With the

computed bending modulus (and considering that clay layers are
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Table 4 Energy barriers for the hydration transitions in Na-Mmt for a fluid
bulk pressure of 10 MPa at the confining pressure corresponding to the
stable hydration transitions2,

Temperature OW/1W 1W/2W
300 K 7.25 kT/nm? 1.96 kT/nm*
400 K 5.52 kT/nm? 1.47 KT/nm?
500 K 4.02 kT/nm? 0.61 kT/nm?
rate -0.0152 kT/nm?*/K  -0.0068 kT/nm?*/K

approximately equidimentional in plan®?), I,,,;/L < 1 for Na-
Mmt as soon as L exceeds a few tens of nanometers. So, during
the adsorption transitions (Figure E] (b)), montmorillonite layers
are quite flexible and deform within a bending length /s ~ Inm
small compared to their in-plane dimensions L. Hence, the length
over which the layers bend during a hydration transition is expected
to be in the order of a few nanometers. This result is in agree-
ment with experimental observations (Figure E] (c¢) and (d)) of
superposed thin beidelite layers1?24 which bend smoothly from
the single layer to double or triple layers in transition regions that
are less that 50 nm long.

3.4 Discussion on the flexibility and microtexture of clays
The results of the last sections can be used to analyze the flexibil-
ity of other layered silicates. Table [5| gathers the in-plane elastic
coefficients of the stiffness tensor of some clay minerals. We also
compute the bending modulus of these minerals with Eq. |2} ac-
counting for a effective thickness /, corresponding to the reported
basal spacing (note that the h, of 9.10 A is close to the basal spac-
ing in OW state). The values of Young moduli are quite close to the
ones associated with Na-Mmt (see Figure. The estimated bend-
ing moduli have the same order of magnitude. Thus, single layers
are expected to present a similar flexural behavior. Therefore, as
for Na-Mmt, in a fully exfoliated regime, bent configurations of
the single layers of different clay minerals could be achieved by
solution stirring.

The behavior of a stack of layers is expected to be much more
complex. Actually, the face-to-face cohesion between clay layers
depends on the charge density of the individual layers and the
nature (notably, valence and size) of counterions. Furthermore,
the concentration regime (i.e. dilute or concentrate state) is also
a factor to take into account. Figure [L0]shows two extreme types
of microtextures of claysi92: stacked or "brick-like" in which
the layers are locally organized in assemblies of thick and rigid
crystallites (large coherence length) with large porosity and open
texture; and entangled or "sheet-like" with longer flexible layers
assembled (low coherence length) with small total porosity and
small open porosity (with lenticular pores). These configurations
correspond to a concentrated regime. In a dilute regime, layers
of lithium (Li*)-saturated smectites are reported to be isolated"%;
SAXS experiments suggest that exfoliated layers can also be ob-
served in suspensions of Nat exchanged smectites?3. Stacking
of layers shows up from Na't-saturated smectites and increases
following the sequence in dilute regime: Nat < KT < Mg+ <
Ca®*; with calcium saturated smectite reaching 7 layersC. In sus-
pensions, most of the smectites present themselves in the form of
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Fig. 10 Representation of the "extreme" microtexture of clays: (top)
stacked or "brick-like" and (bottom) entangled or "sheet-like" types®.

particles instead of single layers, even in very dilute regimes,

Once in the concentrated regime (Fig. [L0], the high stiffness of
stacks of clay layers makes it unlikely to observe transformations
of microstructures from the ’brick-like’ to the ’entangled’ configu-
ration even under geomechanical loadings. Elastic deformations
of stacks with as little as 10 layers are clearly too small to ac-
comodate the entangled state. Plastic deformation could lead to
’entangled’ configurations but only if the hydration state is 2W
or higher. At low hydration, the shear within the stacks is not ex-
pected to exceed the yield limit. Accordingly, unless for highly hy-
drated clays, the microstructure is expected to be a consequence
of the early age deposition and depend mostly on the degree of
stacking on the dilute regime. For highly hydrated clays, plasticity
can lead to significant curvature of the microstructure but is not
expected to change the degree of stacking. Therefore, mechan-
ical consolidation is of limited impact on the microstucture and
the early age appears critical in the emergence of ’brick-like’ or
’entangled’ microstructure. Note that the nature of counterions
also affects the yield stress of clay particles. The yield stress of
Ca-Mmt, for instance, is reported to be higher than Na-Mmt’s in
1W state and lower than Na-Mmt’s in 2W and 3W statesL. In 2W
and 3W cases, the yield stress of Ca-Mmt (2.2 and 2.9 MPa, re-
spectively) is more than twice that of Na-Mmt. Therefore, besides
the hydration state, the prevalence of plasticity can well depend
on the nature of the swelling clay.

The type of microtexture has important implications in the be-
havior of clays. The topology of the pores is affected by the flex-
ibility of the layers®?. The consequences in the effective trans-
fer and mechanical properties of clays are clear. For example,



Table 5 In-plane components of stiffness tensor Caaaa @and Cyppp Of layered silicates. Daaaa @nd Dy, are computed with Eqg. [2| with an effective

thickness #;.

Direction Caaaa Chbbb hs Daaaa Dybbb
[GPa] [GPa] [A] [10-'7 N.m] [107!7 N.m]
Na-Mmt (this work) 247.12 &+ 20.10 276.01 + 19.09 9.10 2.02+0.14 1.87 £0.15
mical0>00 147-222 149-178 9.96 1.21-1.82 1.22-1.46
pyrophyllitel©> 178.4 166.8 9.11 1.12 1.05
dickitel®Z 181.1-184.2 178.6-178.8 7.16-7.27  0.554-0.590 0.547-0.573
kaolinite!0Z68 164.1-178.5 175.5-200.9 7.182-7.587 0.507-0.650  0.542-0.731
nacrite/®? 131.8-147.6 157.9-160.8 7.29-7.44  0.425-0.476  0.509-0.552

highly flexible material with entangled microtexture is reported
to present significant resistance to rupture and texture alteration
(maybe resulting from irreversible deformations) near rupture,
while stacked microtexture presents weaker mechanical proper-
ties, due to larger voids inducing stress concentrations, with brit-
tle failurel®. Regarding the permeability, entangled structures
are deemed to be a few orders of magnitude less permeable than
stacked structures due to the larger accessible pores in the lat-
ter®. Similarly, the diffusivity of water and counterions in clays
are also expected to be affected by nanotexture 1017,

The flexibility of clay layers and particles is, therefore, a key
aspect in the definition of the microtexture of clays. Studies of
clays at the mesoscale often adopt the hypothesis of rigid parti-
cles127071 This hypothesis seems reasonable for clays saturated
with weakly hydrated ions with high charge and for small parti-
cles. Particles with small in-plane dimensions (L in both x and
y directions) are stiffer and larger shear stresses are required to
deform them irreversibly. Also, thicker particles, i.e. with more
layers in a stack and with higher adsorption state (so, larger pore
size), tends to be stiffer albeit more susceptible to the loss of
translational correlation due to shear stresses.

4 Conclusions

In this paper we computed the bending modulus of Na-Mmt layers
and discussed the implications of the flexibility of clay layers in
the structuration of clays. Our analysis investigates the case of a
single layer and that of a clay particle (stack of hydrated layers).
Our main conclusions are:

e The estimation of the bending modulus of Na-Mmt layer by
the combination of plate theory with molecular simulations
were in agreement with other values reported in the liter-
ature?02l notably large scale simulations with explicit sol-
vent??, Also, as reported!? our estimations showed that a
clay layer is more flexible in the direction of unit cell a than
in the direction of unit cell b. Estimations of the in-plane
Young modulus of clay layers were provided according to an
effective thickness corresponding roughly to the thickness of
the solid layer plus twice the van der Waals radius of surface
oxygen atoms.

e Two regimes of deformation of clay particles are possible
depending on the length and number of clay layers: pure
bending regime (thin plate theory) for long particles with
few layers, or pure shear (derived from thick plate theory)
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for short particles with many layers. Shearing can become
dominant because of the high contrast of stiffness between
the solid layers and the pore fluid. The dimensionless quan-

w

2
tity y = % (hi—“) defines the separation between the two
regimes : Y < 1 for pure bending and y>> 1 for pure shear.

In the analysis of the flexibility of single clay layers and
stack of layers (i.e. a clay particle), we showed that, even
under stirring, a single clay layer as well as long and thin
clay particles may assume a bent configuration. The bending
of clay layers has implications in the structuration of these
layers and may affect the number of solid layers in a clay
particle with translational correlation. Clay particles, as ex-
pected, are much stiffer than a single layer, but can still ex-
hibit significant deformation for moderate number of layers
(N < 20). This is an important information for mesoscale
modeling of clays, which in general resort to infinitely rigid
particles to represent clay platelets.

By treating a clay particle as a laminate, in which confined
water acts as a soft phase, we showed that for stacks with
less than few tens of solid layers, under force control, the
shear stress developed in the interlayer pores may exceed
the yield stress associated with the inter-layer water. In this
case, the shear stresses decrease linearly with the number
of solid layers and increase linearly with the applied pres-
sure. Long and thin particles subjected to pressures on the
order of the MPa, as the ones found in geomechanics, de-
velop shear stresses on the confined fluid layer that exceed
even the yield stresses associated with 1W state. This result
highlights the role of stacking in enhancing the shear resis-
tance at the particle scale.

The adsorption state is a key aspect of the flexibility of
swelling clay particles. The variations of few Angstroms in
the stable basal spacings of OW, 1W 2W and 3W states af-
fect the flexibility of the particle. Moreover, the adsorption
state influences the yield stress of clays particles. Thus, to a
large extent, the stability of a particle under flexural loads
depends on the adsorption state.

The analysis of hydration states transitions points out to

the evaluation of the length over which transitions occurs
(A8)’D
Alp

control

occur. In the case of swelling clays, 4, is of the order of

Lirans ~ , which indicates whether bending is likely to



a few nm, that is much smaller than the length of the clay
layers. Therefore, hydration transitions in swelling clays in-
volve bending of the solid layers over a length of few nm,
which is consistent with experimental observations12,

e The bending modulus of single layers of other types of phyl-
losilicates are similar to the one of Na-Mmt considered here.
The face-to-face cohesion of these layers might, however, be
very different according to the type of clays and the nature
of ions in solution. The variety of the microtexture of clays
layers will depend therefore on these aspects. The hypothe-
sis of rigid clay particles might adequately represent the be-
havior of stacked or brick-like microtextures. The flexibility
of the layers plays, though, an important role in entangled
microtextures.

A perspective of this work is the development of mesoscale
models of clays accounting for the flexibility and hydration tran-
sitions in clay particles by means, for instance, of coarse-grained
simulations or generalized medium approaches. In particular, the
analysis of the behavior of clay samples with evolving lateral di-
mensions can be assessed taking into account this couplings with
possible confrontation with experimental research. Our results
can also contribute in the understanding of how the flexibility
of clay layers and particles affects phase transitions, associated
with gelation or liquid-crystalline formation for example, in the
mesoscaleZ2,
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