
HAL Id: hal-01896605
https://hal.science/hal-01896605

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Systems with Detection and Reconfiguration
Capabilities: A Formal Approach

Iulia Dragomir, Simon Iosti, Marius Bozga, Saddek Bensalem

To cite this version:
Iulia Dragomir, Simon Iosti, Marius Bozga, Saddek Bensalem. Designing Systems with Detection
and Reconfiguration Capabilities: A Formal Approach. 8th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISOLA 2018), Oct 2018, Limassol,
Cyprus. �hal-01896605�

https://hal.science/hal-01896605
https://hal.archives-ouvertes.fr

Designing Systems with Detection and
Reconfiguration Capabilities: A Formal

Approach?

Iulia Dragomir, Simon Iosti, Marius Bozga, and Saddek Bensalem

Univ. Grenoble Alpes, CNRS, Grenoble INP??,VERIMAG, 38000 Grenoble, France

Abstract. The design of functionally correct autonomous systems which
operate in an unknown environment and that satisfy reliability, availabil-
ity, maintainability, and safety (RAMS) requirements is a challenge. In
this paper we focus on the detection and reconfiguration features these
systems must provide. Indeed, evolving in an unknown environment can
invalidate the assumptions made during the design phase. In particular,
different hardware components might fail and provide erroneous inputs
to the system, which will pass in a degraded mode where the expected
RAMS do not hold anymore. Such faults need to be detected as early
as possible and reconfiguration strategies must be applied to bring the
system back into a nominal mode where the RAMS are satisfied. We pro-
pose an automated design process based on formal methods to develop
Fault Detection, Isolation and Recovery (FDIR) components targeting
partially observable timed systems.We describe how to automatically
synthesize runtime monitors, design reconfiguration strategies, and ob-
tain full-fledged FDIR components. We illustrate the approach on a case
study inspired from autonomous robotics applications.

1 Introduction

Mission- and safety-critical systems must satisfy a plethora of important Reli-
ability, Availability, Maintainability and Safety (RAMS) properties, which is a
hard problem to establish at design time. The reason is two-fold: (i) the built
systems are very complex and verification techniques do not always scale on real-
life applications, and (ii) such systems often work in unknown environments that
may not satisfy at execution time the assumptions made at design time. This
is the case of autonomous systems that execute in an environment subject to
faults and failures. For instance, a hardware component might overheat, which
leads the entire system in a degraded mode and where the above mentioned
requirements do not hold anymore.

A desired functionality of safety-critical systems in general, and autonomous
systems in particular, is to detect and handle systematically and dynamically

? This work has been supported by the HORIZON 2020 PROGRAMME Strategic
Research Cluster (SRC) (awards #730080 and #730086).

?? Institute of Engineering Univ. Grenoble Alpes

the faults that have occurred. The handling of such faults could be either sim-
ple by giving control of the system to a human user or complex by applying
predefined strategies for recovery. Autonomous systems usually fall in the latter
case, where they should implement without any external intervention complex
recovery strategies that aim to bring the system back into a safe state where
RAMS hold again. This involved functionality is implemented by Fault Detec-
tion, Isolation and Recovery (FDIR) components, which extend such systems
with adaptive and collaborative features. On one hand, the adaptive aspect is
inherent to the definition of FDIR components that steer the system operation
depending on environment and specific operating conditions. On the other hand,
the collaborative aspect arises as various subsystems and FDIR are generally in-
teracting together for achieving a common goal. At system level, such subsystems
are components while the goals are maintaining individual RAMS properties. At
mission level, goals can be more involved and concern high-level objectives.

An FDIR component runs in parallel with the system, and (i) detects faults
as early as possible with respect to their occurrence and (ii) executes a prede-
fined recovery strategy with respect to the detected fault. The extended system
can contain one or multiple FDIR components, which can have a monolithic or
hierarchical architecture, can be centralized or distributed, or any combination.
The process of designing/implementing FDIR components is ad-hoc, based on
one’s full understanding of the system under design, the component to be pro-
duced and the system’s (possibly textual) specification. This implies considering
a large number of faults and failures, their interactions and effects on the system,
which raises correctness and completeness questions.

We answer such problems by proposing a methodology based on formal meth-
ods to build FDIR components. The aim is to automatically derive correct FDIR
components from the design of the system under study with faults, the RAMS
requirements it must satisfy and the recovery strategies to be applied in case
of faults. We describe how to automatically synthesize runtime monitors for
fault detection, design the recovery strategies for controller synthesis and obtain
full-fledged FDIR components. Moreover, we tackle the above problems in the
context of timed systems and partial observability, where faults cannot be di-
rectly detected by the system and not all of the system’s actions can be observed.
We illustrate the approach and its feasibility on an excerpt of an industrial au-
tonomous robotics application.

Paper structure. We formalize timed systems with partial observability (for the
FDIR context) in Section 2. In Section 3 we describe the methodology for de-
signing FDIR components as a subprocess of the general system design. The
algorithms for diagnoser synthesis and controller implementation for our defi-
nition of timed systems are given and illustrated in Section 4 and Section 5,
respectively. We discuss the work related to the methodology as well as the
diagnoser and controller synthesis problems in Section 6 before concluding.

2 Timed systems

We consider a system modeled as a network of timed automata (TA) [2]. Before
formally defining timed automata, we introduce some notations.

Let X be a finite set of variables called clocks. A clock valuation is a mapping
v : X → R+. We write 0 for the valuation of all clocks of X to 0. Given δ ∈ R+,
(v+δ)(x) = v(x)+δ. For r ⊆ X, v[r] is the reset of clocks in r, i.e., the valuation
defined by v[r](x) = v(x) if x 6∈ r and v[r](x) = 0 otherwise. Let Φ(X) be the
set of convex constraints on X given by the grammar ϕ ::= true|x < c|x ≤ c|x =
c|x > c|x ≥ c|ϕ ∧ ϕ, with c ∈ Q+. Given a constraint g ∈ Φ(X) and a valuation
v, we write v |= g if g is satisfied by the valuation v.

Definition 1 (Timed automaton). A timed automaton (TA) A is a tuple
(L, l0, X, Inv , Σ,E) where L is a finite set of locations, l0 ∈ L is the initial
location, X is a finite set of clocks, Inv : L → Φ(X) is a function associating
to each location some clock constraint, Σ = Σc

o ⊕ Σu
o ⊕ Σs

u ⊕ Σf
u is a finite set

of actions separated into observable/unobservable (denoted with subscript) and
controllable/uncontrollable (denoted with superscript) as explained below, and
E ⊆ L× Φ(X)×Σ × 2X × L is the transition relation.

A timed automaton is a finite automaton enriched with a set of real-valued
clocks that allow to measure time delays. In this computational model, time
passes at the same rate for all clocks, i.e., ẋ = 1. Time elapse is restricted in

each location with a clock constraint. A transition, usually denoted by l
[g] a−−−→
r

l′,

moves from a location l to a location l′ by executing an action a ∈ Σ. The
transition is enabled and can be fired only when the current valuation of clocks
satisfies the guard g ∈ Φ(X). Besides the executed action, a transition can also
perform resets on the specified set r ⊆ X of clocks.

With respect to the definition given in [2], the main difference is the par-
tial observability condition. It is modeled by the two types of actions a TA can
define: observable actions Σo and unobservable actions Σu. The observable ac-
tions are further refined into controllable ones Σc

o and uncontrollable ones Σu
o .

The controllable observable actions act as “actuators” for the FDIR component,
while uncontrollable observable actions act as “sensors” for fault detection. The
unobservable actions are also refined into regular ones (also called silent) Σs

u

and faulty ones Σf
u . Silent actions correspond to internal computations often

denoted by τ . Fault actions are those that model the different types of faults of
a component. Please note that all the above sets are disjoint. By taking Σc

o = ∅,
Σs
u = {τ} and Σf

u = ∅, we obtain the usual definition of TA with silent actions.
The definition from [29,18] is obtained for Σc

o = ∅, Σs
u = {τ} and Σf

u = {f}.
The semantics of a timed automaton is a Timed Transition System (TTS).

A state of the TA is a pair (l, v) ∈ L × RX+ that consists of a discrete location
l ∈ L and the current valuation of all clocks v. The initial state is the pair (l0,0).
From a state (l, v) such that v |= Inv(l), the TA can progress either by a discrete
transition (i.e., an action) or by letting time elapse. The transition relation −→
of the corresponding TTS is generated by the following rules:

1. For a ∈ Σ, (l, v)
a−→ (l′, v′) if l

[g] a−−−→
r

l′ such that v |= g, v′ = v[r], and

v′ |= Inv(l′).

2. For δ ∈ R+, (l, v)
δ−→ (l, v′) if v′ = v + δ, v |= Inv(l) and v′ |= Inv(l).

A run ρ ofA from a state (q0, v0) is a possibly infinite sequence ρ = (q0, v0)
δ0−→

(q0, v0+δ0)
a1−→ (q1, v1) . . .

an−−→ (qn, vn)
δn−→ . . . where ∀i, qi ∈ L, ai ∈ Σ, δi ∈ R+,

vi : X → R+, vi+1 = vi + δi or vi+1 = vi[ri] depending on the incoming tran-

sition and qi
[gi] ai+1−−−−−→

ri
qi+1 (∈ E). The set of executions of A from a state s is

denoted by RunsA(s). The set of runs of A is RunsA = RunsA((l0,0)). We say
that a run is f -faulty, denoted faulty(ρ, f), if ∃i such that ai = f . For a run ρ, let
time(ρ) =

∑
i δi, the sum of all delays in ρ. If ρ is an infinite run, then time(ρ)

is the limit of the sum (possibly ∞). We say that ρ is non-Zeno if time(ρ) =∞
and Zeno otherwise.

The trace of a run ρ with respect to a set of observable actions Σ′
o, denoted

traceΣ′
o
(ρ), is the sequence δ0a1δ1a2 . . . anδn . . . made only of time elapse and

observable actions, i.e., ∀i, ai ∈ Σ′
o and δi ∈ R+. If Σ′

o = Σo (all the observables
of a system), we obtain the usual trace definition.

A system is given by the parallel composition of the different timed automata
it models. This means that the automata execute in parallel and synchronize on
the common observable actions. We assume that the sets of clocks, silent actions
and fault actions are mutually disjoint. This condition can be easily satisfied by
renaming the common clocks or actions.

Definition 2 (Parallel composition). Let Ai = (Li, l
i
0, Xi, Inv i, Σ

i, Ei), i ∈
{1, 2}, be two TA such that X1∩X2 = ∅, (Σs

u)1∩(Σs
u)2 = ∅ and (Σf

u)1∩(Σf
u)2 =

∅. Their parallel composition denoted A1 ‖ A2 is the TA (L, l0, X, Inv , Σ,E)
where

– L = L1 × L2,
– l0 = (l10, l

2
0),

– X = X1 ∪X2,
– Inv : L→ Φ(X), Inv(l1, l2) = Inv(l1) ∧ Inv(l2),
– Σ = Σc

o⊕Σu
o⊕Σs

u⊕Σf
u with Σj

i = (Σj
i)

1∪(Σj
i)

2, (i, j) ∈ {(o, c), (o, u), (u, s),
(u, f)},

– E ⊆ L× Φ(X)×Σ × 2X × L is the set of transitions given by

• (l1, l2)
[g1∧g2] a−−−−−−→
r1∪r2

(l′1, l
′
2) if a ∈ Σ1 ∩Σ2, l1

[g1] a−−−→
r1

l′1 and l2
[g2] a−−−→
r2

l′2,

• (l1, l2)
[g1] a−−−→
r1

(l′1, l2) if a ∈ Σ1 \Σ2 and l1
[g1] a−−−→
r1

l′1, and

• (l1, l2)
[g2] a−−−→
r2

(l1, l
′
2) if a ∈ Σ2 \Σ1 and l2

[g2] a−−−→
r2

l′2.

Running example. Figure 1 presents a fragment of an autonomous system case
study1 that will be used as the running example throughout this paper. This

1 The case study presented here is inspired from an autonomous robotics system. The
original system contains more components, behavior and requirements.

l0

x < P

l1

x ≤ P

motion
[x = P]
τ ′

x = 0

motion

Cruise controller

l0

l1 z ≤ 0

l2

motion′
z = 0

cmd

halt

repair

motion′

motion′

repairhalt

cmd′

Dispatcher

l0

cmd

cmd

Navigation
controller

l0

cmd

cmd

Logger

l0

y ≤ P

l1

y ≤ P

l2

y ≤ P

l3

y < P

l4

y ≤ P

l5

y < P

l6

y ≤ P

l7

motion

[y < P]
motion′

[y = P]
τ

y = 0 [y = P]
τ

y = 0
motion′

motion

motion

motion′

[y = P]
τ

y = 0

[y < P]
motion′

fault fault fault fault

fault
fault

motion
[y > 2P]
motion′

reinit
y = 0

fault

motion′ motion′

Bus

reinit

Fig. 1: An example of an autonomous cruise controller system with faults during
communication.

system aims to transfer and dispatch motion commands from an automated
cruise controller to the actual navigation system and a logger.

The system is modeled as a network of five communicating timed automata
as follows. The cruise controller sends in every [0, P) time interval the motion
command to be executed.2 This request travels through a bus to a dispatcher.
The dispatcher sends the request to the navigation controller which is responsible
for its mechanical execution. Additionally the request is stored in a logger for
debugging purposes, possibly through replay.

The bus models a 2 element memory and has the following behavior. Once
it receives a motion request and it is not busy, it can delay the request transfer
up to P . In that case it waits for the next period of the cruise controller and
“restarts” its behavior. This behavior describes the nominal mode of the bus and
is depicted by the states in black in Figure 1 (from l0 to l2). However, the bus
could be busy and the motion request is delayed for transfer at P or in the next

2 For simplicity we abstract here the actual motion commands (possibly represented
as multiple parameters of the motion, motion′, and cmd actions, respectively), and
their mechanical execution.

period [0, P). We then consider the bus to pass in a degraded mode depicted
by the states in blue (from l3 to l6). During the transfer another request can be
received. If both are handled before P , the bus has recovered and goes back to
the nominal mode. Otherwise it stays in the degraded mode. While transferring
the request, the bus can experience some hardware issues and fails denoted by
the fault action in the automaton. In this case the bus goes into the fail mode
depicted by the l7 red state, and in which the received requests are either delayed
after 2P , lost or multiplied.

The dispatcher assumes the nominal behavior of the bus: it receives requests
steadily, within the [0, 2P) period. If this requirement is not satisfied (due to
a faulty behavior of the bus), the dispatcher must stop transferring requests
(action halt). This means that the received motion commands are ignored until
the network is reinitialized (action reinit) and the dispatcher is aware of it
(action repair). The above description corresponds to the FDIR specification.

3 A Formal Approach for Designing FDIR Components

The design of FDIR components is a sub-process of the general system design,
as illustrated in Figure 2. The methodology we propose includes several manual
activities related to the design of the system that allow obtaining the inputs
needed for the automated synthesis of FDIR components. These activities are
suggested for system engineering by different standards, such as EECS standards
[21] for space applications.

The main input of the methodology is the safety requirements. The first
activity consists of building a system design from requirements and system de-
scription (i.e., what the system should do), which we call requirements analysis.
The obtained design is usually made of two parts: the nominal model and the
fault model. The nominal model defines the system architecture and its behavior
in a “correct” environment (i.e., an environment that behaves accordingly to
the assumptions). In this case, the nominal behavior should satisfy by default
the (safety) requirements it is derived from. The fault model complements the
nominal one by describing which faults components can manifest and what is the
expected behavior after a fault occurrence. Usually the two models are obtained
separately, since the fault model requires additional study of the fault specifi-
cations (e.g., of the hardware platform). Then, the two models are assembled
into the extended model by merging techniques, which is used for FDIR design.
For the sake of simplicity, we consider in the following that the output of the
requirements analysis activity is the extended model.
Example. Figure 1 depicts the extended model of the case study, as the bus
component models both nominal and faulty behavior. The nominal behavior
consists of forwarding the motion request in the [0, 2P) period – the nominal
and degraded modes. The faulty behavior delays, loses or multiplies the motion
requests after a fault – the fail mode.

The second activity is the Partitioning & Allocation. Its aim is to associate
the system requirements to the elements that must satisfy them, such as com-

Diagnoser Synthesis

(Safety) Requirements

Requirements AnalysisPartitioning & Allocation

FDIR Architecture

Objectives & Strategies

FDIR Specification
(recovery policy)

Extended Model

Nominal model Fault model
Safety Assessment

Fault tree

Diagnosability

Diagnoser(s)

Controller Synthesis

Controller(s)

Code generation

FDIR Implementation

Fig. 2: Proposed formal approach for automated FDIR components design.

ponents, (sub-)systems or mission phases. As a result, the FDIR architecture is
designed in relation to the system architecture and both nominal and fault-
related requirements. The FDIR architecture can be centralized/distributed,
monolithic/hierarchical or any combination. Please note that depending on the
FDIR architecture, the automated design of FDIR component can become an
undecidable problem, e.g., the decentralized partial observability control prob-
lem [30].
Example. For the case study in Figure 1, the requirement to satisfy is that
motion′ command is issued within one period in the best case and within two
periods in the worst case. This deadline can be missed only in the case of a fault,
when the bus becomes unresponsive and all messages are delayed after 2P , and
the dispatcher should not transfer any request. In consequence, the requirement
is associated with the bus and dispatcher components. The FDIR component
architecture we consider is a centralized flat one consisting of one diagnoser and
one controller connected to the bus and dispatcher components.

The third and last activity is the Objectives & Strategies. From the FDIR
architecture and the system requirements, an FDIR specification describing the
recovery policy is derived. The recovery policy is defined at system level by
objectives and at component level by strategies. Objectives are related to the
system requirements for the fault model, i.e., required behavior in the presence
of failures. Strategies usually contain the functional steps to be performed given
the fault and the objective to achieve. The aim of a strategy is to bring the
system back in a good (safe) state after faults, where the RAMS hold.
Example. In the running example the objective is to stop the dispatcher until the
bus is reinitialized and the correctness of the motion′ requests can be assumed.

The strategy to apply is the following: halt the dispatcher immediately after a
fault is detected, reinit the bus and inform the dispatcher about the bus status
(action repair).

Once all the inputs are clearly specified, the first automated step is diag-
noser(s) synthesis. A diagnoser is a component that runs in parallel with the
system and gives verdicts whether a fault has occurred or not yet. A diagnoser is
synthesized for each fault (type) that can be detected. A fault f can be detected
if the system satisfies the diagnosability condition: given a set of observable ac-
tions, there are no nominal and faulty executions (labeled with f) that have the
same trace. Please note that possibly not all faults need to satisfy this condition,
just as diagnosers do not have to be synthesized for all faults. Indeed, only a
subset of the fault actions set could be relevant with respect to the safety re-
quirements to ensure. These faults can be identified through model-based safety
assessment techniques [14], such as building the fault tree (i.e., Boolean combi-
nations of faults). Additionally, statistical model-checking could be applied to
identify those faults most likely to happen. Describing how to perform safety
assessment is outside the scope of this paper.

The second automated step is the controller synthesis which can be performed
if the system’s faults are diagnosable and the diagnosers have been synthesized.
When a diagnoser detects a fault, an alarm is raised which triggers a controller.
The controller is a component running in parallel with the system and imple-
menting the recovery strategies specified for the fault (type). Its aim is to bring
the system back to states/modes where the safety requirements hold. This step
synthesizes a controller from the specified recovery strategies and with respect
to the system and diagnoser(s) behaviors, thus ensuring the FDIR objectives.

Finally, the diagnosers and controllers are assembled into the FDIR compo-
nent from which code is generated (in C++ for example). The generated code
can be deployed and run online with the actual system implementation.

This approach is general enough to be applied for both untimed and timed
systems, only the synthesis algorithms need to be adapted to the corresponding
case. In the following we describe the algorithms for diagnoser and controller
synthesis for timed systems with partial observability as formalized in Section 2,
and we illustrate them on the example from Figure 1. These algorithms and the
approach are currently under implementation in the BIP framework [5].

4 Formal Detection and Synthesis

A fault f can be detected by a diagnoser if the system is f -Σ′
o-diagnosable.

Intuitively, a system is f -Σ′
o-diagnosable if there are no executions having the

same trace with respect to a set of observables Σ′
o where one is labelled with the

fault and the other not. With the notation from Section 2, the diagnosability
condition is formalized as follows.

Definition 3 (f-Σ′
o-diagnosability). Let S be a system represented as a TA,

f ∈ Σf
u and Σ′

o ⊆ Σu
o . S is f -Σ′

o-diagnosable if ∀ρ ∈ RunsS such that
faulty(ρ, f), @ρ′ ∈ RunsS such that ¬faulty(ρ′, q) and traceΣ′

o
(ρ) = traceΣ′

o
(ρ′).

Please note in the definition above the minimality condition on the observ-
ables for fault detection: the set of observables is at most the set of uncontrol-
lable observables of the system, i.e, Σ′

o ⊆ Σu
o . Additionally, the controllable

observables should not be considered for the fault detection as those are actions
commanded by the controller. If they would be taken into consideration for di-
agnosability, a circular behavioral dependency between the diagnoser and the
controller could be created at runtime.

The algorithm for checking f -Σ′
o-diagnosability consists of the following steps:

1. Compute a copy A of S such that uncontrollable actions not in Σ′
o become

silent actions and controllable actions and the corresponding transitions are
removed from the TA: A = (LA, lA0 , X

A, InvA, (Σu
o)A⊕ (Σs

u)A⊕ (Σf
u)A, EA)

with (Σu
o)A = Σ′

o, (Σs
u)A = (Σu

o \Σ′
o)⊕Σs

u and EA = E\{l [g] a−−−→
r

l′|a ∈ Σc
o}.

2. Compute a copy B of A such that f is removed from the set of faults, clocks,
silent and fault actions are renamed with respect to A, and all transitions la-
beled with f are removed from E. Formally, B = (LB , lB0 , X

B , InvB , (Σu
o)B⊕

(Σs
u)B ⊕ (Σf

u)B , EB) with XB unique w.r.t. A, (Σu
o)B = Σ′

o, (Σs
u)B =

(Σu
o \ Σ′

o) ⊕ Σs
u unique w.r.t. to A, (Σf

u)B = Σf
u \ {f} unique w.r.t. A,

and EB = EA \ {l [g] f−−−→
r

l′}.
3. Compute A ‖ B and check that ∀ρ ∈ RunsA‖B such that faulty(ρ, f), ρ is

Zeno.

This algorithm is performed independently for every fault that might occur in
the system (possibly only the relevant ones obtained through safety assessment).

Intuitively, the algorithm synchronizes two copies of the model from which
the transitions labeled with controllable actions are removed. The copy A is the
behavior with faults projected on the set of observables Σ′

o. The copy B is similar
except the transitions labeled with the fault under study f are removed. The
synchronization of A and B gives two types of executions: Zeno and non-Zeno.
If a common execution labeled with f is non-Zeno, it means that the distinction
of which execution was actually performed – with f from A or without f from
B – cannot be made by the diagnoser. In contrast, if all runs ρ labeled with f
are Zeno, the diagnoser is able to make the distinction after time(ρ).

The definition and algorithm for checking diagnosability are similar to the
ones in [29,18] for timed systems. The difference comes from the splitting of
observable actions into controllable and uncontrollable, and the removal of con-
trollable actions such that diagnosability does not depend on actions enforced
by a controller as explained above. As these changes are linear in the number of
actions considered, it follows from [29] that it runs in PSPACE.

The running example from Figure 1 has the following actions based on the
components ports: Σc

o = {reinit, halt, repair}, Σu
o = {motion,motion′, cmd},

Σs
u = {τ, τ ′} and Σf

u = {fault}. By taking Σ′
o = {motion′}, the system is

fault-Σ′
o-diagnosable. In the construction above, all runs ρ labeled with fault

will reach the location (l7, l5) or (l7, l6) of the composition and time(ρ) = 2P .
Therefore, such executions are Zeno and the system is diagnosable. The ac-
tion motion′ gives in fact the minimal set of sensors for detecting a fault. Any

extended subset, e.g., monitoring also motion, preserves the diagnosability con-
dition.

If a fault action satisfies the diagnosability condition, a diagnoser can be
synthesized for its detection. Intuitively, a diagnoser monitors the observables
on which diagnosability has been checked and raises an alarm when the states
the system is in are marked as error. The diagnoser can be viewed, in general, as
the TA obtained through determinization of the system under study and with
respect to the specified observables Σ′

o and Σc
o. Determinization of TA is an

undecidable problem [2,31], except for some classes [4,28,13,25]. In consequence,
an algorithm for on-the-fly determinization of a copy of the system with marked
faulty locations is generated. This algorithm is inspired from [29,18], and the
differences are discussed below.

As mentioned, the diagnosis algorithm works on a copy of the system with
marked faulty locations. Each location is associated with two bits: 0 if no fault
has occurred and 1 otherwise. The transition relation is also duplicated: tran-
sitions labeled with an observable or silent action keep the bit of the source
location, while transitions labeled with a fault change the bit to 1.3 This modi-
fication is needed since the faults of the system are unobservable, and therefore
the detection is based on the system state. We call this copy the diagnosis model
and it is formalized as follows.

Definition 4 (Diagnosis model). The diagnosis model S′ for f -Σ′
o-diagnosable

S is the TA (L′, (l0, 0), X, Inv ′, Σc
o ⊕ Σ′

o ⊕ {τ}, E′) where L′ = L × {0, 1},
Inv ′(l, n) = Inv(l) and E′ is given by the relation:

– (l, n)
[g] a−−−→
r

(l′, n) for n ∈ {0, 1} if l
[g] a−−−→
r

l′ and a ∈ Σc
o ⊕Σ′

o

– (l, n)
[g] τ−−−→
r

(l′, n) for n ∈ {0, 1} if l
[g] a−−−→
r

l′ and a ∈ (Σu
o \Σ′

o)⊕Σs
u ⊕ (Σf

u \
{f})

– (l, n)
[g] τ−−−→
r

(l′, 1) for n ∈ {0, 1} if l
[g] f−−−→
r

l′

The algorithm implemented by the diagnoser is given in Algorithm 1. We
denote by W the set of current states for monitoring. Initially, this set consists
of all states of the diagnosis model DM reachable in 0 time by firing only τ
actions (i.e., former unobservable and observable actions on which the detection
does not depend). Additionally, a Boolean variable b modeling whether a fault
has been raised is set to false.

The diagnoser main implementation loop is given next. The current states
are checked for being faulty, i.e., the bit 1 is set in the diagnosis model for all of
them. If it is the case and no alarm has been raised so far (b is false), the latter is
triggered. In both cases, the diagnoser keeps monitoring the system: (i) a clock
x is set to 0 and (ii) an action a or the lapse of time to timeout is observed. For
an observation a, x will contain the time elapse since the last match. In the case
of a matched a, the diagnoser computes the next states of the system as follows:

3 Please note that for simplicity of the diagnoser algorithm, all silent and fault actions
are renamed as τ in Def. 4.

Algorithm 1: Timed diagnoser implementation loop.

Input: Diagnosis model DM = (L× {0, 1}, (l0, 0), X,Σo ∪ {τ}, E),
timeout ∈ R+, x 6∈ X clock

1 W ←− {s ∈ L× RX+ | ρ = (l0, 0,0)
τ∗−→ s ∧ time(ρ) = 0}

2 while true do
3 b←− false
4 while true do
5 if ∀s ∈W. s = (l, 1, v) and ¬b then
6 raise alarm
7 b←− true
8 end
9 x←− 0

10 await (action a) or (x = timeout)
11 if a is restart then

12 W ←− {(l, 0, v) | ∀s ∈W.ρ = s
(δ/τ)∗−−−−→ (l, n, v) ∧ time(ρ) = x}

13 break

14 else
15 if action a then

16 W ←− {s′′ | ∀s ∈W. ρ = s
(δ/τ)∗−−−−→ s′

a−→ s′′ ∧ time(ρ) = x}
17 else

18 W ←− {s′ | ∀s ∈W. ρ = s
(δ/τ)∗−−−−→ s′ ∧ time(ρ) = timeout}

19 end

20 end

21 end

22 end

first it fires all internal actions τ such that the entire execution time takes x
time units; then it fires the event a and updates the set of reached states. If the
event a is the specific action restart of the controller, the bit is additionally set
to 0 for all computed states. If no event is observed in a timeout period, the set
of reachable states is again updated by firing all internals during the predefined
timeout period.
Example. For the case study in Figure 1, the diagnoser has a timeout value of
2P . Indeed at moment 2P , the only state reachable is (l7, 1, 2P), at which the
alarm action is raised. We give in Figure 3 a symbolic representation as TA for
this diagnoser.

The difference between Algorithm 1 and the algorithm from [29,18] is mainly
related to the FDIR setting and the controller component. While in [29,18] a
valid diagnoser consistently outputs alarm once a fault is detected, our algo-
rithm allows for a restart of the monitoring. This is due to the implementation of
a controller which handles faulty behavior and brings the system into safe states.
To ensure that the fault detection happens from states coherent with the actual
system states after a restart, the diagnoser monitors also the controllable ob-
servable actions defined for the controller. Finally, for a more detailed discussion
about the implementation of diagnosers, the reader is referred to [29].

l0
u ≤ 2P

l1

u ≤ P

l2

u ≤ 2P

l3

u ≤ 2P

l4

u ≤ P

l5
v ≤ 0

l6

l7

[u < P]
motion′

[u = P]
τ

u = 0

[P ≤ u < 2P]
motion′

[u < 2P]
motion′[u = 2P]

τ
u = 0

[u = 2P]
τ

u = 0

[u < P]
motion′

[u ≥ 2P]
τ

v = 0
[u ≥ P]

τ
v = 0

alarm
halt,
repair,
motion′

reinit
repair,
halt,

motion′

restart

motion′

alarm

restart

Diagnoser

l0

l1 t ≤ 0

l2 t ≤ 0

l4 t ≤ 0

l3 t ≤ 0

alarm
t = 0

halt

reinit

repair

restart

restart

alarm

repair halt reinit

Controller

Fig. 3: Components of the synthesized FDIR component.

5 Implementing Reconfiguration Strategies

Once a fault is detected, a controller takes charge to bring the system back
into safe states. This controller, if one exists, can be automatically synthesized
just as the diagnoser. The construction of the controller is based on the system
under study including diagnosers, FDIR specification (recovery strategies), and
requirement(s) describing the safe state after a fault.

There are several works in the literature tackling controller synthesis algo-
rithms from logical specifications (e.g. untimed automata built from LTL formu-
las [24]). The (safety) requirement is expressed in some logic and the algorithm
works only on the system under study. This problem is known to be a hard one,
and even undecidable in some cases [20,22]. In the FDIR context, we make use
of the recovery strategies contained in the FDIR specification which define the
functional steps to apply in case of a fault. An incomplete controller is manually
built from these strategies, and refined and validated on the system.

We consider the incomplete controller to be modeled as a TA. This automa-
ton is structurally refined by using the appropriate alarm and restart of the
diagnoser, and adding a transition labeled with restart as last step of the mod-
eled recovery strategy. This transformation is needed to be able to inform the
corresponding diagnoser that the detected fault has been handled and to uphold
the reactive aspect of these systems.
Example. On the running example, the recovery strategy describes that once the
fault is detected, the dispatcher must stop transferring requests until the bus
is reinitialized and it is aware of it. The functional sequence derived from this
specification is halt followed by reinit and repair . This sequence is triggered by
alarm from the diagnoser and informs its execution by action restart. The ex-
ecution of the controller is enforced by invariants which deactivate time elapse.
The corresponding TA is given in Figure 3.

The validity of a controller is checked with respect to the set of safe states
to be reached modeled by the safety requirement. This can be achieved through
model-checking the system including the FDIR component with respect to the
safety requirement. As this is a reachability problem of the safe states, the vali-
dation effort of a controller is in PSPACE.
Example In our example, the safety requirement is that the bus has been reini-
tialized and the dispatcher is aware of it. The safe states projection on the two
components consists of (l0, l0). With respect to this requirement the controller
proposed in Figure 3 is valid.

Once the controller has been validated, code (e.g., in C++) can be gener-
ated. This code can be obtained independently for the diagnoser(s), controller(s)
or the full-fledged FDIR component. Under the assumption of code generation
correctness, the FDIR implementation can be deployed on the platform together
with the actual system and its online expected behavior is met.

6 Related Work

How to build correct FDIR components from complete system specifications is
a recent topic of interest in the literature [32,10]. FDIR components are usually
obtained through ad-hoc processes and need extensive testing to ensure their
correctness for mission and safety-critical applications. In this paper we propose
the use of formal methods to tackle this issue and obtain correct-by-construction
FDIR implementations.

Our approach is similar to the one in [10]. The main differences cover the do-
main of application and code generation feature. This paper considers real-time
systems represented as timed automata, while in [10] systems are untimed and
represented as symbolic transition systems. Therefore, the algorithms applied
for synthesis are different. The focus of [10] is on the safety assessment [9] with
timed failure propagation models, which are modeled by the user. In our ap-
proach, safety assessment is not mandatory as diagnosability can be checked for
all fault types and diagnosers can be synthesized for all of them. However, safety
assessment can be performed with respect to the given safety requirements based
on automatically generated fault trees. The artifacts give information about the
subset of faults that need to be detected and the minimal subset of sensors
needed. Additionally, risk analysis can be performed along safety assessment us-
ing statistical model-checking (available in the BIP framework). The recovery
strategies from [10] are modeled in a flavor of Linear Temporal Logic (LTL) [26],
while we consider them specified as timed automata which is arguably more
intuitive and expressive for modeling. Finally, our approach allows to generate
code for the FDIR implementation, which is not considered in [10].

The two synthesis problems considered here – diagnoser and controller syn-
thesis – have however been studied independently of the FDIR context. For
example, [27] describes the diagnosability problem for one and multiple faults,
and introduces the notion of fault type for untimed systems. [19] describes a
framework for diagnoser synthesis in the untimed case and from LTL specifi-

cations. In [7,6], runtime verification for 3-value Timed LTL is used for fault
detection.

In the context of timed diagnoser synthesis, the most related works to ours
are the ones from [29,18,16,11]. As described in Section 4, the main differences
consist of the representation of a system to accommodate FDIR components and
the adaptation of the algorithms to this representation. More specifically, in our
framework a system defines both controllable and uncontrollable observables,
and diagnosability is checked on a subset of uncontrollable observables. The
controllable actions are however monitored by the diagnoser, in order to ensure
the correct restart of the detection once the recovery strategy is successfully
applied. This feature of the diagnoser allows enforcing FDIR capabilities on
reactive systems, different to [29] where a diagnoser is considered valid if it does
not change the verdict after a detected fault.

The controller synthesis problem is studied in several works that use a more
general formalism than ours. The usual approach is a game-based one: the prob-
lem is seen as a game between the environment (playing uncontrollable actions)
and the controller [17]. In the untimed case, the general problem with specifica-
tions given as LTL formulas is well understood and decidable, but usually not
tractable, even though some work has been done towards applicability of the
algorithms [24]. An approach that is closer to ours in the untimed case, building
a controller by adding transitions to an incomplete one under safety and liveness
requirements, is considered in [3].

The timed case is much more involved, and the decidability of the problem
heavily relies on parameters such as partial observability, access to (un)limited
resources, and type of specifications [12,20,15]. For example, in [23] a controller is
synthesized from a template by parameter instantiation, while [8,22] use Timed
Computational Tree Logic [1] specifications.

7 Conclusion

In this paper we present an approach based on formal methods for the correct-
by-construction design of FDIR components. This approach performs several
manual steps for obtaining the inputs required: the system under study con-
sisting of both the nominal and the faulty behavior, the recovery strategies and
requirements to satisfy modeled as automata. The approach proceeds by syn-
thesizing an FDIR component in two steps: (i) a diagnoser is generated for each
diagnosable fault and (ii) a controller is produced for each recovery strategy by
completion of its incomplete representation as automaton. The FDIR component
is validated by model-checking techniques and code (e.g., in C++) is generated
as FDIR implementation. This implementation can be deployed with the system
for the online detection and enforcement of safety requirements.

The proposed approach can be applied for both untimed and timed systems.
We define the notion of diagnosability in the FDIR context for timed systems and
we propose algorithms for the automated generation of full-fledged timed FDIR

components. We illustrate the approach and the algorithms on an autonomous
system case study with faults during communication.

The approach presented here is currently under implementation in the BIP
framework and validation in two real-life case studies from our industrial part-
ners. As future work we are interested in validating and comparing the synthe-
sized FDIR implementation with respect to developer written ones, as means
to quantify this approach with respect to standard FDIR coding ones. In order
to optimize the synthesized FDIR implementations, we are interested to study
model-based safety assessment with statistical model-checking techniques and in
the context of stochastic faults.

On a more general note, we are interested in devising a pattern-based lan-
guage for modeling recovery strategies, and a synthesis or learning algorithm
for building the controller. This language could be extended and used for spec-
ifying data-/state-based safety requirements as inputs, besides the event-based
ones considered in this paper. This would require the introduction of a dynamic
observer as a filter for the FDIR component, to transform the data-/state-based
property into an event-based one. Ideally, the previously mentioned algorithm
will perform this step automatically. Finally, we are interested in considering
more complex FDIR architectures as targets (e.g., distributed ones) and adapt
the algorithms to such cases.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-Checking in Dense Real-Time. Infor-
mation and Computation 104(1), 2–34 (1993)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (Apr 1994)

3. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News
48(1), 55–90 (2017)

4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: ICALP 2009. pp. 43–54 (2009)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM 2006. pp. 3–12 (2006)

6. Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed
reactive systems. In: ASWEC 2006. pp. 243–252 (2006)

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
FSTTCS 2006. pp. 260–272 (2006)

8. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Beyond Liveness: Efficient Param-
eter Synthesis for Time Bounded Liveness. In: FORMATS 2005. pp. 81–94 (2005)

9. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. In: TACAS
2016. pp. 533–539 (2016)

10. Bittner, B., Bozzano, M., Cimatti, A., Ferluc, R.D., Gario, M., Guiotto, A.,
Yushtein, Y.: An integrated process for FDIR design in aerospace. In: IMBSA
2014. pp. 82–95 (2014)

11. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In:
FOSSACS 2005. pp. 219–233 (2005)

12. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: CAV 2003. pp. 180–192 (2003)

13. Bouyer, P., Jaziri, S., Markey, N.: On the determinization of timed systems. In:
FORMATS 2017. pp. 25–41 (2017)

14. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems.
Auerbach Publications, Boston, MA, USA, 1st edn. (2010)

15. Cassez, F.: Efficient On-the-Fly Algorithms for Partially Observable Timed Games.
In: FORMATS 2007. pp. 5–24 (2007)

16. Cassez, F.: A note on fault diagnosis algorithms. In: IEEE CDC 2009. pp. 6941–
6946 (2009)

17. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: CONCUR 2005. pp. 66–80 (2005)

18. Cassez, F., Tripakis, S.: Fault Diagnosis of Timed Systems. In: Communicating
Embedded Systems – Software and Design (Oct 2009)

19. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: IJCAI 2003. pp. 363–369 (2003)

20. D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: STACS 2002. pp. 571–582 (2002)

21. European Cooperation for Space Standardization: Website, http://www.ecss.nl/
22. Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS 2002. pp.

167–176 (2002)
23. Finkbeiner, B., Peter, H.: Template-based controller synthesis for timed systems.

In: TACAS 2012. pp. 392–406 (2012)
24. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless Compositional Synthesis. In:

CAV 2006. pp. 31–44 (2006)
25. Lorber, F., Rosenmann, A., Nickovic, D., Aichernig, B.K.: Bounded determiniza-

tion of timed automata with silent transitions. Real-Time Systems 53(3), 291–326
(2017)

26. Pnueli, A.: The temporal logic of programs. In: SFCS 1977. pp. 46–57 (1977)
27. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:

Failure diagnosis using discrete-event models. IEEE Trans. Contr. Sys. Techn. 4(2),
105–124 (1996)

28. Suman, P.V., Pandya, P.K.: Determinization and expressiveness of integer reset
timed automata with silent transitions. In: LATA 2009. pp. 728–739 (2009)

29. Tripakis, S.: Fault diagnosis for timed automata. In: FTRTFT 2002. pp. 205–224
(2002)

30. Tripakis, S.: Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett. 90(1), 21–28 (2004)

31. Tripakis, S.: Folk theorems on the determinization and minimization of timed au-
tomata. Inf. Process. Lett. 99(6), 222–226 (2006)

32. Wander, A., Forstner, R.: Innovative fault detection, isolation and recovery strate-
gies on-board spacecraft: State of the art and research challenges. Deutscher Luft-
und Raumfahrtkongress (2012)

http://www.ecss.nl/

	Designing Systems with Detection and Reconfiguration Capabilities: A Formal Approach

