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Abstract. Security assessment of organization’s information systems is
becoming increasingly complex due to their growing sizes and underly-
ing architectures, e.g., cloud. Analyzing potential attacks is a pragmatic
approach that provides insightful information to achieve this purpose.
In this work, we propose to synthesize defense configurations to counter
sophisticated attack strategies minimizing resource usage while ensur-
ing a high probability of success. For this, we combine Statistical Model
Checking techniques with Genetic Algorithms. Experiments performed
on real-life case studies show substantial improvements compared to ex-
isting techniques.

1 Introduction

Modern organizations strongly rely on information and communication tech-
nologies in their daily activities. This reliance raises serious questions about the
security threats that may be occasioned because of their inherent vulnerabili-
ties and the way to mitigate the risks accompanying them. The damages that
a cyberattack exploiting such vulnerabilities might cause, e.g. [7], highlight the
urgent need for organizations to integrate risk assessment activities as part of
their main processes. Risk assessment consists of analyzing and evaluating sys-
tems vulnerabilities in order to design reliable security policies.

Cyberattacks usually combine various techniques that exploit different vul-
nerabilities to circumvent deployed defense configurations. Such combinations
are generally referred to as Attack Strategies. Reasoning at this level turns out
to be more suitable than trying to fix individual vulnerabilities, especially since
these are difficult to detect. Offensive security aims at identifying reliable defense
configurations for a system by exploring attacks exploiting its vulnerabilities.

All is about resources. Both attack and defense actions require resources in order
to be achieved. For instance attack actions require equipment and take time to
be set up. Accordingly, they have some probability of success, i.e. actions that
require a limited amount of resources generally have lower probability of success
and conversely. Similarly, defense actions are subject to budgetary considerations
(equipment, tools, training, etc.) and do generally provide overlapping protection
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mechanisms, hence they are not required to be deployed simultaneously. There-
fore, it is primordial for organizations to be able to quantitatively analyze and
evaluate potential defense actions in order to design configurations that prevent
cyberattacks while involving a sufficient set of defense mechanisms.

Diverse attacker profiles can be observed in practice with regard to resources
utilization. Some would settle for attack actions requiring limited resources, ac-
cepting a low probability of success, while others would privilege actions with
high probability of success and allocate resources for that. These profiles are
generally the product of various human factors such as experience, budget and
motivations. A sophisticated attack strategy would try to optimize these crite-
ria, namely, to find trade-offs requiring an affordable (within a given budget)
amount of resources with an acceptable probability of success.

In this work, we propose a risk assessment approach that allows to syn-
thesize defense configurations making sophisticated attacks harder to achieve.
Concretely, we consider resources (e.g., the cost) required by an attack to be
the hardness criterion. The rational is that since a sophisticated attack tries to
optimize the cost with respect to the probability of success, defense actions that
increase this cost are expected to prevent those attack strategies from being
achieved with high probability. Relevant defense configurations are hence those
involving a sufficient set of defenses with the highest impact on the attack cost.

As opposed to [5] that relies on reinforcement learning, our approach com-
bines Statistical Model Checking (SMC) [6, 13] with Genetic Algorithms (GA)
[10] to synthesize sophisticated attack strategies, which serve as a basis for ex-
ploring relevant defense configurations. The proposed approach considers Attack-
Defense Tree [8] as a representation of the organization’s security breaches, the
potential attacks that could exploit them and the deployed defense configuration.
Furthermore, the approach takes into account an attacker model that simulates
arbitrary attack actions targetting the systems.

The remainder of the paper is organized as follows. We first discuss related
work in Section 2. In Section 3, we formally introduce the considered models for
risk assessment. The proposed techniques for attack strategies exploration and
for the synthesis of an impactful defense configuration are respectively presented
in Sections 4 and 5. In Section 6, we evaluate the proposed methods on four case
studies. Finally, Section 7 concludes the paper and discusses future directions.

2 Related Work

Attack Trees (AT) [9] are widely used in security to model system vulnera-
bilities and the different combinations of threats to address a malicious goal.
Attack-Defense Trees (ADT) [8] extend ATs with defense measures, also known
as countermeasures, to include the organizations defenses and bring into con-
sideration the impact of attacks on these organizations. These defense actions
try to prevent an attacker from reaching its final goal. More recently, Attack-
Countermeasure Trees (ACT) [11] were introduced to model defense mechanisms
that are dynamically triggered upon attack detection.



Mitigating Security Risks through Attack Strategies Exploration 3

Different types of analysis are proposed on these variants of trees. In [4]
authors focus on the probabilistic analysis of ATs, through the computation of
the probability, cost, risk and impact of an attack. A similar analysis is performed
on ADTs in [12], called Threat Risk Analysis (TRA), and applied to the security
assessment of cloud systems. In addition to the aforementioned probabilistic
analysis, Roy et al. [11] make use of the structural and Birnbaum importance
measure to prioritize attack events and countermeasures in ACTs.

Authors of [5] propose a reinforcement learning method on ADTs to find a
near-optimal attack strategy. In this work, an attacker with a complex proba-
bilistic and timed behavior is considered which makes it more difficult to perform
a static analysis. The authors propose to address the security analysis problem
from the attacker’s viewpoint by synthesizing the stochastic and timed strategy
that minimizes the attack cost using Uppaal stratego tool. The strategy in-
dicates the attack action to perform in each state in order to realize a successful
attack with a minimal cost.

In the previous approach, attack actions are also characterized by time du-
ration as intervals. It identifies the sequence of attack actions and associated
duration towards satisfying a specified time budget. However, it is not always
the case that an attacker can control the duration of an attack action, eg. the
time necessary for a brute-force attack. Instead, we consider time as a char-
acteristic of an attack action, i.e., not controlled as it depends on the system,
environment, etc. We consider the maximum time bound as a global success con-
dition of an attack, and we propose IEGA, a hybrid Genetic Algorithm to find
the stochastic strategy minimizing the attack cost while maximizing the prob-
ability of success. This strategy schedules attack actions and tells the attacker
which action to perform when a choice is required.

3 Background

In this section, we formally introduce definitions and notations used in the re-
mainder of the paper. We first introduce the models for an attacker and a de-
fender. Then, we recall the definition of an attack-defense tree, and finally, we
describe the model used for risk assessment.

For the following definitions, we consider ΣA to be a set of attack actions, ΣD
is a set of defense actions, and Σ = ΣA∪ΣD the set of all actions. Furthermore,
we consider that each attack action a ∈ ΣA is associated with 1) a time interval
[la, ua] that represents lower and upper time bounds allowed to perform a, 2) a
cost ca ∈ R which models needed resources to perform a and 3) a probability of
success pa that represents the likelihood for a to succeed when performed. We
call environment, denoted env, the success probabilities of attack actions in ΣA.

3.1 Attacker, Defender and Attack-Defense tree

Attacker. The attacker model represents all possible attack combinations, given
the alphabet of attack actions ΣA. It is syntactically defined as follows:
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Definition 1 (Attacker). An attacker A is a tuple 〈L, l0, T 〉 where :

– L = {l0, . . .} is a set of locations, where l0 is the initial location,
– T ⊆ L×Σa × L is a set of labeled transitions of the form (li, a, lj).

Intuitively, an attacker A performs a sequence of attack actions by choosing
each time among the enabled ones. At a given state, an attack action a may
succeed, leading to a new state where a is no more enabled 3 and where all
other actions remain unchanged. In case a fails, the state of the attacker does
not change. The success or failure of a selected attack action is not controlled
by the attacker, but is determined by the environment env. We formally define
the behavior of an attacker as follows.

Definition 2 (Attacker semantics). The semantics of an attacker A = 〈L, l0, T 〉
is the labeled transition system 〈S, s0, R〉, where:

– S = L× VΣA , where v ∈ VΣA is a state vector that contains the status of all
the attack actions in ΣA (succeeded or not), i.e., VΣA = {v : ΣA −→ {0, 1}},

– s0 = (l0, v0) is the initial state, where v0 = [0, . . . , 0] is the initial status of
all the attack actions in ΣA,

– R ⊆ S × ΣA × S is a set of transitions of the form (si, a, s
′
i) respecting the

following rules:

1. Success:
(li, a, l

′
i) ∈ T, vi(a) = 0, v′i(a) = 1, ∀a′ 6= a v′i(a

′) = vi(a
′)

((li, vi), a, (l′i, v
′
i))

2. Failure:
(li, a, l

′
i) ∈ T, vi(a) = 0

((li, vi), a, (li, vi))

We use the notation status(a, s) to denote the status of the attack action a
at state s = (l, v), i.e., status(a, s) = status(a, (l, v)) = v(a).

Note that the attacker semantics above is non-deterministic, that is, the
choice of an attack action at each state is performed non-deterministically. An
attack strategy S : ΣA −→ [0, 1] is a mass probability function that associates
each attack action with a probability of being selected by the attacker4. We
denote by A|S the attacker A that applies the strategy S. Thus, the probability
P : S ×ΣA −→ [0, 1] to select an attack action a at any state si is defined as

P (si, a) =

0 if status(a, si) = 1
S(a)∑

a′∈ΣA

S(a′)×(1−status(a′,si)) otherwise

Defender. A defender models the deployed set of defense actions. In this work,
it represents a static defense configuration, where a defense action d ∈ ΣD is
either enabled or not in all the states of the system. It is defined as follows:

Definition 3 (Defender). A defender D ⊆ ΣD is the subset of enabled defense
actions in ΣD.

We define a predicate enabled : ΣD → {0, 1} that tells if a defense action is
currently enabled. Formally, enabled(d) = 1 when d ∈ D, and 0 otherwise.

3 This reflects a realistic behavior expressing the monotony of an attack.
4 In this work, we restrict to static strategies, i.e., the same in any state. Considering

dynamic strategies is a future work.
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Attack-Defense Tree. It represents some knowledge about the system under
analysis. For instance, it includes the attack combinations (with respect to the
analyzed system vulnerabilities) that may lead to the success of an attack, along
defense mechanisms available in the system. In this work, we define it as a
Boolean combination of attack and defense actions as follows:

Definition 4 (Attack-Defense Tree). An attack-defense tree T is defined by
the following inductive grammar:

φ, φ1, φ2 ::= true | ap | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | (φ), where ap ∈ Σ

The evaluation of the attack-defense tree considers the attacker and the de-
fender models. This evaluation is performed as part of the risk analysis procedure
based on a Risk Assessment Model introduced below.

3.2 Risk Assessment Model

We now explain how the previous models, namely Attacker, Defender and Attack-
Defense Tree are used together to build a complete view for analysis, called Risk
Assessment Model.

Definition 5 (Risk Assessment Model). A risk assessment model M is a
composition of:

– A|S is an attacker following a strategy S,
– env : ΣA −→ [0, 1] is the environment,
– D is a defender,
– T is an attack-defense tree,
– cmax, tmax ∈ R are the maximal attacker cost and time resources.

It allows to simulate attacks represented by an attacker A|S – under the con-
straints cmax and tmax – on the system (abstracted by the environment env)
against a fixed defense configuration (modeled by D). The status of an attack is
given by the current status of the Attack-Defense Tree T . The evaluation of the
status of an attack using the attack-defense tree T is twofold:

1. the defense configuration D is used to evaluate the defense part of the tree,
(i.e., ap of T such that ap ∈ ΣD). This phase is done statically since the
defense is fixed in our case. For each ap ∈ T , where ap is a defense ac-
tion, ap is evaluated to true (respectively false) whenever enabled(ap) = 1
(respectively enabled(ap) = 0).

2. second, the attacker A|S is used dynamically to sequentially generate attack
actions ai that may succeed or fail according to the environment vector env.
Whenever an attack ai succeeds, the corresponding atomic proposition in T
is evaluated to true. Attack actions in T are either evaluated to true or not
yet.
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An execution trace ω of the risk assessment modelM (denoted attack trace)
is a sequence of timed attack actions (ai, τi), where τi ∈ [lai , uai ] is the duration
of action ai. We call ΩM the set of all attack traces generated by M. Remark
that the attacker model is constrained by cmax and tmax which define a budget
of available resources and time to perform a sequence of attack actions. Hence,
an attack trace is finite and ends in one of the following scenarios. Let us first
introduce the attack cost and the attack duration as follows. Given a trace ω ∈
ΩM of length n, the attack cost is cost(ω) = Σn

i=1cai , where cai is the cost
associated with action ai. Similarly, the attack duration is duration(ω) = Σn

i=1τi.
Thus, an attack trace ends when:

– the attack-defense tree T is evaluated to true or false,
– the attacker has exhausted his resources or time budget, i.e., when cost(ω) >
cmax or duration(ω) > tmax,

– the attacker cannot select more attack actions based on the strategy S.

It is worth mentioning that the attack-defense tree T is evaluated to false
only when the defense configuration D prevents all the tree branches from sim-
plifying to true. In contrast, the tree evaluates to true when the attacker’s goal is
fulfilled. The third situation happens when the attacker cannot choose an action
according to the strategy S that could have simplified the attack-defense tree.

Given a trace ω, we interpret it as a successful attack whenever the attack-
defense tree is simplified to true in addition to having cost(ω) and duration(ω)
below the cmax and tmax respectively, and as a failed attack otherwise.

4 Synthesizing Cost-effective Attack Strategies

In this section, we present our approach to explore attack strategies. As explained
earlier, our goal is to identify the most cost-effective strategy under which an
attack is most likely to succeed. Our proposal is based on a hybrid variant of
GA and Local Search (LS), called Intensified Elitist Genetic Algorithm (IEGA)
that allows to identify a near-optimal attack strategy.

A Genetic Algorithm (GA) is an evolutionary algorithm inspired from natu-
ral selection and genetics. It provides an efficient way to explore large solution
spaces to select high-quality solutions for optimization and search problems. An
important requirement to achieve an exploration is to be able to quantify solu-
tions in order to establish an order over them. In this work, we rely on SMC to
fulfill this goal as explained hereafter.

4.1 Overview

We consider as input a risk assessment modelM composed of an attacker model
A, an environment env, a defender model D, an attack-defense tree T and the
constraints tmax and cmax.

In our approach (IEGA), an individual denoted I = 〈S, cost, p〉 is an attack
strategy S annotated with an expected cost and a probability p of success of
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an attack when applying it. The cost and the probability p of success for an
individual are computed using SMC. More precisely, the probability estimation
algorithm (PESTIM) [6] is used to check the risk assessment model against the
property φ = ♦c<cmaxt<tmax T . Recall that the precision of PESTIM and its confidence
are respectively controlled by the parameters δ and α.

It is worth mentioning that SMC is not only used in a passive way. In some
cases, it can lead to update the strategy S when one or more primordial attack ac-
tions were assigned a zero-probability of selection, resulting in a zero-probability
of success (P (φ) = 0). In this case, S is updated by assigning residual probabil-
ities to actions with a null probability to occur.

IEGA starts by randomly generating N initial strategies (individuals) to
constitute the initial population P0, evolving over M generations, as depicted in
Fig. 1. For each generation, N/2 new children strategies are generated as follows:

1. Selection for breeding: we randomly choose two parent individuals in the
current population as candidates for the cross-over operation,

2. Cross-over operation: a child individual is built by performing a single-
point cross-over,

3. Intensification with LS: the resulting individual is intensified using LS,
i.e., a heuristic aiming at improving it by exploring its neighbor solutions,

4. Mutation: an individual has a pm probability to be mutated, i.e., altering
the selection probability of a randomly chosen attack action.

Generate initial

population

Select for

breeding

Compute

cross-over

Intensify

using LS

Perform

mutation

Apply ERE

policy

Loop N/2 times

Loop M times

Evaluate solution using SMC

Fig. 1: Workflow of IEGA with a population of N individuals over M generations

The last phase of the outer loop (ERE) in Fig. 1 identifies among parent
individuals in population Pi and their N/2 children, the ones to keep in the next
generation i+ 1. We use Extreme Ranking Elitism (ERE) [10] as a replacement
policy, which aims at selecting the best individuals while keeping some diversity
in the population. Concretely, in addition to the best solutions, bad ones are
kept to prevent early convergence.

In the next section, we further detail the cross-over, LS and ERE operations.
Selection for breeding and mutation are both performed by random sampling in
this work, and will therefore not be further detailed.

4.2 IEGA Operations Description

Cross-over operation. It consists of building a child I = 〈S, cost, p〉 by com-
bining two randomly selected parents I1 = 〈S1, cost1, p1〉 and I2 = 〈S2, cost2, p2〉.
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I is obtained by performing a single-point cross-over, i.e., inherits the first half
of its genes from I1 and the second half from I2 as follows:

S[i] =

{
S1[i], i ≤ |ΣA|/2
S2[i], otherwise

Cross-over is followed by a normalization operation to ensure that the obtained
strategy S is a valid mass function, i.e., Σi(S[i]) = 1.

Intensification with LS. The individuals resulting from the cross-over are in-
tensified, i.e. improved, using a local search (LS) over a set of neighbor solutions.

Individuals are said to be neighbors when their respective strategies are
slightly different. More formally, given an individual I = 〈S, cost, p〉, the set
of neighbor solutions V (I) = {Ii = 〈Si, costi, pi〉} to individual I is identified
by disabling a single attack action ai, as follows:

– if S[i] = 1 or S[i] = 0 then the ith neighbor individual Ii does not exist.
In the first case, it is because ai is the only enabled action and disabling it
makes S an invalid mass function. In the second case, ai is already disabled.

– otherwise, individual Ii is identified by a strategy Si such that:

Si[j] =

{
0, j = i

S[j]
Σk(S[k])−S[i] , otherwise

(1)

The normalization in the second case is again to ensure well-formedness of the
synthesized strategy (probability mass function). It is worth mentioning that
an individual has at most |ΣA| neighbors. Fig. 2 illustrates the computation of
the neighbors of an individual with a scheduler S = [0.3, 0.5, 0.2], over 3 attack
actions. For example, the first neighbor is obtained by disabling the first attack
action in S1 and then normalizing it.

LS improves the current solution by repeatedly moving to better solutions
residing in its neighborhood, until no improvement is possible. A neighbor solu-
tion Ii is said to improve the current one I if it has a better fitness value. The
latter is computed using the fitness function Score which is a weighted sum of
the cost and the probability of success p. Formally, the fitness function is de-
fined as Score(cost, p) = a × p − (1 − a) × cost, where a ∈ [0, 1] represents a
linearization factor, used for weighting and scaling the two parameters.

0.3 0.5 0.2

0 0.5
0.7 0 00.2

0.7
0.3
0.5

0.2
0.5

Initial solution

Neighbor 1 Neighbor 2 Neighbor 3

0.5
0.8

0.3
0.8

Fig. 2: Illustration of a neighborhood construction



Mitigating Security Risks through Attack Strategies Exploration 9

ERE replacement policy A genetic algorithm maintains a population of size
N over M generations. The replacement operation rules the survival of individ-
uals through generations. Extreme Ranking Elitist replacement is a balanced
solution to provide elitism while avoiding early convergence.

Given a population Pi of N parents and their N/2 children, an Extreme
Ranking Elitist replacement policy identifies the N candidate individuals for the
next generation’s population Pi+1. This policy is parametrized by pere, that rep-
resents the proportion of the population to be selected by elitism. More precisely,
the replacement is performed as follows:

1. We consider an intermediate population P ′i of size 3N
2 composed of the N

parents and their N/2 children. Individuals in this population are ranked
based on the Pareto dominance principle, and sorted in an ascending or-
der. In the Pareto dominance principle, a solution Ij is known as domi-
nated by another solution Ik if the latter is better for every criterion, in our
case, costj ≥ costk ∧ pj ≤ pk excluding the case where they are all equal.
Considering this definition, the ranking consists of assigning rank 1 to non-
dominated solutions of the population. Iteratively, we temporarily remove
the non-dominated ones and identify the new non-dominated solutions that
we assign the next rank, until all the solutions are ranked.

2. To select the N individuals to be part of generation (i+ 1), we compute the
number of best (elite) individuals Nb = N × pere, and the number of worst
individuals Nw = N × (1− pere) kept for diversification. Population Pi+1 is
computed as:

Pi+1 =

Nb⋃
j=1

{P ′i (j)} ∪
3N
2⋃

k= 3N
2 −Nw+1

{P ′i (k)}

where P ′i (j) is the jth individual in population P ′i . Therefore, we select the
Nb first (best) individuals and the Nw last (worst) solutions in P ′i .

5 Identifying Impactful Defenses

In this section, we explore defense configurations that make the system harder
to attack, in the sense that the best attacker – obtained with IEGA – needs
more resources to achieve his attack. More precisely, we aim at identifying the
defense actions that have the largest impact on the attack cost.

We propose a heuristic, denoted Impact-Optimal Defense (IO-Def), that eval-
uates the impact of the defenses on the attack cost. A naive approach to security
would be to enable all available defense actions. However, some of them may not
significantly increase the attack cost. A more pragmatic approach is to look for
a good balance between defenses and their impact on the attack cost. This is
particularly important if the organization’s defense budget is limited.

The heuristic implicitly builds an exploration tree where the root is the de-
fense configuration with all the actions enabled, i.e., D1

1 = ΣD. The defense



10 B.L. Mediouni, et al.

Data: a set of defense actions ΣD, a
threshold ε

Result: the optimal subset D of
enabled defenses

D = ΣD;
Boolean improved = true;
Integer i = 1;
while improved do

i++;
improved = false;
Compute the minimal attack cost
Ci−1
∗ againt D using IEGA;

foreach dj ∈ D do
Compute the minimal attack
cost Cij against D \ {dj} using

IEGA;
Compute the impact

gij =
Ci−1
∗ −Cij
Ci−1
∗

;

end
Find the defense dmin ∈ D having
the lowest impact gimin;

if gimin < ε then
D = D \ {dmin};
improved = true;

else
return D;

end

end
Algorithm 1: Impact-Optimal Defense
heuristic for defense exploration

Di
j at the ith level of the tree is ob-

tained by disabling the defense ac-
tion j that was enabled in its par-
ent node. For example, the third child
of D1

1 is D2
3 = D1

1 \ {d3}. Each de-
fense configuration Di

j is characterized

by the cost Cij and the success prob-

ability P ij of the attack strategy ob-
tained with IEGA. The tree is explored
in a breadth-first order. For each level
i > 1, we identify the defense configu-
ration with the minimal impact on the
attack cost, and select it for further ex-
ploration in the case its impact is lower
than a given threshold ε.

The impact gij is a measure that

scores a defense Di
j by computing the

relative decrease in the attack cost due
to the deactivation of the jth defense.
It is defined as (Ci−1

∗ − Cij) / Ci−1
∗ ,

where Ci−1
∗ is the attack cost of the

selected parent node. The exploration
ends whenever all the impacts of level
i + 1 are greater than or equal ε, or
no more defenses are available, i.e.,
Di+1

1 = ∅. Finally, the most impactful
defense configuration D is the one in
which no defense can be disabled. Al-
gorithm 1 presents the IO-Def heuris-
tic, that identifies the subset D of de-
fense actions ΣD such that the individ-
ual impact of each enabled defense is above ε.

Fig. 3 illustrates the exploration of the best defense configuration given three
defense actions ΣD = {a, b, c}, using IO-Def. In this example, the three defense
actions are initially enabled, represented in the root node (i = 1). Then we
disable one defense action at a time, resulting in three new defense configurations
{a, b}, {a, c} and {b, c}, that constitute level i = 2. Their impacts are then
computed and compared to identify the smallest value, in this case g2

2 . Since
g2

2 < ε, {a, c} is selected as the new best defense and the exploration is resumed
from it. Again, we disable defenses one by one to generate defense configurations
of level i = 3, and g3

1 is identified as the smallest impact value. However, in this
case, g3

1 ≥ ε, which leads to the end of the exploration. Therefore, D = {a, c} is
considered to be the most impactful defense configuration.

In the worst case, Algorithm 1 executes the while loop n + 1 times where
n = |ΣD|. Each iteration computes m + 1 attack strategies using IEGA, where



Mitigating Security Risks through Attack Strategies Exploration 11

{a, b, c}
(P 1

1 , C
1
1= C1

∗)

{b, c}
(P 2

1 , C
2
1 )

{a, c}
(P 2

2 , C
2
2= C2

∗)

{a, b}
(P 2

3 , C
2
3 )

g21 g22 g23

{c}
(P 3

1 , C
3
1 )

{a}
(P 3

2 , C
3
2 )

g31 g32

D :

gij =
Ci−1
∗ −Cij

Ci−1
∗

, i > 1

g22 = min{g21 , g22 , g23}
g22 < ε

g31 = min{g31 , g32}
g31 ≥ ε

i = 1

i = 2

i = 3

Fig. 3: Illustration of the IO-Def heuristic

m = |D| (initially m = n), and evaluates the impact of defenses. Remark that
each iteration decreases m by one (the deactivated defense action). Hence, IEGA

is executed, at worst, (n+1)(n+2)
2 times. This happens when all the available

defenses fail to prevent the identified strategy. Therefore, they are all disabled.

6 Experiments

In this section, we present the experiments performed using IEGA and IO-Def
heuristics. We considered case studies addressing security issues at the level of
organizations (ORGA, MI), gateway protocols (BGP), and sensor network infras-
tructures (SCADA). Comparison with the state-of-the-art technique stratego
[5] shows that our approach performs better in most of the cases.

6.1 Overview and Experimental Setting

In our experiments, we considered four case studies briefly discussed below5:

1. ORGA. In this study, eight cyber and social attack actions can be combined
to infiltrate an organization. To prevent such actions, the organization con-
siders different defense actions, namely, train employees for thwart (t1) and
for tricks (t2), threaten to fire them (tf) and authenticate tags (at).

2. Resetting a BGP session. In this case study, an attacker can execute six
attack actions to reset a BGP session. The system is protected by three
defense actions, i.e. check TCP sequence number by MD5 authentication
(au), check trace-route by using randomized sequence numbers (rn), and
secure routers with firewall alert (sr).

3. Supervisory Control And Data Acquisition system (SCADA). On these sys-
tems, the attacker tries to access some of the thirteen system components and

5 Further details are provided in Appendix A
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provoke hardware failures in order to disturb the system. The system con-
siders four defense mechanisms: switch the Human-Machine Interface (sw)
or restart one of the three system agents (rst1, rst2, rst3).

4. A Malicious Insider attack (MI). In this case study, an insider tries to attack
an organization system from inside by exploiting seventeen identified vul-
nerabilities. The system sets up protections by deploying an anti-virus (dva)
and a mechanism to track the number of tries on passwords (tpt).

Experimental approach. For each of the case studies, we performed two kind
of experiments. In the first, we manually tried all the possible combinations of
available defense actions, synthesized sophisticated attack strategies for them
and evaluated their induced costs and probabilities of success. We proceeded as
follows: each time, we fixed a defense configuration and applied IEGA in order
to synthesize a near-optimal attack strategy. Since IEGA relies on SMC, which
is an estimation technique, to synthesize strategies, we performed 25 runs of
IEGA each time and measured the expected values and standard deviations of
the cost and the probability of success (reported in Table 1). Furthermore, for
this first experiment, we compared the results obtained by IEGA with the ones of
stratego on the ORGA case study. As stated earlier, our technique synthesizes
better attack strategies in terms of cost as reported in Table 2.

The second kind of experiments aims at identifying the most impactful de-
fense configurations against a near-optimal attack strategy obtained in the first
experiments. To do so, we rely on the IO-Def heuristic that automatically ex-
plores the defense configurations as explained in Section 5. The results of this
set of experiments are reported in Fig. 5.

For all the experiments, we considered the same budgetary constraints cmax =
50000 and tmax = 300 and we set the threshold ε = 0.05 for the experiments
with IO-Def. We also investigated the performance (exploration time) of the
proposed heuristics (IEGA and IO-Def). We observed that IEGA shows a linear
growth with respect to the size of ΣA while IO-Def grows polynomially in the
size of ΣD.

6.2 Results and Discussion

Manual Exploration of Defenses. We first report in Table 1 the results of IEGA
on the BGP, SCADA and MI case studies. In this table, the first column cor-
responds to the deployed defense configuration, the second and third columns
report respectively the average cost x̄cost over 25 runs of IEGA and standard
deviation σcost, the last column shows the average execution time of IEGA. We
omit reporting the average probability of success (resp. standard deviation) as it
is always 1 (resp. 0) 6. Note that for each study, we also investigated the setting
where no defense action is deployed which allows to see the impact of different
defense actions on the attack cost when enabled.

6 Except for the first three cases in BGP where the probability of success is 0.
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For BGP, we observed that the first three defense configurations lead in-
evitably to exceed the maximum allowed cost cmax. That is, no attack strat-
egy can be synthesized within this budget, whereas in the case of the remain-
ing defense configurations, strategies requiring lower cost can be synthesized.

Defense x̄cost σcost Runtime (s)

BGP

au rn sr 50000 0.00 2.65

au sr 50000 0.00 2.54

rn sr 50000 0.00 2.71

au rn 284.31 2.83 3.95

au 285.00 2.38 4.02

sr 428.95 3.60 4.99

rn 284.45 1.97 3.93

none 283.96 1.94 4.09

SCADA

sw rst1 rst2 rst3 327.71 3.85 40.74

sw rst1 rst2 328.68 3.61 39.49

sw rst1 rst3 328.69 3.00 41.63

sw rst2 rst3 329.20 3.20 42.63

rst1 rst2 rst3 328.57 2.87 42.67

sw rst1 328.09 3.63 39.46

sw rst2 328.48 3.07 38.32

sw rst3 328.29 3.29 39.90

rst1 rst2 327.87 2.91 41.68

rst1 rst3 328.52 4.47 39.43

rst2 rst3 327.78 3.68 39.20

sw 329.03 4.16 38.64

rst1 327.96 3.43 39.29

rst2 326.60 4.38 40.26

rst3 326.95 3.32 42.30

none 330.21 3.11 41.35

MI

dva tpt 328.83 3.53 49.62

dva 163.04 3.66 48.60

tpt 331.08 3.42 47.84

none 159.85 2.69 49.26

Table 1: IEGA results with various defense
configurations on BGP, SCADA and MI.

Moreover, one can see that the
cost growth is minor when us-
ing rn or au compared to the
case when no defense is used. For
SCADA, we notice that the com-
putation of the near-optimal strat-
egy results almost in the same
cost for all defense configuration.
This can be explained by the ex-
istence of a low cost strategy that
can always be applied, regardless
of the implemented defenses. Fur-
thermore, we observed that the
cost induced by using any com-
bination of defense actions does
not significantly improve compared
to the defenseless case. For MI,
we obtained different costs depend-
ing on the defenses used. We no-
ticed that defense action dva in-
significantly increases the attack
cost as opposed to tpt. The re-
sults for the ORGA case study are
reported in Table 2 for the sake
of comparison with stratego.
Except the last two columns, the
table presents the same information
as Table 1. For this study, we ob-
served that varying the enabled de-
fenses significantly affects the min-
imal attack cost and that the de-
fense action at does not have a
great impact on the cost. We actu-
ally observed that the attack strate-
gies blocked by this defense action
can be also blocked by t2.

Detailed results regarding the
runtime performance of IEGA are
reported in the Table 1 and sum-
marized in Fig. 4. The latter shows
a linear evolution of the runtime
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when increasing the size of ΣA, i.e., the number of available attack actions.
The measures in Fig. 4 correspond respectively to the average runtime on BGP
(6 actions, 3.6s), ORGA (8 actions, 9.9s), SCADA (13 actions, 40.8s) and MI
(17 actions, 48.8s). We also observed that IEGA shows a certain stability of the
synthesized attack strategy over different runs as testified by the small standard
deviation observed in the different experiments.

IEGA stratego Improvement

x̄cost σcost Runtime (s) x̄′cost (%)

Defenses

t1 t2 tf at 968.08 5.30 9.6 1038.33 7

t2 tf at 237.97 1.39 10.2 410.52 42

t1 t2 at 238.37 1.55 10.6 309.35 23

at t2 237.92 1.27 10.1 359.48 34

t1 tf t2 967.05 7.90 9.8 1000.90 3

tf t2 238.18 1.58 10.2 288.53 17

t1 t2 238.20 1.29 10.2 295.70 19

t2 238.21 1.59 10.6 298.67 20

t1 tf at 96.19 1.14 9.4 112.17 14

tf at 96.04 1.08 9.7 103.37 7

t1 at 96.35 0.98 9.5 133.60 28

at 96.15 0.98 9.4 110.00 13

t1 tf 96.08 1.29 9.8 121.07 21

tf 96.27 1.14 9.8 105.97 9

t1 95.99 0.67 9.4 109.33 12

none 96.48 0.91 10.2 110.57 13

Table 2: IEGA results with various defense configurations on ORGA benchmark.
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Fig. 4: IEGA runtime variation

Finally, we compared the results obtained
by IEGA with stratego [5] on the ORGA
case study. Comparison results are shown in
the last two columns of Table 2 which respec-
tively present the average cost obtained using
stratego and the percentage of improvement
provided by our approach. This improvement

is measured as
x̄′cost−x̄cost

x̄′cost
where x̄′cost (respec-

tively x̄cost) is the minimal cost returned by
stratego (respectively IEGA). The obtained
results show that our method is able to find at-
tack strategies with lower attack costs than stratego within the specified cost
budget. In this case study, the improvement induced by our approach –in term
of cost reduction– compared to stratego ranged from 3% to 42% depending
on the deployed defense configuration.
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Automatic Exploration of Defenses. We report in Fig. 5 exploration results using
IO-Def for the different case studies. For each of them, we present the identified
most impactful defense configuration D in a separate table showing respectively,
the defense actions, their status (on/off), their impact on the attack cost (in
percentage) in the context of D and the IO-Def exploration time.

Defense Actions t1 t2 tf at

Status On On On Off

Impact on cost +75% +90% +75% -

Exploration time 1min 25s

(a) Results on ORGA

Defense Actions au rn sr

Status Off On On

Impact on cost - +99% +99%

Exploration time 23s

(b) Results on BGP

Defense Actions sw rst1 rst2 rst3

Status Off Off Off Off

Impact on cost - - - -

Exploration time 9min 11s

(c) Results on SCADA

Defense Actions dva tpt

Status Off On

Impact on cost - +50%

Exploration time 4min 7s

(d) Results on MI

Fig. 5: Results obtained with IO-Def on different case studies

We recall that identifying a defense action to be impactful or not, is done by
comparing its impact to the threshold ε = 0.05. We observed that the best de-
fense configuration for ORGA (Table 5a) is D = {t1, t2, tf}. In this setting, the
role played by at was found to be negligible, while the highest impact (+90%) is
brought by t2. The exploration results for BGP (Table 5b) show that the deploy-
ment of both rn and sr defenses is mandatory. Both of them have an impact of
+99%, i.e., disabling any of them leads to a heavy decrease of the attack cost. In
contrast, in the case of SCADA (Table 5c), none of the defenses has a significant
impact on the attack cost. Basically, this means that the available defenses are
useless against the synthesized cost-effective attack strategy. Table 5d shows the
best defense obtained in the MI case study. In this defense configuration, only
tpt plays a significant role in increasing the attack cost, with a +50% impact.

Regarding the exploration time of IO-Def, the main observation is that it
does not only depend on the size of ΣD but also on the nature of the system
to explore and the IEGA runtime (i.e., the size of ΣA). In spite of the fact that
ORGA and SCADA have the same number of defense actions, they are explored
in significantly different amounts of time (respectively 1min 25s and 9min 11s).
This is due to the inefficient available defense actions in the case of SCADA,
leading to the worst case exploration time of IO-Def where all the defenses have
to be disabled. Moreover, even though MI has the smallest number of defense
actions to explore, it is not the fastest. This is explained by the time required
for a single run of the IEGA algorithm (48.8s in average) in comparison to the
cases of ORGA and BGP (respectively 3.6s and 9.9s in average).
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7 Conclusion

In this paper we presented a method for identifying impactful defense actions
with respect to sophisticated attack strategies. Our proposal relies on two new
heuristics. The first is a bi-objective method to synthesize a cost-effective at-
tacker strategy given a risk assessment model. The second heuristic allows to
find the defense configuration with the biggest impact on the attack cost.

It is worth mentioning that the IO-Def heuristic can be adapted for risk
assessment from the defense perspective. This can be easily done by extending
it to consider a maximal defense budget, which allows to make a more realistic
analysis. Other criteria, such as the return on investment (ROI) [11], can be also
used to evaluate defense actions. Another investigation would be to synthesize
attack strategies for more detailed models, where vulnerabilities and nominal
behavior are explicitly described.
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A Case Studies Description

In the following case study descriptions, attack actions are characterized by their
lower (LB) and upper (UB) time bounds, the required resources (Cost) and their
probability to succeed (Env). In the ADTs, attack actions are represented by
ellipses and defense actions by rectangles.

A.1 An organization system attack (ORGA) [5]

∨

∧

is bs ¬

∧

t1 tf

t b ∧

¬

t2

∨

st ∧

im ot

¬

∧

at ¬

ba(a) Attack-Defense Tree

Action LB UB Cost Env

Identify Subject (is) 0 20 80 0.8

Bribe Subject (bs) 0 20 100 0.7

Threaten (t) 0 20 700 0.7

Blackmail (b) 0 20 700 0.7

Send false Tag (st) 0 20 50 0.5

Break Authentication (ba) 0 20 85 0.6

Infiltrate Management (im) 0 20 70 0.5

Order Tag replacement (ot) 0 20 0 0.6

(b) Attack actions characteristics

Defense action Label

t1 Training for thwart

tf Threaten to Fire employees

t2 Training for trick

at Authenticate Tag

(c) Defense actions labels

Fig. 6: ORGA case study description
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A.2 Resetting a BGP session (BGP) [3]

We constructed this case study based on [11], in which detection and mitigation
events are attached with success probabilities (resp. PD and PM ). We transpose
these probabilities to the attack actions in a straightforward manner: the prob-
ability of an attack action to succeed is computed as the probability that all
the implemented countermeasures set to block it, fail. For example, the attack
action sa can be blocked by both defense actions au and rn. So, the probability
of sa to succeed equals Env(sa) = (1− PD1 × PM1)× (1− PD2 × PM2), where
PD1, PD2, PM1 and PM2 are given in [11]. Note that, in our case, a pair of
detection-mitigation events is combined is a single defense action. For example,
PD1 and PM1 are merged into a defense au, and, PD2 and PM2 into the defense
action rn. Also, the defense mechanisms are fixed before starting an analysis
and have a probability 1.

∨

∧

∧

∨

∨

no op ka

sm

∧

sa ¬

au

¬

rn

∧

ar ¬

sr

(a) Attack-Defense Tree

Action LB UB Cost Env

Send RST message to TCP stack (sm) 0 20 50 0.7

Send BGP message: notify (no) 0 20 60 0.7

Send BGP message: open (op) 0 20 70 0.7

Send BGP message: keep alive (ka) 0 20 100 0.7

TCP sequence number attack (sa) 0 20 150 0.42

Alter config. via router (ar) 0 20 190 0.65

(b) Attack actions characteristics

Defense action Label

au Check TCP sequence number by MD5 authentication

rn Check Trace-route by using randomized sequence numbers

sr Secure routers with firewall alert

(c) Defense actions labels

Fig. 7: Resetting a BGP session description
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A.3 Supervisory Control And Data Acquisition system (SCADA)[1]

∨

∨

∨

2/3

s1 s2 s3

wse

ulan ∨

∧

∧

hmi ¬

sw

scopf

∧ ∧

∧

g3 ¬

rst3

∧

g2 ¬

rst2

∧

g1 ¬

rst1

∨

db uwanws

(a) Attack-Defense Tree

Action LB UB Cost Env

Sensor one (s1) 0 20 100 0.1

Sensor two (s2) 0 20 110 0.1

Sensor three (s3) 0 20 90 0.1

Wrong estimation (wse) 0 20 250 0.25

Unavailable network LAN (ulan) 0 20 275 0.3

Control server one (hmi) 0 20 100 0.15

Control server two (scopf) 0 20 120 0.15

Controlling agent one (g1) 0 20 100 0.09

Controlling agent two (g2) 0 20 30 0.15

Controlling agent three (g3) 0 20 40 0.08

Database (db) 0 20 170 0.5

Unavailable network (uwan) 0 20 160 0.35

Workstation (ws) 0 20 150 0.4

(b) Attack actions characteristics

Defense action Label

sw Switch

rst1 Restart agent one if an attack is detected on it

rst2 Restart agent two if an attack is detected on it

rst3 Restart agent three if an attack is detected on it

(c) Defense actions labels

Fig. 8: SCADA system description
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Similarly to BGP, SCADA is inspired from [11]. This case study represents an
example of how attack trees are used to answer the failure assessment problem
where attack actions represent the possible hardware/software failures. Since
we are interested to identify what an attacker can do to reach a malicious goal
on a system, we then interpret these attack actions as an attacker trying to
trigger a hardware/software failure. So, in addition to the transposition from
probabilities of successful defenses to probabilities of successful attack actions,
Env also scales with the probability of failures. For example, the probability
of g1 to succeed, provided it is guarded by a defense rst1, is computed as:
Env(g1) = Pg1 × (1 − PD × PM ), where the probabilities of a failure of the
controlling agent one Pg1, the detection of its failure PD and its restarting PM
are given in [11].

In figure 8a, the operator “2/3” is a shortcut designating the case where at
least two events si and sj occur, with i 6= j. It is equivalent to the boolean
expression φ = (s1 ∧ s2) ∨ (s1 ∧ s3) ∨ (s2 ∧ s3).

A.4 A Malicious Insider attack (MI) [2]

In what follows, we describe a Malicious Insider attack (MI). It is presented in
[11] and is adapted to our context in a similar way to BGP.
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∨
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¬

dva

lv

uar

∨

∨

ela ewa

∨

dbf ∨

dbg dbw

oc ∨

cmf cmc cmu

∧

mu vop

∨

pc ∧

∨

rt sn

¬

tpt

sme

(a) Attack-Defense Tree

Action LB UB Cost Env

Unauthorized alternation of registry (uar) 0 20 50 0.08

Launch virus (lv) 0 20 60 0.07

Email local account (ela) 0 20 70 0.15

Email web-based account (ewa) 0 20 100 0.2

Drop-box: FTP to file server (dbf) 0 20 150 0.1

Drop-box: post to new group (dbg) 0 20 190 0.4

Drop-box: post to website (dbw) 0 20 100 0.1

Online chat (oc) 0 20 110 0.1

Copy to media: Floppy disk (cmf) 0 20 90 0.1

Copy to media: CD-ROM (cmc) 0 20 250 0.25

Copy to media: USB drive (cmu) 0 20 275 0.3

Misuse (mu) 0 20 100 0.2

Violation of organization policy (vop) 0 20 120 0.15

Poor configuration (pc) 0 20 100 0.15

Sniff Network (sn) 0 20 30 0.18

Root Telnet (rt) 0 20 40 0.12

Sendmail exploit (sme) 0 20 170 0.5

(b) Attack actions characteristics

Defense action Label

dva Detect viruses with anti-virus

tpt Track number of tries at password

(c) Defense actions labels

Fig. 9: A Malicious Insider attack (MI) description


