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Abstract. Security assessment of organization’s information systems is
becoming increasingly complex due to their growing size and the underly-
ing architectures (e.g., cloud). Analyzing potential attacks is a pragmatic
approach that provides insightful information to achieve this purpose. In
this work, we propose to synthesize effective defense configurations for so-
phisticated attack strategies, which are obtained by minimizing resource
usage while ensuring a high probability of success. Obtained results on
real-life case studies show substantial improvement compared to existing
techniques.

1 Introduction

Modern organizations strongly rely on information and communication technolo-
gies in their daily activities. This reliance put forward serious questions about
the inherent risks brought by these technologies and how to manage them. Risk
management is the activity consisting of identifying, analyzing, evaluating, treat-
ing and monitoring risks that an organization is subject to.

Risk assessment consists on the analysis and the evaluation of the organiza-
tion’s vulnerabilities with respect to the deployed security policy. Attack Trees
(AT) [?] have emerged as a promising formalism to structure risk assessment and
security analysis. It is a compact representation of the organization’s probable
threats and its vulnerabilities to these threats. They allow to cover deliberate and
accidental threats that may affect organization security, ranging from hacking
and viruses, theft or equipment deterioration, to human errors. This formalism
has been recently extended to support both the organization’s security breaches
and their countermeasures. This extension, called Attack-Defense Tree (ADT)
[?], brings a more realistic view of possible attack scenarios with respect to ex-
isting defenses and hence leads to more viable diagnoses.

In this paper, we propose a risk assessment method based on the ADT formal-
ism to find impactful defenses that prevent cost-effective attack strategies. We
follow an offensive approach, that is, evaluating defenses by performing attacks
on the system under study. In our heuristic (IO-Def), we focus on finding the
adequate defenses against an optimized attack strategy characterized in terms
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of attack cost and success probability. These characteristics are computed using
Statistical Model Checking (SMC) techniques with respect to a near-optimal
cost-effective attack strategy. This strategy is explored by a hybrid variant of a
genetic algorithm and local search (IEGA), as opposed to [?] that relies on re-
inforcement learning. Genetic algorithms are evolutionary algorithms that have
shown effectiveness in exploring large solution spaces to select high-quality an-
swers for optimization and search problems. Moreover, several extensions allow
to perform multi-objective explorations [?,?,?,?]. In this work, the role of IEGA
is to learn a strategy of attack that minimizes the attacker cost while maximizing
its probability to succeed, given a deployed defense configuration.

The idea of the paper is as follows:

We start from the a set of known vulnerabilities in the system (subject of
study). Identifying vulnerabilities is challenging and is an active field of re-
search. This work assumes that vulnerabilities identifications has been already
performed. It is also to note that this should a continuous activity since the
system changes over time (updates, etc.)

Identified vulnerabilities give an idea about attack actions that potentially
exploit them (this gives concretely the set of attack actions to consider). Given
these attacks, defense actions are foreseen to deal with them (this gives the set
of defense actions to consider). However, defense actions provide overlapping
protections and all of them are always pertinent to deploy in the same time.
Moreover, companies have generally limited budget for security. It is thus pri-
mordial to rely on rigorous quantitative techniques that helps exploring and
identifying the most pertinent defenses in such a setting.

Besides, attack actions can be combined in different ways (by a sophisticated
attacker) to circumvent existing defense actions. This is what we call attack
strategy. It thus important to think of defense configuration/strategy and not
in term of individual defense actions. The second requirement is thus to explore
defense strategies with respect to different attack profiles, offensive security.

We intend by attack profiles, that is attack strategies fulfilled with respect
to some logic (not the goal as the goal is always to get control, etc.). In reality
attackers are also subject to physical constraints, e.g. limited resources, time,
some knowledge about the probability of success of individual attack actions,
etc. It is also to remark that attack actions requiring short time and limited
resources have lower probability of success and conversely. Accordingly, different
profiles could be identified. The underlying logic (profile) of attacker differ with
respect to different human parameter (experience, etc.). It could for instance that
the attacker aim at using attack actions with limited resources or the opposite.
However, we believe that a sophisticated attacker (I would say the majority)
would try to optimize these criterion, that is aiming at finding compromises
that end-up with attack strategies requiring an affordable amount resources and
an acceptable probability of success.

In this paper, we propose a parametric approach (in the sense that it may
consider different attacker profiles) the allows to synthesize pertinent defense
strategies to make sophisticated attacks (with respect to a specific profile) harder
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to achieve. In this work, we consider the cost required for an attack as the hard-
ness criterion. In other words, the exploration of the defense strategies aims at
identifying the most pertinent defense actions (conversely the one not pertinent)
that maximizes the cost of an attack.

This paper is organized as follows. Related work is presented in Section 2. In
Section 3, we provide an overview of the attacker, defender, and attack-defense
tree models, in addition to their interaction in the risk assessment model. Details
about the attack strategy exploration technique (IEGA) is given in Section 4.
Section 5 develops the approach we introduce for the discovery of an impactful
defense configuration. In Section 6, we evaluate the proposed methods on four
case studies. Finally, Section 7 concludes and presents future directions.

2 Related Work

Attack Trees (AT) [?] are widely used in security to model system vulnera-
bilities and the different combinations of threats to address a malicious goal.
Attack-Defense Trees (ADT) [?] extend ATs with defense measures, also known
as countermeasures, to include the organizations defenses and bring into consid-
eration the impact of attacks on these organizations. These defense actions try
to prevent an attacker from reaching its final goal, and they can appear at any
level of the tree. More recently, Attack-Countermeasure Trees (ACT) [?] were
introduced to model defense mechanisms that are dynamically triggered upon
attack detection.

Different types of analysis are proposed on these variants of trees. In [?]
authors focus on the probabilistic analysis of ATs, through the computation of
the probability, cost, risk and impact of an attacker’s goal. A similar analysis
is performed on ADTs in [?], called Threat Risk Analysis (TRA), applied to
the security assessment of cloud systems. In addition to the aforementioned
probabilistic analysis, Roy et al. [?] make use of the structural and Birnbaum
importance measure to prioritize attack events and countermeasures in ACTs.

Authors in [?] propose a reinforcement-based method on ADTs to find a near-
optimal attack strategy. In this work, an attacker with a complex probabilistic
and timed behavior is considered which makes it more difficult to perform a
static analysis. The authors propose to address the security analysis problem
from the attacker’s viewpoint by synthesizing the stochastic and timed strategy
that minimizes the attack cost using UPPAAL STRATEGO tool. The strategy
indicates the attack action to perform in each state in order to realize a successful
attack with a minimal cost.

In the previous approach, attack actions are described with an additional
time interval determining their duration range. The learned strategy identifies,
in addition to the attack sequences, the time durations to respect a maximum
time bound of reaching the attacker’s goal. However it is not always the case
that an attacker can control the duration time of an attack action, eg. the ex-
ecution time of a brute-force attack on a password. Instead, we consider time
as a characteristic of an attack action, i.e., cannot be controlled as it depends
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on the system, environment, etc. We consider the maximum time bound as a
global success condition of an attack, and we propose IEGA, a hybrid Genetic
Algorithm to find the stochastic strategy minimizing the attack cost while maxi-
mizing the probability of reaching the attacker’s goal. This strategy acts similarly
to a scheduler on attack actions that tells the attacker which action to perform
when a choice is required.

3 Background

In this section, we formally introduce definitions and notations used in the re-
mainder of the paper. We first introduce the models for attacker and defender.
Then, we recall the definition of an attack-defense tree, and finally, we describe
the model used for risk assessment.

For the following definitions, we consider ΣA to be a set of attack actions, ΣD
is a set of defense actions, and Σ = ΣA∪ΣD the set of all actions. Furthermore,
we consider that each attack action a ∈ ΣA is associated with 1) a time interval
[la, ua] that represents lower and upper time bounds allowed to perform a, 2) a
cost ca ∈ R which models needed resources to perform a and 3) a probability of
success pa that represents the likelihood for a to succeed when performed. We
call environment the probabilities of success of all the attack actions in ΣA and
we denote it env.

3.1 Attacker, Defender and Attack-Defense tree

Attacker. The attacker model represents all possible attack combinations given
the alphabet of attack action ΣA. It is syntactically defined as follows:

Definition 1 (Attacker). An attacker A is a tuple 〈L, l0, T 〉 where :

– L = {l0, . . .} is a set of locations, where l0 is the initial location,
– T ⊆ L×Σa × L is a set of labeled transitions of the form (li, a, lj).

Intuitively, an attacker A starts at the initial state and performs a sequence
of attack actions by choosing each time among the available ones in ΣA. At a
given state, an attack action a may succeed, which leads to a new state where
a is no more available and where all other actions remain unchanged. In the
case where a fails, the state of the attacker does not change. Remember that the
success or failure of a selected attack action is not controlled by the attacker, but
is determined by the environment introduced in the beginning of this section.
We formally define the behavior of an attacker as follows. Let status : ΣA×S →
{0, 1} be a predicate that indicates, at a given state s, whether an attack action
has previously succeeded.

Definition 2 (Attacker semantics). An attacker A = 〈L, l0, T 〉 is labeled
transition system 〈S, s0, R〉, where

– S = L × VΣA , where VΣA is a vector that contains the status (according to
the predicate status) of all the attack actions in ΣA,
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– s0 = (l0×V 0
ΣA

) is the initial state, where V 0
ΣA

= [0, . . . , 0] is the initial status
of all the attack actions in ΣA,

– R ⊆ S ×ΣA × S is a set of transitions of the form (si, a, sj) built out of T :

1. Success:
si=(li, V

i
ΣA

) ∧ status(a,si)=0

sj=(lj , V
j
ΣA

), lj 6=li, status(a,sj)=1, ∀ak 6=a status(ak,sj)=status(ak,si)

2. Failure:
si=(li, V

i
ΣA

), status(a,si)=0

sj=si

Note that the attacker semantics above is non-deterministic, that is the choice
of an attack action at each state is performed non-deterministically. We intro-
duce the notion of attack strategy to cope with this non-determinism. An at-
tack strategy S : ΣA −→ [0, 1] is a mass probability function that associates
each attack action with a probability of being selected by the attacker3. We de-
note by A|S the attacker A that applies the strategy S. Thus, the probability
P : S ×ΣA −→ [0, 1] to select an attack action a at any state si is defined as

P (si, a) =

0 if status(a, si) = 1
S(a)∑

j=1
S(aj)×(1−status(aj ,si)) otherwise

Defender. A defender models the deployed set of defense actions. In this work,
it represents a static defense configuration, where a defense action d ∈ ΣD is
either enabled or not in all the states of the system. It is defined as follows:

Definition 3 (Defender). A defender D ⊆ ΣD is the subset of enabled defense
actions in ΣD.

Similarly to the attacker, we define a predicate enabled : ΣD → {0, 1} that tells
if a defense action is currently enabled. Formally, enabled(d) = 1 when d ∈ D,
and 0 otherwise.

Attack-Defense Tree. It represents some knowledge about the system subject
to analysis. For instance, it includes the attack combinations (with respect to
the analyzed system vulnerabilities) that may lead to the success of an attack,
along defense mechanism deployed (in use) in the system. In this work, we define
it as a Boolean combination of attack and defense actions as follows:

Definition 4 (Attack-Defense Tree). An attack-defense tree T is a defined
by the following inductive grammar:

φ, φ1, φ2 ::= true | ap | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | (φ), where ap ∈ Σ

The evaluation of the attack-defense tree requires an attacker model A and
a defender model D. This is performed as part of the risk analysis activity that
relies on a Risk Assessment Model introduced below.

3 Note that the strategy is static, i.e., the same in any state, in this work. Considering
dynamic strategies is a future work.
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3.2 Risk Assessment Model

We now explain how the previous models, namely Attacker, Defender and Attack-
Defense Tree are used together to build a complete view for analysis, called Risk
Assessment Model and defined as follows.

Definition 5 (Risk Assessment Model). A risk assessment model M is a
composition of:

– A|S is an attacker provided with a strategy S,

– env : ΣA −→ [0, 1] is the environment,

– D is a defender,

– T is an attack-defense tree,

– cmax, tmax ∈ R are the maximal attacker cost and time resources.

It allows to simulate attacks (represented by an Attacker A|S) – under con-
straints cmax and tmax – on the system (abstracted by the environment env)
against a fixed defense configuration (modeled by the Defender D). The status
of an attack is given by the current status of the Attack-Defense Tree T . The
evaluation of the status of an attack using the attack-defense tree T is twofold:

1. the defense configuration D is used to evaluate the defense part of the tree,
(i.e., ap of T such that ap ∈ ΣD). This phase is done statically since the
defense is fixed in our case. For each ap ∈ T , where ap is a defense ac-
tion, ap is evaluated to true (resp. false) whenever enabled(ap) = 1 (resp.
enabled(ap) = 0).

2. second, the attacker A|S is used dynamically to sequentially generate attack
actions ai that may succeed or fail according to the environment vector env.
Whenever an attack ai succeeds, the corresponding action in T is evaluated
to true. Attack actions in T are either evaluated to true or not yet.

An execution trace ω of the risk assessment modelM (denoted attack trace)
is a sequence of timed attack actions (ai, τi), where τi ∈ [lai , uai ] is the duration
of action ai. We call ΩM the set of all attack traces generated by M. Remark
that the attacker model is constrained by cmax and tmax which define a budget of
available resources and time to perform a sequence of attack actions. Hence, an
attack trace is finite and ends in one of the scenarios below. Let us first introduce
the attack cost and the attack duration as follows. Given a trace ω ∈ ΩM of
length n, the attack cost is cost(ω) = Σn

i=1cai , where cai is the cost associated
to action ai. Similarly, the attack duration is duration(ω) = Σn

i=1τi. Thus, an
attack trace ends when:

– the attack-defense tree T is evaluated to true or false,

– the attacker has exhausted his resources or time budget, i.e., when cost(ω) >
cmax ∨ duration(ω) > tmax,

– the attacker cannot select more attack actions based on the strategy S.
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It is worth mentioning that the attack-defense tree T is evaluated to false
only when the defense configuration D prevents all the tree branches from sim-
plifying to true. In contrast, the tree evaluates to true when the attacker’s goal is
fulfilled. The third situation happens when the attacker cannot choose an action
according to the strategy S that could have simplified the attack-defense tree.

Given a trace ω, we interpret it as a successful attack whenever the attack-
defense tree is simplified to true in addition to having cost(ω) and duration(ω)
below the cmax and tmax respectively, and as a failed attack otherwise.

4 Synthesizing Cost-effective Attack Strategies

In this section, we present our approach to explore attack strategies. As explained
earlier, our goal is to identify the most cost-effective strategy under which an
attack is most likely to succeed. Our proposal is based on a hybrid variant of
GA and Local Search (LS), called Intensified Elitist Genetic Algorithm (IEGA)
that allows to identify a near-optimal attack strategy.

A Genetic Algorithm (GA) is an evolutionary algorithm inspired from natural
selection and genetics. It provides an efficient way to explore large solution spaces
to select high-quality answers for optimization and search problems. For that,
solutions (individuals of the genetic population) need to be comparable in a
quantitative basis.

4.1 Approach Overview

The approach considers, as input, a Risk Assessment ModelM that is composed
of an attacker model A, an environment env, a defender model D, an attack-
defense tree T and the constraints tmax and cmax.

In the proposed approach, an individual is denoted I = 〈S, cost, p〉, where
S is an attack strategy together with its expected cost and the probability p of
an attack being successful under S. Besides, we use SMC as a mean to evaluate
individuals. That is, given a strategy S, SMC estimates the cost and the proba-
bility p of an attack being successful. More precisely, we rely on the probability
estimation algorithm (PESTIM) [?] to check the risk assessment model against
the property φ = ♦c<cmaxt<tmax T . Recall that the precision of PESTIM is controlled
by the confidence level (δ, α).

The SMC can lead to update the strategy S when one or more primordial
attack actions were assigned a zero-probability in the strategy resulting in a zero
probability of success (p(φ) = 0). In this case, S is updated by assigning residual
probabilities to actions with a null probability to occur.

As depicted in Fig. 1, IEGA starts by randomly generating N initial strate-
gies (individuals) to constitute the initial population P0, evolving over M gener-
ations. For each generation, N/2 new children strategies are generated as follows:

1. Selection for breeding: we randomly choose two parent individuals in the
current population as candidates for the cross-over operation,
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2. Cross-over operation: a child individual is built by performing a single-
point cross-over,

3. Intensification with LS: the resulting individual is intensified using LS,
i.e., a heuristic aiming at iteratively improving it by exploring its neighbor
solutions,

4. Mutation: after intensification, an individual has a pmutation-probability
to be mutated, i.e., altering the selection probability of a randomly chosen
attack action.

Generate initial

population

Select for

breeding

Compute

cross-over

Intensify

using LS

Perform

mutation

Apply ERE

policy

Loop N/2 times

Loop M times

Evaluate solution using SMC

Fig. 1: Workflow of IEGA with a population of N individuals over M generations

The last phase of the outer loop in Fig. 1 identifies among parents individuals
in population Pi and their N/2 children, the ones kept in the next generation
i+1. More precisely, we use Extreme Ranking Elitism (ERE) [?] as a replacement
policy. This technique aims at selecting the best individuals while keeping some
diversity in the population. Concretely, in addition to the best solutions, bad
ones are kept to provide diversity and prevent early convergence.

In the next section, we further detail the cross-over, the Local Search (LS)
and the Extreme Ranking Ellitism (ERE) operations. Selection for breeding and
mutation are both based on random sampling in this case. Hence, they will not
be further discussed.

4.2 Operations Description

Cross-over operation. A cross-over consists on building a child individual
I = 〈S, cost, p〉 by combining two randomly selected parents I1 = 〈S1, cost1, p1〉
and I2 = 〈S2, cost2, p2〉. I is obtained by performing a single-point cross-over,
i.e., I inherits the first half of its genes from I1 and the second half from I2 as
follows:

S[i] =

{
S1[i], i ≤ |ΣA|/2
S2[i], otherwise

This operation is followed by a normalization to guarantee that the strategy S
is a valid mass function, i.e., Σi(S[i]) = 1.
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Intensification with LS. The individuals resulting from the cross-over are in-
tensified, i.e. improved, using a local search (LS) over a set of neighbor solutions.

Individuals are said to be neighbors when their respective strategies are
slightly different. More formally, given an individual I = 〈S, cost, p〉, the set
of neighbor solutions V (I) = {Ii = 〈Si, costi, pi〉} to individual I is identified
by reducing the set of enabled actions by one, as follows:

– if S[i] = 1 or S[i] = 0 then the ith neighbor individual Ii does not exist,
– otherwise, individual Ii is identified by a strategy Si such that:

Si[j] =

{
0, j = i

S[j]
Σk(S[k])−S[i] , otherwise

(1)

The normalization in the second case is again to ensure well-formedness of the
synthesized strategy (probability distribution). It is worth mentioning that an
individual has at most |ΣA| neighbors.

LS improves the current solution by repeatedly jumping to better ones resid-
ing in its neighborhood, until no improvement is possible. A neighbor solution
Ii is said to improve the current one I if it has a better fitness value. The latter
is computed using the fitness function Score which is a weighted sum of the
cost and the probability of success p. Formally, the fitness function is defined as
Score(cost, p) = a× p− (1− a)× cost, where a ∈ [0, 1] represents a linearization
factor 4.

ERE replacement policy A genetic algorithm maintains a population of size
N through M generations. The replacement operation rules the survival of indi-
viduals through generations. Extreme Ranking Elitist replacement is a balanced
solution to provide elitism while avoiding early convergence.

Given a population Pi of N parents and their N/2 children, an Extreme
Ranking Elitist replacement policy identifies the N candidate individuals for the
next generation’s population Pi+1. This policy is parametrized by pere, that rep-
resents the proportion of the population to be selected by elitism. More precisely,
the replacement is performed as follows:

1. We consider an intermediate population P ′i of size 3N
2 composed of the N

parents and their N/2 children. Individuals in this population are ranked
based on the Pareto dominance principle, and sorted in an ascending order.
In the Pareto dominance principle, a solution I1 is known as dominated by
another solution I2 if the latter is better for every criterion, in our case,
cost1 ≥ cost2 ∧ p1 ≤ p2 excluding the case where they are all equal. Con-
sidering this definition, the ranking consists on assigning rank 1 to non-
dominated solutions of the population. Iteratively, we temporarily remove
the non-dominated ones and identify the new non-dominated solutions that
we assign the next rank, until all the solutions are ranked. Fig. 2 is an ex-
ample of Pareto ranking on a population of 10 individuals.

4 This is used for weighting and scaling the two inputs.
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Fig. 2: Illustration of Pareto dominance ranking

2. To select the N individuals to be part of generation (i+ 1), we compute the
number of best (elite) individuals Nb = N × pere, and the number of worst
individuals Nw = N × (1− pere) kept for diversification. Population Pi+1 is
computed as:

Pi+1 =

Nb⋃
j=1

{P ′i (j)} ∪
3N
2⋃

k= 3N
2 −Nw+1

{P ′i (k)}

where P ′i (j) is the jth individual in population P ′i . That is, we select the Nb
first (best) individuals and the Nw last (worst) solutions in P ′i .

5 Identifying Impactful Defenses

In this section, we explore defense configurations that make the system harder
to attack, in the sense that the best attacker – obtained with IEGA – needs
more resources to achieve an attack. More precisely, we aim at identifying the
defense actions that have the largest impact on the attack cost.

To fulfill this goal, we propose the Impact-Optimal Defense (IO-Def) heuristic
that evaluates the impact of the defenses on the attack cost. A naive approach
would be to enable all the defense actions. However, some of them may not
significantly increase the attack cost. A more pragmatic approach is to look for
a good balance between defenses and their provided impact on the attack cost.
This is particularly important if the organization’s defense budget is limited.

The heuristics implicitly builds an exploration tree where the root is the
defense configuration D1

1 = ΣD. The defense Di
j at the ith level of the tree

is obtained by disabling the defense action j that was available in its parent
node. For example, the third child of D1

1 is D2
3 = D1

1 \ {d3}, where d3 ∈ D1
1.

Each defense configuration Di
j is characterized by the cost Cij (and the success

probability P ij ) of the optimized attacker against it, obtained with IEGA. The
tree is explored in a breadth-first order. For each level i > 1, we identify the
defense configuration with the minimal impact on the attack cost, and select
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∗
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g22 < ε

g31 = min{g31 , g32}
g31 ≥ ε

i = 1

i = 2

i = 3

Fig. 3: Illustration of IO-Def method

it for further exploration in the case its impact is lower than ε. The impact
gij is a measure that scores a defense Di

j by computing the relative decrease

in the attack cost due to the deactivation of the jth defense. It is defined as
(Ci−1∗ − Cij) / Ci−1∗ , where Ci−1∗ is the attack cost of the selected parent node.
The exploration ends whenever all the impacts of level i + 1 are greater than
or equal ε, or no more defenses are available, i.e., Di+1

1 = ∅. Finally, the most
impactful defense configuration D is the one in which no defense can be disabled.

Figure 3 illustrates the exploration of the best defense configuration given
three defense actions ΣD = {a, b, c}, using IO-Def. In this example, the three
defense actions are initially enabled, represented in the root node (level i = 1).
Then we disable one defense action at a time, resulting to three new defense
configurations {a, b}, {a, c} and {b, c}, that constitute level i = 2. Their impacts
are then computed and compared to identify the smallest value, in this case g22 .
Since g22 < ε, {a, c} is selected as the new best defense and the exploration is
continued from it. Again, we disable defenses one by one to generate defense
configurations of level i = 3, and g31 is identified as the smallest impact value.
This impact value g31 ≥ ε leads to the end of the exploration and D = {a, c} is
recognized as the most impactful defense configuration.

Algorithm 1 presents the IO-Def algorithm, that identifies the subset D of
the defense actions ΣD such that the individual impact of each enabled defense
is above a given threshold ε. In the worst case, the while loop is executed n +
1 times where n = |ΣD|. An iteration computes m + 1 cost-effective attack
strategies using IEGA, where m = |D| (initially n), and evaluates the impact
of defenses. Remark that each iteration decreases m by one (the deactivated

defense action). Hence, IEGA is executed, at worst case, (n+1)(n+2)
2 times. This

is the case when all the available defenses fail to prevent the cost-minimal attack
scenario. Therefore they are all disabled.
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Data: a set of defense actions ΣD, a threshold ε
Result: the optimal subset D of enabled defense actions
D = ΣD;
Boolean improved = true;
Integer i = 1;
while improved do

i++;
improved = false;

Compute the minimal attack cost Ci−1
∗ for the defenses D using IEGA ;

foreach dj ∈ D do
Compute the minimal attack cost Ci

j for the defenses D \ {dj} using
IEGA ;

Compute the impact gij =
Ci−1

∗ −Cij

Ci−1
∗

;

end

Find the defense dmin ∈ D having the lowest impact gimin ;

if gimin < ε then
D = D \ {dmin};
improved = true;

else
return D ;

end

end
Algorithm 1: Impact-Optimal Defense heuristic for defense exploration

6 Experimental results

In this section we report the results of the experiments performed using the at-
tack strategy exploration approach (IEGA) and the defense exploration heuris-
tic (IO-Def). The considered case studies address security issues at the level of
organizations (ORGA, MI), a gateway protocol (BGP), and a sensor network
infrastructure (SCADA). We also present a comparison with the state-of-the-art
technique STRATEGO [?]. Obtained results show significant improvement.

6.1 Experimental settings

We perform experiments using IEGA and IO-Def on each of the four case studies.
The considered setup in each case is as follows:

– IEGA. For each case study, we fix a defense configuration and we apply
IEGA in order to identify a near-optimal attack strategy. This is done for
all the possible defense configurations. For each configuration, we perform
25 runs of IEGA and measure the expected cost and the success probability
of an attack. The obtained results are summarized as the average x̄ and the
standard deviation σ over the 25 runs. For all the case studies, the cost and
time constraints are respectively set to cmax = 50000 and tmax = 300.

– IO-Def. The IO-Def heuristic is used on the four case studies with a thresh-
old ε = 0.05.
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6.2 Results for the attack strategy exploration

Case study Defenses x̄cost σcost x̄p σp Runtime(s)

BGP au rn sr 50000 0.00 0.00 0.00 2.65

au sr 50000 0.00 0.00 0.00 2.54

rn sr 50000 0.00 0.00 0.00 2.71

au rn 284.31 2.83 1.00 0.00 3.95

au 285.00 2.38 1.00 0.00 4.02

sr 428.95 3.60 1.00 0.00 4.99

rn 284.45 1.97 1.00 0.00 3.93

none 283.96 1.94 1.00 0.00 4.09

SCADA sw rst1 rst2 rst3 327.71 3.85 1.00 0.00 40.74

sw rst1 rst2 328.68 3.61 1.00 0.00 39.49

sw rst1 rst3 328.69 3.00 1.00 0.00 41.63

sw rst2 rst3 329.20 3.20 1.00 0.00 42.63

rst1 rst2 rst3 328.57 2.87 1.00 0.00 42.67

sw rst1 328.09 3.63 1.00 0.00 39.46

sw rst2 328.48 3.07 1.00 0.00 38.32

sw rst3 328.29 3.29 1.00 0.00 39.90

rst1 rst2 327.87 2.91 1.00 0.00 41.68

rst1 rst3 328.52 4.47 1.00 0.00 39.43

rst2 rst3 327.78 3.68 1.00 0.00 39.20

sw 329.03 4.16 1.00 0.00 38.64

rst1 327.96 3.43 1.00 0.00 39.29

rst2 326.60 4.38 1.00 0.00 40.26

rst3 326.95 3.32 1.00 0.00 42.30

none 330.21 3.11 1.00 0.00 41.35

MI dva tpt 328.83 3.53 1.00 0.00 49.62

dva 163.04 3.66 1.00 0.00 48.60

tpt 331.08 3.42 1.00 0.00 47.84

none 159.85 2.69 1.00 0.00 49.26

Table 1: IEGA results with various defense configurations on BGP, SCADA and
MI case studies

We report, in Table 1, the results of IEGA on BGP, SCADA and MI case
studies. In this table, columns correspond to, respectively, the name of the case
study, the deployed defense, the average x̄cost and the standard deviation σcost of
the attack cost, the average x̄p and the standard deviation σp of the probability
of success, and the execution time of IEGA.

For BGP, we can see that the best attack strategy against the three first
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Fig. 4: IEGA runtime variation

defense configurations lead to a rejected cost,
equal to cmax and a success probability of zero.
This shows that these defense configurations
cover all the possible attack scenarios. In the
other hand, strategies with lower attack cost
can be found in the case of other defense config-
urations. Considering SCADA, we notice that
the computation of the minimal cost results to
the same solution for every defense configura-
tion. This can be explained by the existence of
a low cost strategy that can always be taken,
independently of the implemented defense. Re-
garding MI, the minimal cost varies depending
on the defenses. However, defense action dva only brings a slight change in the
attack cost.

In addition to the previous results, we also analyze the runtime performance
of IEGA. We can see that it increases linearly with respect to the size of ΣA, i.e.,
the number of available attack actions, as illustrated in Fig. 4. On the latter, we
can see that the runtime on BGP (6 actions) is in average 3.6s and moves up to
9.9s on ORGA (8 actions), and keeps growing linearly on SCADA (resp. MI) to
average 40.8s (resp. 48.8s).

In table 2, we compare our results to STRATEGO [?] on the ORGA case
study. This comparison is quantified using a cost improvement measure as fol-
lows:

Improvement =
x̄′cost − x̄cost

x̄′cost

where x̄′cost (respectively x̄cost) is the minimal cost returned by STRATEGO
(respectively IEGA). We report this improvement measure in the last column of
table 2 (the other columns are similar to Table 1).

The obtained results (summarized in the improvement column in Table 2)
show that our method is able to find attack strategies with lower attack costs
while respecting the time and cost constraints, in an average runtime of 9.9s.
Also, the best solution returned by IEGA does not drastically change from an
execution to another, as explained by the small standard deviations.

We can see that varying the enabled defenses significantly affects the minimal
attack cost. However, only disabling the defense at does not degrade the system
security. This can be explained by the fact that the attack scenarios blocked by
defense action at are already blocked by t2 (see Appendix A).

6.3 IO-Def heuristic

Tables in Fig. 5 summarize the most impactful defense configurations we iden-
tified for the four considered case studies. Rows in these tables represent, re-
spectively, the possible defense actions, their status (on/off) and impact on the
attack cost and finally IO-Def exploration time.
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IEGA STRATEGO
Improvement

x̄cost σcost x̄p σp Runtime(s) x̄′cost

Defenses

t1 t2 tf at 968.08 5.30 1.00 0.00 9.6 1038.33 0.07

t2 tf at 237.97 1.39 1.00 0.00 10.2 410.52 0.42

t1 t2 at 238.37 1.55 1.00 0.00 10.6 309.35 0.23

at t2 237.92 1.27 1.00 0.00 10.1 359.48 0.34

t1 tf t2 967.05 7.90 1.00 0.00 9.8 1000.90 0.03

tf t2 238.18 1.58 1.00 0.00 10.2 288.53 0.17

t1 t2 238.20 1.29 1.00 0.00 10.2 295.70 0.19

t2 238.21 1.59 1.00 0.00 10.6 298.67 0.20

t1 tf at 96.19 1.14 1.00 0.00 9.4 112.17 0.14

tf at 96.04 1.08 1.00 0.00 9.7 103.37 0.07

t1 at 96.35 0.98 1.00 0.00 9.5 133.60 0.28

at 96.15 0.98 1.00 0.00 9.4 110.00 0.13

t1 tf 96.08 1.29 1.00 0.00 9.8 121.07 0.21

tf 96.27 1.14 1.00 0.00 9.8 105.97 0.09

t1 95.99 0.67 1.00 0.00 9.4 109.33 0.12

none 96.48 0.91 1.00 0.00 10.2 110.57 0.13

Table 2: IEGA results with various defense configurations on ORGA benchmark

We recall that the decision of identifying a defense action to be impactful or
not, is done by comparing its impact to the threshold ε = 0.05. The best de-
fense configuration for ORGA (Table 5a) is D = {t1, t2, tf}. In this setting, the
role played by at was found to be negligible, while the highest impact (+90%) is
brought by t2. The exploration results for BGP (Table 5b) show that the deploy-
ment of both rn and sr defenses is mandatory. Both of them have an impact of
+99%, i.e. , disabling any of them lead to a heavy decrease of the attack cost. In
contrast, in the case of SCADA (Table 5c), none of the defenses has a significant
impact on the attack cost. Basically, this means that the available defenses are
useless against the synthesized cost-effective attack strategy. Table 5d shows the
best defense obtained in the MI case study. In this defense configuration, only
tpt plays a significant role in increasing the attack cost, with a +50% impact.

In addition to the previous results, we report in the tables the exploration
time. The main observation is that the exploration time does not only depend on
the size of ΣD. In fact, despite the fact that ORGA and SCADA have the same
number of defense actions, they are explored in significantly different amounts of
time (1min 25s and 9min 11s, respectively). This is due to the inefficient available
defense actions in the case of SCADA, leading to the worst case execution time
of IO-Def where all the defenses have to be disabled. Moreover, although MI
has the smallest number of defense actions to explore, it is nevertheless not the
fastest exploration. This is explained by the time required for a single run of the
IEGA algorithm (in average 48.8s) in comparison to the cases of ORGA and
BGP (resp. average 3.6s and 9.9s).
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Defense Actions t1 t2 tf at

Defense status On On On Off

Cost gain +75% +90% +75% -

Exploration time 1min 25s

(a) Results on ORGA

Defense Actions au rn sr

Defense status Off On On

Cost gain - +99% +99%

Exploration time 23s

(b) Results on BGP

Defense Actions sw rst1 rst2 rst3

Defense status Off Off Off Off

Cost gain - - - -

Exploration time 9min 11s

(c) Results on SCADA

Defense Actions dva tpt

Defense status Off On

Cost gain - +50%

Exploration time 4min 7s

(d) Results on MI

Fig. 5: Results obtained with IO-Def on different case studies

7 Conclusion

In this paper we presented a method for identifying impactful defense actions
with respect to sophisticated attack strategies. Our proposal relies on two new
heuristics. The first is a bi-objective method to synthesize a cost-effective at-
tacker strategy given a risk assessment model. The second heuristic allows to
find the defense configuration with the biggest impact on the attack cost.

It is worth mentioning that IO-Def can be adapted for risk assessment from
the defense perspective. This can be easily done by extending the heuristic to
consider a maximal defense budget, which allows to make a more realistic anal-
ysis. Other criteria, such as the return on investment (ROI) [?], can be also used
to evaluate defense actions. Another investigation would be to synthesize attack
strategies for more detailed models, where vulnerabilities and nominal behavior
are explicitly described.
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A Benchmarks Description

In the following case study descriptions, attack actions are characterized by their
lower (LB) and upper (UB) time bounds, the required resources (Cost) and their
probability to succeed (Env). In the ADTs, attack actions are represented by
ellipses and defense actions by rectangles.

A.1 An organization system attack (ORGA) [?]

∨

∧

is bs ¬

∧

t1 tf

t b ∧

¬

t2

∨

st ∧

im ot

¬

∧

at ¬

ba(a) Attack-Defense Tree

Action LB UB Cost Env

Identify Subject (is) 0 20 80 0.8

Bribe Subject (bs) 0 20 100 0.7

Threaten (t) 0 20 700 0.7

Blackmail (b) 0 20 700 0.7

Send false Tag (st) 0 20 50 0.5

Break Authentication (ba) 0 20 85 0.6

Infiltrate Management (im) 0 20 70 0.5

Order Tag replacement (ot) 0 20 0 0.6

(b) Attack actions characteristics

Defense action Label

t1 Training for thwart

tf Threaten to Fire employees

t2 Training for trick

at Authenticate Tag

(c) Defense actions labels

Fig. 6: ORGA case study description
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A.2 Resetting a BGP session (BGP) [?]

We constructed this case study based on [?], in which detection and mitigation
events are attached with success probabilities (resp. PD and PM ). We transpose
these probabilities to the attack actions in a straightforward manner: the prob-
ability of an attack action to succeed is computed as the probability that all the
implemented countermeasures set to block it, fail. For example, the attack action
sa can be blocked by both defense actions au and rn. So, the probability of sa
to succeed equals Env(sa) = (1− PD1 × PM1)× (1− PD2 × PM2), where PD1,
PD2, PM1 and PM2 are given in [?]. Note that, in our case, a pair of detection-
mitigation events is combined is a single defense action. For example, PD1 and
PM1 are merged into a defense au, and, PD2 and PM2 into the defense action
rn. Also, the defense mechanisms are fixed before starting an analysis and have
a probability 1.

∨

∧

∧

∨

∨

no op ka

sm

∧

sa ¬

au

¬

rn

∧

ar ¬

sr

(a) Attack-Defense Tree

Action LB UB Cost Env

Send RST message to TCP stack (sm) 0 20 50 0.7

Send BGP message: notify (no) 0 20 60 0.7

Send BGP message: open (op) 0 20 70 0.7

Send BGP message: keep alive (ka) 0 20 100 0.7

TCP sequence number attack (sa) 0 20 150 0.42

Alter config. via router (ar) 0 20 190 0.65

(b) Attack actions characteristics

Defense action Label

au Check TCP sequence number by MD5 authentication

rn Check Trace-route by using randomized sequence numbers

sr Secure routers with firewall alert

(c) Defense actions labels

Fig. 7: Resetting a BGP session description
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A.3 Supervisory Control And Data Acquisition system (SCADA)[?]

∨

∨

∨

2/3

s1 s2 s3

wse

ulan ∨

∧

∧

hmi ¬

sw

scopf

∧ ∧

∧

g3 ¬

rst3

∧

g2 ¬

rst2

∧

g1 ¬

rst1

∨

db uwanws

(a) Attack-Defense Tree

Action LB UB Cost Env

Sensor one (s1) 0 20 100 0.1

Sensor two (s2) 0 20 110 0.1

Sensor three (s3) 0 20 90 0.1

Wrong estimation (wse) 0 20 250 0.25

Unavailable network LAN (ulan) 0 20 275 0.3

Control server one (hmi) 0 20 100 0.15

Control server two (scopf) 0 20 120 0.15

Controlling agent one (g1) 0 20 100 0.09

Controlling agent two (g2) 0 20 30 0.15

Controlling agent three (g3) 0 20 40 0.08

Database (db) 0 20 170 0.5

Unavailable network (uwan) 0 20 160 0.35

Workstation (ws) 0 20 150 0.4

(b) Attack actions characteristics

Defense action Label

sw Switch

rst1 Restart agent one if an attack is detected on it

rst2 Restart agent two if an attack is detected on it

rst3 Restart agent three if an attack is detected on it

(c) Defense actions labels

Fig. 8: SCADA system description
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Similarly to BGP, SCADA is inspired from [?]. This case study represents an
example of how attack trees are used to answer the failure assessment problem
where attack actions represent the possible hardware/software failures. Since
we are interested to identify what an attacker can do to reach a malicious goal
on a system, we then interpret these attack actions as an attacker trying to
trigger a hardware/software failure. So, in addition to the transposition from
probabilities of successful defenses to probabilities of successful attack actions,
Env also scales with the probability of failures. For example, the probability
of g1 to succeed, provided it is guarded by a defense rst1, is computed as:
Env(g1) = Pg1 × (1 − PD × PM ), where the probabilities of a failure of the
controlling agent one Pg1, the detection of its failure PD and its restarting PM
are given in [?].

In figure 8a, the operator “2/3” is a shortcut designating the case where at
least two events si and sj occur, with i 6= j. It is equivalent to the boolean
expression φ = (s1 ∧ s2) ∨ (s1 ∧ s3) ∨ (s2 ∧ s3).

A.4 A Malicious Insider attack (MI) [?]

In what follows, we describe a Malicious Insider attack (MI). It is presented in
[?] and is adapted to our context in a similar way to BGP.
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∨

∨

∧

¬

dva

lv

uar

∨

∨

ela ewa

∨

dbf ∨

dbg dbw

oc ∨

cmf cmc cmu

∧

mu vop

∨

pc ∧

∨

rt sn

¬

tpt

sme

(a) Attack-Defense Tree

Action LB UB Cost Env

Unauthorized alternation of registry (uar) 0 20 50 0.08

Launch virus (lv) 0 20 60 0.07

Email local account (ela) 0 20 70 0.15

Email web-based account (ewa) 0 20 100 0.2

Drop-box: FTP to file server (dbf) 0 20 150 0.1

Drop-box: post to new group (dbg) 0 20 190 0.4

Drop-box: post to website (dbw) 0 20 100 0.1

Online chat (oc) 0 20 110 0.1

Copy to media: Floppy disk (cmf) 0 20 90 0.1

Copy to media: CD-ROM (cmc) 0 20 250 0.25

Copy to media: USB drive (cmu) 0 20 275 0.3

Misuse (mu) 0 20 100 0.2

Violation of organization policy (vop) 0 20 120 0.15

Poor configuration (pc) 0 20 100 0.15

Sniff Network (sn) 0 20 30 0.18

Root Telnet (rt) 0 20 40 0.12

Sendmail exploit (sme) 0 20 170 0.5

(b) Attack actions characteristics

Defense action Label

dva Detect viruses with anti-virus

tpt Track number of tries at password

(c) Defense actions labels

Fig. 9: A Malicious Insider attack (MI) description


