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Evaluation of cortical segmentation pipelines
on clinical neonatal MRI data

C. Tor-Díez1, C.-H. Pham1, H. Meunier2, S. Faisan3, I. Bloch4, N. Bednarek2,5, N. Passat5 and F. Rousseau1

Abstract— Magnetic Resonance Imaging (MRI) can provide
3D morphological information on brain structures. Such infor-
mation is particularly relevant for carrying out morphometric
brain analysis, especially in the newborn and in the case of
prematurity. However, 3D neonatal MRI acquired in clinical
environments are low-resolution, anisotropic images, making
segmentation a challenging task. In this context, preprocessing
techniques aim to increase the image resolution. Interpolation
techniques were classically used; super-resolution (SR) tech-
niques have recently appeared as an emerging alternative. In
this paper, we evaluate the performance of different SR methods
against the classical interpolation in the application of neonatal
cortex segmentation. Additionally, we assess the robustness of
different segmentation methods for each estimation of high
resolution MRI input. Results are evaluated both qualitatively
and quantitatively with neonatal clinical MRI.

Index Terms— Segmentation, super-resolution, MRI, neona-
tal brain, cortex.

I. INTRODUCTION

Morphometry based on neonatal brain Magnetic Reso-
nance Imaging (MRI) data has shown to be of great interest
for brain development studies at early stages and for predic-
tion of the outcome of prematurely born infants. However,
neonatal MRI acquisition is often limited by time in order to
avoid motion artefacts. Clinical data are thus characterized
by slice thickness greater than 2 or 3 mm. This is a limiting
factor for accurate brain morphometry studies such as brain
folding and cortical maturation. In this context, it appears that
the implementation of robust image processing pipelines is a
key point to improve the understanding of brain development.

One of the first steps of such pipelines is the upsampling
of the clinical low-resolution (LR) data to 1 × 1 × 1 mm
or 0.5 × 0.5 × 0.5 mm. This upsampling step is usually
performed using interpolation techniques, leading to blurry
edges and loss of details. Single image Super-Resolution
(SR) [1], which purpose is to estimate a high-resolution
(HR) image from one LR image, constitutes a promising
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alternative approach [2], [3], [4], [5]. However, SR is a
challenging inverse problem. In particular the estimation of
texture and details remains difficult and SR techniques are
not yet applied in routine on clinical data. Indeed, the impact
of SR reconstruction on morphometry analysis needs to be
accurately investigated.

The second major step is image segmentation. In the
context of neonatal brain MRI analysis, segmentation is
challenging due to low contrast-to-noise ratio, rapid change
of size of brain structures, complex brightness modifications
in structural MRI reflecting rapid white matter structuring
through myelination, rapid change and large variability of
anatomical shapes. Various approaches were investigated for
neonatal brain data, such as mathematical morphology [6],
deformable models [7], statistical classification [8] and multi-
atlas methods [9], [10]. However, most of these techniques
were only evaluated on HR images, typically with slice
thickness lower than 1 mm. There is a clear need to evaluate
state-of-the-art segmentation algorithms in actual clinical
settings. NeoBrainS12 challenge was a first step toward such
an evaluation [11].

The purpose of this paper is to assess the influence of var-
ious upsampling techniques on segmentation map estimation
and the robustness of several segmentation pipelines, with a
focus on cortical structures. In particular, our aim is to carry
out such a study on real neonatal brain MRI data, acquired
in a clinical context.

Section II presents the general approach of a LR neona-
tal cortex segmentation. We describe three upsampling ap-
proaches and four segmentation methods. Our experimental,
comparative study is then proposed in Section III, where we
evaluate both qualitatively and quantitatively the 12 combina-
tions of SR and segmentation techniques. In Section IV, we
propose a discussion of these results, leading to concluding
remarks on future work in Section V.

II. LOW-RESOLUTION NEONATAL CORTEX
SEGMENTATION PIPELINE

In this work, we consider multi-atlas segmentation
pipelines for clinical LR images consisting of the following
steps: image upsampling (Section II-A), bias correction us-
ing N4 [12], nonlinear registration of atlases on the input
HR image using ANTs [13], intensity normalization us-
ing histogram matching techniques and image segmentation
(Section II-B). In this study, we focus on two steps: HR
estimation and image segmentation.



A. HR Image Estimation

The resolution of clinical image is too low to carry
out cortical morphometry studies. Upsampling (to isotropic
resolution of 1×1×1 mm or 0.5×0.5×0.5 mm) appears then
to be a key step in neonatal brain morphometry pipelines. In
this work, we consider three different upsampling techniques:
spline interpolation, non-local MRI upsampling [4], [5] and
deep learning-based method [3].

Image interpolation is a widely used approach to compute
isotropic data. However, interpolation models generally fail
in accurately recovering fine details and textures in clinical
LR data, leading mostly to blurred results.

Alternatively, the purpose of SR methods is to estimate
finer reconstructions of HR images. Non-local MRI upsam-
pling (NMU) [5] iteratively applies the non-local means
algorithm to the upsampled LR image. An observation model
using a predefined point spread function is used to relate
LR observation and HR estimation. The non-local approach
provides an adaptive regularization approach and does not
need to be trained, thus reducing data resource requirements.

The third method considered in this work is a deep
learning-based approach, namely Super-resolution residual-
learning convolutional neuronal network (SRReCNN) [3].
SRReCNN is a supervised method based on the assumption
that the restoration model can be learned from data. The
problem is then expressed as the estimation of a restoration
matrix which, combined to the spline interpolation of the
LR input, provides its HR version. The restoration matrix is
learned using a CNN with a set of HR images similar to the
target image, in terms of modality, observation, etc.

B. Cortex Segmentation

Popular approaches for brain segmentation rely on atlas
strategy. Such methods consist of three steps [14]: (1)
registration of the atlas images onto the target image; (2)
application of the induced transformations to atlas labels;
and (3) fusion of the transformed labels. In this work, we
consider four different atlas-based segmentation pipelines,
described below.

In atlas-based approaches, the registration is carried out
in two stages: first, affine and second, non-rigid registration,
in order to first avoid local minima and then obtain accurate
matching of fine structures. The obtained registration fields
are then used for mapping atlas label images onto the target
image. Once the registration step is performed, segmentation
maps can be obtained by fusing the deformed atlases. A
popular approach for label fusion is to average the deformed
atlases and to apply the majority voting rule (MV) at voxel-
scale. One of the limitations of MV is the strong dependency
on registration accuracy.

To improve the robustness of MV, several fusion strate-
gies have been developed. An iterative multi-atlas patch-
based approach (IMAPA) [10] has been recently proposed
to overcome this issue. It is an iterative non-local method,
that computes atlas weights by minimizing a patch-based cost
function. Moreover, this iterative approach takes advantage
of current segmentation estimates as in cascading classifiers,

to add regularization constraints on estimated segmentation
maps. This approach has been shown to be very effective on
HR neonatal brain MRI data [10].

The third approach evaluated in this study is called
DrawEM [9]. In this method, the input MR image is first
brain-extracted and corrected for field inhomogeneity. Then,
atlases are registered to the target image and the atlas labels
are propagated to the image. The propagated labels are
averaged in a locally-weighted scheme and subdivided with
the use of subject-specific tissue priors obtained with k-
means clustering. An expectation-maximization scheme is
used for the estimation of the segmentation map.

The last method is MANTiS (Morphologically Adaptive
Neonatal Tissue Segmentation) [8], which is based on the
unified segmentation approach [15] implemented in Statisti-
cal Parametric Mapping (SPM) software. MANTiS makes
use of a combination of unified segmentation, template
adaptation via morphological tools and topological filtering,
to segment the neonatal brain into eight tissue classes.

III. EXPERIMENTS AND RESULTS

A. Data

1) Training datasets: Considering the HR image estima-
tion step, SRReCNN is the only supervised approach that
requires a set of training data. To learn the restoration matrix,
we have used the 40 images provided by the Developing Hu-
man Connectome Project (dHCP)1 [16]. The age of subjects
varies between 37 and 44 weeks. Acquisitions were made
with overlapping axial slices with voxel size 0.8× 0.8× 1.6
mm every 0.8 mm. The resulting images have an isotropic
resolution with voxel size 0.5 × 0.5 × 0.5 mm. TR and TE
are 12 000 and 156 ms, respectively.

The four considered segmentation approaches make use
of atlases. For MV and IMAPA, we have used the dHCP
data as the multi-atlas set. The open-source implementation
of DrawEM uses the ALBERT dataset [17] and MANTiS is
provided with a dedicated probabilistic template as a SPM
toolbox.

2) Testing dataset: There are currently very few available
ground-truth data of cortex segmentation maps in clinical
neonatal brain MRI. The NeoBrainS12 study [11] provides
three different image sets of preterm born infants, in order to
perform reliable comparison of the performance of segmenta-
tion algorithms. In this study, we have used two subjects from
40 weeks axial set (as mentioned in [18], there are significant
regions missing in 30 W coronal scans that would result in
an invalid comparison). The size of voxels is 0.35×0.35×2
mm. TR and TE are 6 293 ms and 120 ms, respectively.

To further assess the performances of segmentation
pipelines on clinical LR images, manual delineation has been
performed on two MR images acquired at the University
Hospital of Reims as part of the ANR MAIA project.
Acquisitions were made at the term age (between 38 and
42 weeks), with anisotropic resolution (0.446 × 0.446 × 3
mm). TR and TE are 3 000 ms and 200 ms, respectively.

1http://www.developingconnectome.org

http://www.developingconnectome.org


TABLE I
DICE SCORES FOR THE 12 COMBINATIONS OF UPSAMPLING (ROWS) AND SEGMENTATION METHODS (COLUMNS) ON THE 4 IMAGES OF THE MAIA

AND NEOBRAINS12 TESTING DATASET.

Subject Upsampling MV MANTiS [8] IMAPA [10] DrawEM [9]
Interpolation 43.43 70.52 63.94 71.98

MAIA #1 NMU [5] 44.51 71.90 65.51 73.84
SRReCNN [3] 43.68 73.30 66.98 73.59
Interpolation 41.93 71.18 64.43 70.27

MAIA #2 NMU [5] 42.42 71.82 64.97 72.08
SRReCNN [3] 41.94 73.33 67.63 72.51
Interpolation 42.07 77.52 59.72 78.35

NeoBrainS12 #1 NMU [5] 41.55 78.64 65.33 77.25
SRReCNN [3] 41.26 77.26 65.42 78.39
Interpolation 44.70 80.05 62.02 81.96

NeoBrainS12 #2 NMU [5] 44.49 80.74 66.17 82.14
SRReCNN [3] 43.97 79.73 66.18 81.30

(a) Original data (b) HR reconstruction (c) MV (d) MANTiS (e) IMAPA (f) DrawEM

Fig. 1. A visual summary of the different estimations of HR input and the corresponding segmentations for subject MAIA #1. (a) The original LR T2w
and T1w images, and the reference segmentation. (b) HR reconstruction results. (c–f) Segmentation results with MV, MANTiS, IMAPA and DrawEM.
(b–f) First row corresponds to interpolation, second to NMU and third to SRReCNN.

B. Evaluation

After the HR reconstruction step, all images have a
common isotropic voxel size of 0.5 × 0.5 × 0.5 mm. Im-
portantly, this HR reconstruction does not have the same
effect on MAIA and NeoBrainS12 data. Indeed, MAIA MR
images have similar resolutions before / after the SR on
two dimensions, whereas the third resolution is significantly
increased (from 3 mm to 0.5 mm, i.e., a ×6 factor). By
contrast, resolution of NeoBrainS12 MR images is slightly
decreased in two dimensions, whereas the third resolution is
increased (from 2 mm to 0.5 mm, i.e., a ×4 factor).

In order to quantitatively assess the segmentation results,
they were compared to manual segmentations carried by
experts, and used as reference.
MAIA: reference segmentations were obtained by manually

segmenting2 T1-weighted (T1w) MR images, at a resolution
0.268× 0.268× 1.2 mm. The estimated segmentation maps
were then mapped onto the original T1w images by a rigid
registration between HR T2w and T1w data.
NeoBrainS12: manual segmentations were carried out in the
T2w space, at high resolution (0.5 × 0.5 × 0.5 mm) with
the protocol presented in [11]. Then, these segmentation
results were downsampled to reach the original LR T2w
(0.35× 0.35× 2 mm).

It is worth mentioning that the MAIA reference maps
were natively at a low resolution (1.2 mm) in the anisotropic
dimension, whereas the low resolution in the same dimension

2A medical specialist in neonatology (H. Meunier) realized these manual
segmentations. Brains were labelled into seven classes: cortical grey matter,
unmyelinated / myelinated white matter, basal ganglia and thalami, brain-
stem, cerebellum, and ventricles. The cerebellum was delimited laterally
and posteriorly by the cistern of the fossea and anteriorly by the brainstem.



was obtained by downsampling of a HR reference map, in the
case of NeoBrainS12. In particular, these differences in the
initial dimensions of the data and the distinct ways to express
the LR reference segmentation for MAIA and NeoBrainS12
will shed light on slight variations observed in the results.

Parameters of the segmentation methods were set to their
default values or following those proposed in the literature.

C. Results

Table I provides a quantitative assessment (Dice scores)
of the results obtained with the proposed, combined up-
samling and segmentation methods. Note that MV, MANTiS
and DrawEM provide binary segmentations, by contrast to
IMAPA that generates probabilistic segmentation maps. In
order to compare all the results, the IMAPA outputs were
thresholded at value 0.5. A more qualitative view is available
in Figure 1 that illustrates results of these 12 combined
methods on a coronal slice of one of the MAIA MR image.

IV. DISCUSSION

The Dice scores obtained with all methods are globally
lower than those stated in the literature. This can be explained
by the increased difficulty to process real images, acquired
in a clinical context, with noise, artefacts, anisotropy effects
(not fully corrected by oversampling) and a low contrast.
This highlights the remaining gap to be filled for making
current automated methods dedicated to neonatal brain MRI,
fully efficient for actual clinical routine.

In this challenging context, MANTiS and DrawEM present
comparable Dice scores (70–80), with a slight advantage for
DrawEM. In particular, they overperform IMAPA and MV.
However, this quantitative analysis has to be completed by
qualitative elements exemplified in Figure 1. Indeed, one
can observe that MANTiS and DrawEM oversegment the
cortex, compared to IMAPA and MV, that undersegment this
subpart. In other words, two classes of segmentations appear,
with dual and antagonist specificity / sensitivity properties.

The SR upsampling tends to improve the Dice scores
obtained by segmentation methods. However, these improve-
ments are weak, compared to segmentation on interpolated
images. They are also method-dependent. For instance, MV
has similar results for the three upsampling methods, whereas
IMAPA behaviour is clearly improved by SR. Such an
improvement is also observed for MANTiS and DrawEM
for the MAIA dataset, but not for NeoBrainS12.

V. CONCLUSION

The main conclusions of this study are the following. First,
the current automated, neonate cortex segmentation methods
can hardly provide satisfactory segmentation of real clinical
low resolution MR images, even with the assistance of an
oversampling preprocessing step. Secondly, the behaviour of
these methods is not homogeneous, and two families emerge,
that tend to oversegment and undersegment the cortex, re-
spectively. Thirdly, oversampling with SR approaches tends
to improve the overall quality of the segmented cortex, but
this progress remains slight, compared to interpolation.

Future work emphasized by these results will consist in
taking advantage of the complementary behaviours of the
existing segmentation methods, in order to improve both
specificity and sensitivity. To this end, we will consider
segmentation fusion strategies. In addition, we will more
deeply investigate why the current SR method does not
allow us to significantly improve the overall quality of
segmentation results on such reconstructed data.

REFERENCES

[1] H. Greenspan, “Super-resolution in medical imaging,” The Computer
Journal, vol. 52, no. 1, pp. 43–63, 2008.

[2] C.-H. Pham, A. Ducournau, R. Fablet, and F. Rousseau, “Brain MRI
super-resolution using deep 3D convolutional networks,” in IEEE ISBI,
2017, pp. 197–200.

[3] C.-H. Pham, R. Fablet, and F. Rousseau, “Multi-scale brain MRI
super-resolution using deep 3D convolutional networks,” Research
Report hal-01635455, 2017.

[4] F. Rousseau, “Brain hallucination,” in ECCV, 2008, pp. 497–508.
[5] J. V. Manjón, P. Coupé, A. Buades, V. Fonov, L. Collins, and

M. Robles, “Non-local MRI upsampling.,” Medical Image Analysis,
vol. 14, no. 6, pp. 784–92, 2010.

[6] L. Gui, R. Lisowski, T. Faundez, P. S. Hüppi, F. Lazeyras, and
M. Kocher, “Morphology-driven automatic segmentation of MR
images of the neonatal brain,” Medical Image Analysis, vol. 16, no.
8, pp. 1565–1579, 2012.

[7] F. Leroy, J.-F. Mangin, F. Rousseau, H. Glasel, L. Hertz-Pannier,
J. Dubois, and G. Dehaene-Lambertz, “Atlas-free surface reconstruc-
tion of the cortical grey-white interface in infants,” PloS One, vol. 6,
no. 11, pp. e27128, 2011.

[8] R.J. Beare et al., “Neonatal brain tissue classification with morpho-
logical adaptation and unified segmentation,” Frontiers in Neuroinfor-
matics, vol. 10, pp. 12, 2016.

[9] A. Makropoulos, I. S. Gousias, C. Ledig, P. Aljabar, A. Serag, J. V.
Hajnal, A. D. Edwards, S. J. Counsell, and D. Rueckert, “Automatic
whole brain MRI segmentation of the developing neonatal brain,”
IEEE Transactions on Medical Imaging, vol. 33, no. 9, pp. 1818–
1831, 2014.

[10] C. Tor Díez, N. Passat, I. Bloch, S. Faisan, N. Bednarek, and
F. Rousseau, “An iterative multi-atlas patch-based approach for cortex
segmentation from neonatal MRI,” Computerized Medical Imaging
and Graphics, vol. 70, pp. 73–82, 2018.

[11] I. Isgum et al., “Evaluation of automatic neonatal brain segmentation
algorithms: The NeoBrainS12 challenge,” Medical Image Analysis,
vol. 20, no. 1, pp. 135–151, 2015.

[12] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A.
Yushkevich, and J. C. Gee, “N4ITK: Improved N3 bias correction,”
IEEE Transactions on Medical Imaging, vol. 29, no. 6, pp. 1310–1320,
2010.

[13] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain,” Medical
Image Analysis, vol. 12, no. 1, pp. 26–41, 2008.

[14] J. E. Iglesias and M. R. Sabuncu, “Multi-atlas segmentation of
biomedical images: A survey,” Medical Image Analysis, vol. 24, no.
1, pp. 205–219, 2015.

[15] J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage,
vol. 26, no. 3, pp. 839–851, 2005.

[16] A. Makropoulos et al., “The Developing Human Connectome Project:
A minimal processing pipeline for neonatal cortical surface reconstruc-
tion,” NeuroImage, vol. 173, pp. 88–112, 2018.

[17] I. S. Gousias, A. D. Edwards, M. A. Rutherford, S. J. Counsell, J. V.
Hajnal, D. Rueckert, and A. Hammers, “Magnetic resonance imaging
of the newborn brain: Manual segmentation of labelled atlases in term-
born and preterm infants,” NeuroImage, vol. 62, no. 3, pp. 1499–1509,
2012.

[18] M. Liu, A. Kitsch, S. Miller, V. Chau, K. Poskitt, F. Rousseau,
D. Shaw, and C. Studholme, “Patch-based augmentation of Expec-
tation–Maximization for brain MRI tissue segmentation at arbitrary
age after premature birth,” NeuroImage, vol. 127, no. C, pp. 387–408,
2016.


	Introduction
	Low-resolution Neonatal Cortex Segmentation Pipeline
	HR Image Estimation
	Cortex Segmentation

	Experiments and Results
	Data
	Training datasets
	Testing dataset

	Evaluation
	Results

	Discussion
	Conclusion
	References

