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Context

Non Destructive Evaluation of elongated structures that are buried, completely or
partially (including surface waves)

Many examples in civil engineering and geophysics

Prestressing cable

Rockbolt
Piles

Pavement Seawall
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Wave modes

Generality:

Guided wave propagation: dispersive and
multimodal

Dispersion curves required

Modeling tools needed

Waves=modes → eigenvalue problem
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Energy velocity vs. frequency

Waveguides coupled to infinite media

unbounded in the transverse direction

terminology: open waveguides

(as opposed to closed waveguides, in vacuum)

Computation of eigenmodes in unbounded problems Open waveguide
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Guided wave propagation: dispersive and
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Energy velocity vs. frequency

Waveguides coupled to infinite media

unbounded in the transverse direction

terminology: open waveguides

(as opposed to closed waveguides, in vacuum)

leakage loss: leaky modes, attenuation to
minimize for NDE

Computation of eigenmodes in unbounded problems
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State-of-the-art (elasticity)

plates, cylinders: analytical approaches (Thomson-Haskell, c©Disperse, . . .)

arbitrary cross section: finite element discretization of cross-section
(Semi-Analytical Finite Element method), but...

... how to handle the infinite transverse direction?

No discretization of the surrounding medium:

SAFE + Boundary Element Methoda (nonlinear eigenproblem)

SAFE + dashpot boundary conditionb (approximation)

Discretization of the truncated surrounding medium:

SAFE + Absorbing Layerc (slowly varying visco.→large thickness)

SAFE + Perfectly Match Layer (PML)d

aMazzotti et al., Ultrasonics, 2013
bGravenkamp et al., JASA, 2014
cCastaings and Lowe, JASA, 2008
dTreysséde et al., Wave Motion, 2014 ; Nguyen et al., JSV, 2015
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SAFE-PML approach

Harmonic elastodynamic equilibrium equations:

{
∇̃ · σ̃(ũ) + ρ̃ω2ũ = f̃

σ̃(ũ) = C̃ : ǫ̃(ũ), ǫ̃(ũ) = 1
2
(∇̃ũ+ ∇̃Tũ)

(1)

with PML for transverse coordinates (x , y):

x̃ =

∫ x

0
γx (s)ds with

{
γx = 1 if |x | ≤ dx
Im γx > 0 if |x | > dx

(idem for ỹ)

Change from complex to real coordinates:

x̃ 7→ x :
∂

∂x̃
=

1

γx

∂

∂x
, dx̃ = γxdx (idem for ỹ)

(2)

User-defined parameters of a PML

attenuation function γx (x), distance to the core dx , thickness hx (idem for y)
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Spatial Fourier transform along z :

û(k) =

∫ +∞

−∞
u(z)e−ikz (3)

FE discretization of the cross-section (x , y)

⇒ SAFE-PML formulation
(

K1 − ω2M+ ik(K2 − KT
2 ) + k2K3

)

Û = F̂ (4)
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Eigenvalue problem (free response)

Spatial Fourier transform along z :

û(k) =

∫ +∞

−∞
u(z)e−ikz (3)

FE discretization of the cross-section (x , y)

⇒ SAFE-PML formulation
(

K1 − ω2M+ ik(K2 − KT
2 ) + k2K3

)

Û = 0̂ (4)

Characteristics of the eigenvalue problem:

K1, K2, K3, M are complex due to γx , γy

not self-adjoint

quadratic for k

Linearization of the EVP:

(A− kB)x = 0̂ with x =

[
Û

kÛ

]

(5)
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Example of dispersion curves

Validation test case: steel cylinder into concrete (Castaings and Lowe JASA 2008)

Cross-section mesh (left), phase velocity curves before (middle)

Many ’PML modes’...

Leaky mode (left) and PML mode (right)
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Example of dispersion curves

Validation test case: steel cylinder into concrete (Castaings and Lowe JASA 2008)

Cross-section mesh (left), phase velocity curves before (middle) and after modal filtering (right)

Many ’PML modes’...

Efficient modal filtering based on
kinetic energy ratio:
EPML/ETOT >threshold

Leaky mode (left) and PML mode (right)
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Biorthogonality and solution

Knowing Um, we want to solve
(
K1 − ω2M+ ik(K2 − KT

2 ) + k2K3

)
Û = F̂ using the

modal expansion: Û =
∑

m αmUm

Biorthogonality relationship with PML

fundamental property of the EVP: K1, K3, M are symmetric
→ eigensolutions (km ,Um) and (−km ,U−m) of opposite travelling direction

a general biorthogonality relationship, applicable to lossy waveguidesa:

iω

4
(UT

mF−n − UT
−nFm) = Qm,−mδmn

≡ discretized version of Auld’s real orthogonality

aTreyssède and Laguerre, JASA, 2013, Fm = (KT
2 + ikmK3)Um

11/27

Treyssede et al. Open waveguide modeling



Introduction Numerical method Forced response Further understanding Numerical results Conclusion

Biorthogonality and solution

Knowing Um, we want to solve
(
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)
Û = F̂ using the

modal expansion: Û =
∑

m αmUm

Biorthogonality relationship with PML

fundamental property of the EVP: K1, K3, M are symmetric
→ eigensolutions (km ,Um) and (−km ,U−m) of opposite travelling direction

a general biorthogonality relationship, applicable to lossy waveguidesa:

iω

4
(UT

mF−n − UT
−nFm) = Qm,−mδmn

≡ discretized version of Auld’s real orthogonality

aTreyssède and Laguerre, JASA, 2013, Fm = (KT
2 + ikmK3)Um

1 Biorthogonality relationship → unique modal coefficients αm = −
ωUT

−mF̂

4Qm,−m(km−k)

2 Inverse spatial Fourier transform thanks to Cauchy’s residues theorem:

U(z , ω) =
1

2π

∫ +∞

−∞
Û(k, ω)eikzdk =

M∑

m=1

iωUmU
T
−m

4Qm,−m
︸ ︷︷ ︸

Em : excitability

F̂(km)e ikmz

3 Solution in the time domain (IFFT): U(z , t) = 1
2π

∫ +∞
−∞ U(z , ω)e−iωtdω
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Example of response

Axisymmetric SAFE-PML model of open waveguide
PML parameters: γ̂ = 4 + 4i, h = 4a, d = a, M = 51

Steel into grout, low frequency: no trapped modes, 1 leaky mode, PML modes
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t (ms)
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Leaky mode 1

PML modes contribution

uz (r = 0) as a function of time at z = 175a
Elastic (blue) and viscoelastic (red) materials

Problem: PML modes are not intrinsic to the physics...
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Step 0: back to closed waveguides

Assumptions:

two-dimensional

out-of-plane line source

scalar (i.e. satisfying Helmholtz)

closed
A closed waveguide

The solution is of the form:

û(x , k) =
a(x , k)

b(k)
⇒ u(x , z) =

1

2π

∫ +∞

−∞

a(x , k)

b(k)
e ikzdk =

∑

modes1 (residue theorem)

Integration path, •: poles (roots of b(k), eigenvalues)

1In closed waveguides, modes are propagative (km ∈ R), evanescent (km ∈ iR) or inhomogeneous
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Step 1: spectrum of open waveguides (Malichewsky, 1987 ; Collin, 1991; ...)

The solution in the half-space is of the form:

u∞(x , z) =
1

2π

∫ +∞

−∞

a(k)

b(k)
e iα∞xe ikzdk

with α∞ = ±
√

ω2/c2∞ − k2: multivalued z

x

Riemann surface for α∞ Re(k)

Im(k)

Integration path, Γ+: branch cut
•: poles of the proper sheet
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Step 1: spectrum of open waveguides (Malichewsky, 1987 ; Collin, 1991; ...)

The solution in the half-space is of the form:

u∞(x , z) =
1

2π

∫ +∞

−∞

a(k)

b(k)
e iα∞xe ikzdk

with α∞ = ±
√

ω2/c2∞ − k2: multivalued z

x

Riemann surface for α∞ The sheet Im(α∞) > 0

The ’proper’ sheet for
∫

C+
to vanish: Im(α∞) > 0

Im(α∞) = 0: discontinuity (branch cut)

Re(k)

Im(k)

Integration path, Γ+: branch cut
•: poles of the proper sheet

Solution for z > 0: u(x , z) =
∑

trapped modes
︸ ︷︷ ︸

poles of the proper sheet

a +

∫

Γ+
radiation modes

︸ ︷︷ ︸

branch cut contribution

aTrapped mode do not exist if c0 > c∞, i.e. for usual configurations...
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Step 2: including a PML (Gallezot and al., JASA-EL, 2017)

Assumptions: infinite PML, γ(x) = γ in the PML

The solution in the half-space is now:

u∞(x , z) =
1

2π

∫ +∞

−∞

a(k)

b(k)
e iγα∞xe ikzdk

z

x

Riemann surface for α∞ The sheet Im(γα∞) > 0

The new sheet for
∫

C+
to vanish: Im(γα∞) > 0

New branch cut: Im(γα∞) = 0

Re(k)

Im(k)

PML branch cut rotation, N: poles of
the improper sheet without PML

u(x , z) =
∑

trap. modes +
∑

revealed leaky modes
︸ ︷︷ ︸

poles such that Im(α∞) < 0 !

+

∫

Γ̃+
radiation modes

︸ ︷︷ ︸

new branch cut contribution

a

aLeaky modes are a good approximation of the initial continuum, only near the core
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Remaining issues:

1 What about elastodynamics? (non-scalar waveguide)

2 What about PML truncation to a finite thickness?

With a finite thickness PML:

u(x , z) =
∑

trapped +
∑

revealed leaky +
∑

’PML modes’
︸ ︷︷ ︸

?

PML modes:

discrete set

dependent on user-defined parameters (PML thickness,...)

→ non-intrinsic to the physics

- does the discrete set of PML modes still have any meaning?
- contribution of PML modes vs. leaky modes?
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The homogeneous test case

Axisymmetric SAFE-PML model of a homogeneous elastic medium

Fully 3D homogeneous: no waveguide!
No trapped, no leaky → only PML modes...
Analytical solution available (see e.g. Aki and Richards, 1980)

Excitation: point force, f(r , z , t) = F (t)
2πr

δ(r)δ(z)ez
Material: grout

PML parameters:

complex thickness d + γ̂h = d + (4 + 4i)× 4d

number of modes in modal expansion M = 50 0 0.2 0.4 0.6 0.8 1
t (s) ×10 -4

-1

-0.5

0

0.5

1

F
(t

) 
(N

)

F(t): sinus 60kHz, 5 cycles, Hanning
window
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SAFE-PML Eigenspectrum

1 1.5 2 2.5 3
Re(kd)

0
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1

1.5

2

Im
(k

d
)

ωd

cS

ωd

cL

Discrete set of PML modes at a given frequency (f=60kHz)
(dashed lines: theoretical branchcuts with infinite PML)

Elastodynamics → 2 continuum (1 for longitudinal waves + 1 for shear waves)

Discrete PML modes = discretization of the continua
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Response to point force
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P-wave far-field

near-field term

uz (r = 0) as a function of time at a given distance (z = 175d)
SAFE-PML solutions (red) and analytical solutions (blue)

Discrete PML modes enables to reassemble the exact solutiona

aA proof in scalar waveguides: Olyslager, SIAM J. Appl. Math., 2004
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Back to the waveguide configuration

Axisymmetric SAFE-PML model of open waveguide
PML parameters: γ̂ = 4 + 4i, h = 4a, d = a, M = 51

Steel into grout, low frequency: no trapped modes, only 1 leaky + 50 PML modes

0.2 0.4 0.6 0.8 1 1.2
t (ms)

-3
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0
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2

3

U
z
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m
m

)

×10 -12

Leaky mode 1

PML modes contribution

uz (r = 0) as a function of time at z = 175a
Elastic (blue) and viscoelastic (red) materials
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Energy decay of the solution vs. distance.
Solution for 51 modes (blue), 1 leaky mode (red)

and geometrical decay (black).

22/27

Treyssede et al. Open waveguide modeling



Introduction Numerical method Forced response Further understanding Numerical results Conclusion

Contents

1 Introduction

2 Numerical method

3 Forced response

4 Further understanding

5 Numerical results

6 Conclusion

23/27

Treyssede et al. Open waveguide modeling



Introduction Numerical method Forced response Further understanding Numerical results Conclusion

Conclusion

Using PML for the numerical modeling of open waveguides:

rather simple to implement

3 discrete sets: trapped, leaky and PML modes

trapped and leaky modes: intrinsic to the physics

PML modes: contribution to long-term diffraction
what about alternative methods? (not possible with AL; Hu and Menyuk, AOP, 2009)

provides orthogonality for all types of modes, leaky included
in theory: orthogonality holds for trapped and radiation modes only

→ the contribution of leaky is revealed in a natural way (excitability)

For NDE, in practice:

attention is restricted to leaky modes (+trapped modes if existence)

the PML thickness can be greatly reduced

the PML can be set close to the core to limit the transverse growth of leaky

→ reduction of the computational domain

Drawbacks and future works:

PML parameters are user-defined → optimization?...

many PML modes computed for a few leaky: computational time ր
→ numerical strategies?...
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The elastodynamic problem

Elastodynamics: compressional + shear waves ⇒ two transverse wavenumbers
4 Riemann sheets and 2 branch cuts ⇒ 2 continua of radiation modes2

Re(k)

Im(k)

Re(k)

Im(k)

Re(k)

Im(k)

Branch cuts and poles: viscoelastic medium without PML, with PML and pure elastic case3

→ only 2 sheets revealed by PML in pure elastic medium

2Lapwood, Trans. Roy. Soc. A, 1949
3Gallezot and al., JASA-EL, 2017
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Influence of PML parameters on error vs. distance

Error vs. distance: e(z) =

√ ∫
|urefz (z,ω)−unumz (z,ω)|2dω

∫
|urefz (z,ω)|2dω

0 50 100 150 200
z/d

0

2

4

6

8

10
e(

z/
d

) 
(%

)

Relative error as a function of the propagation distance. γ̂ = 4 + 4j. h = 4d , M = 50 ; h = 4d ,
M = 30 ; h = 3d , M = 50.

26/27

Treyssede et al. Open waveguide modeling



Introduction Numerical method Forced response Further understanding Numerical results Conclusion

Influence of the argument

0 50 100 150 200
z/d
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e(
z/

d
) 

(%
)

Figure : Relative error as a function of propagation distance for a complex thickness 25e jθ . Dotted
orange line: θ = 20 deg ; crossed blue line: θ = 30 deg ; black line: θ = 45 deg ; dashed-dotted
red line: θ = 60 deg ; dashed green line: θ = 70 deg.
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