Introduction	Numerical method	Forced response	Further understanding		Conclusion
000	000	00	000	00000	

On the modeling of elastic waveguides coupled to infinite media

Fabien Treyssède, Matthieu Gallezot, Khac Long Nguyen

IFSTTAR, GERS, GeoEND, F-44344 Bouguenais, France

ICMS Worshop, New mathematics for a safer world: wave propagation in heterogeneous materials, Edinburgh, June 12-16, 2017

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion
000	000	00	000	00000	
Contents					

1 Introduction

- Context
- Wave modes
- State-of-the-art

Numerical method

Forced response

Further understanding

Numerical results

Conclusion

Introduction	Numerical method		Further understanding		Conclusion
000	000	00	000	00000	
Context					

- Non Destructive Evaluation of elongated structures that are buried, completely or partially (including surface waves)
- Many examples in civil engineering and geophysics

Prestressing cable

Rockbolt

Introduction	Numerical method	Forced response	Further understanding	Conclusion
000				
Wave mode	es			

Generality:

- Guided wave propagation: dispersive and multimodal
- Dispersion curves required
- Modeling tools needed
- Waves=modes \rightarrow eigenvalue problem

Energy velocity vs. frequency

Waveguides coupled to infinite media unbounded in the transverse direction terminology: open waveguides (as opposed to *closed* waveguides, in vacuum)

Computation of eigenmodes in unbounded problems

Open waveguide

Introduction	Numerical method	Forced response	Further understanding	Conclusion
000				
Wave mode	es			

Generality:

- Guided wave propagation: dispersive and multimodal
- Dispersion curves required
- Modeling tools needed
- Waves=modes \rightarrow eigenvalue problem

Energy velocity vs. frequency

Waveguides coupled to infinite media unbounded in the transverse direction terminology: open waveguides (as opposed to *closed* waveguides, in vacuum) leakage loss: leaky modes, attenuation to minimize for NDE

Computation of eigenmodes in unbounded problems

Introduction	Numerical method	Forced response	Further understanding	Conclusion
000				
State-of-th	e-art (elasticity	r)		

- plates, cylinders: analytical approaches (Thomson-Haskell, ©Disperse, ...)
- arbitrary cross section: finite element discretization of cross-section (Semi-Analytical Finite Element method), but...

... how to handle the infinite transverse direction?

No discretization of the surrounding medium:

- SAFE + Boundary Element Method^a (nonlinear eigenproblem)
- SAFE + dashpot boundary condition^b (approximation)

Discretization of the truncated surrounding medium:

- SAFE + Absorbing Layer^c (slowly varying visco.→large thickness)
- SAFE + Perfectly Match Layer (PML)^d

^aMazzotti et al., Ultrasonics, 2013
 ^bGravenkamp et al., JASA, 2014
 ^cCastaings and Lowe, JASA, 2008
 ^dTreysséde et al., Wave Motion, 2014 ; Nguyen et al., JSV, 2015

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion
Contents					

Introduction

2 Numerical method

- SAFE-PML approach
- Eigenvalue problem (free response)
- Example of dispersion curves

Forced response

Further understanding

5 Numerical results

Conclusion

• Harmonic elastodynamic equilibrium equations:

$$\begin{cases} \tilde{\nabla} \cdot \tilde{\boldsymbol{\sigma}}(\tilde{\mathbf{u}}) + \tilde{\rho}\omega^{2}\tilde{\mathbf{u}} = \tilde{\mathbf{f}} \\ \tilde{\boldsymbol{\sigma}}(\tilde{\mathbf{u}}) = \tilde{\mathbf{C}} : \tilde{\boldsymbol{\epsilon}}(\tilde{\mathbf{u}}), \quad \tilde{\boldsymbol{\epsilon}}(\tilde{\mathbf{u}}) = \frac{1}{2}(\tilde{\nabla}\tilde{\mathbf{u}} + \tilde{\nabla}^{\mathsf{T}}\tilde{\mathbf{u}}) \end{cases}$$
(1)

with **PML** for transverse coordinates (x, y):

$$\tilde{x} = \int_0^x \gamma_x(s) ds \text{ with } \begin{cases} \gamma_x = 1 & \text{ if } |x| \le d_x \\ |\operatorname{Im} \gamma_x > 0 & \text{ if } |x| > d_x \end{cases} \text{ (idem for } \tilde{y})$$

• Change from complex to real coordinates:

$$\tilde{x} \mapsto x: \quad \frac{\partial}{\partial \tilde{x}} = \frac{1}{\gamma_x} \frac{\partial}{\partial x}, \quad d\tilde{x} = \gamma_x dx \quad (\text{idem for } \tilde{y})$$
(2)

User-defined parameters of a PML

attenuation function $\gamma_x(x)$, distance to the core d_x , thickness h_x (idem for y)

	Numerical method	Forced response	Further understanding		Conclusion
000	000	00	000	00000	

• Spatial Fourier transform along z:

$$\hat{\mathbf{u}}(k) = \int_{-\infty}^{+\infty} \mathbf{u}(z) \mathrm{e}^{-\mathrm{i}kz}$$
(3)

• FE discretization of the cross-section (x, y)

 \Rightarrow SAFE-PML formulation

$$\left(\mathbf{K}_{1}-\omega^{2}\mathbf{M}+\mathsf{i}k(\mathbf{K}_{2}-\mathbf{K}_{2}^{\mathsf{T}})+k^{2}\mathbf{K}_{3}\right)\hat{\mathbf{U}}=\hat{\mathbf{F}}$$
(4)

Introduction	Numerical method	Forced response	Further understanding	Conclusion
	000			
Eigenvalue	e problem (free	e response)		

• Spatial Fourier transform along z:

$$\hat{\mathbf{u}}(k) = \int_{-\infty}^{+\infty} \mathbf{u}(z) \mathrm{e}^{-\mathrm{i}kz}$$
(3)

• FE discretization of the cross-section (*x*, *y*)

\Rightarrow SAFE-PML formulation

$$\left(\mathbf{K}_{1}-\omega^{2}\mathbf{M}+\mathsf{i}k(\mathbf{K}_{2}-\mathbf{K}_{2}^{\mathsf{T}})+k^{2}\mathbf{K}_{3}\right)\hat{\mathbf{U}}=\hat{\mathbf{0}}$$
(4)

Characteristics of the eigenvalue problem:

- K_1 , K_2 , K_3 , M are complex due to γ_x , γ_y
- not self-adjoint
- quadratic for k

Linearization of the EVP:

$$(\mathbf{A} - k\mathbf{B})\mathbf{x} = \hat{\mathbf{0}} \quad \text{with } \mathbf{x} = \begin{bmatrix} \hat{\mathbf{U}} \\ k\hat{\mathbf{U}} \end{bmatrix}$$
 (5)

Introduction	Numerical method	Forced response	Further understanding	Conclusion
	000			
Example of	dispersion cur	ves		

Validation test case: steel cylinder into concrete (Castaings and Lowe JASA 2008)

Cross-section mesh (left), phase velocity curves before (middle)

Leaky mode (left) and PML mode (right)

Introduction	Numerical method	Forced response	Further understanding	Conclusion
	000			
Example of	dispersion cur	ves		

Validation test case: steel cylinder into concrete (Castaings and Lowe JASA 2008)

Cross-section mesh (left), phase velocity curves before (middle) and after modal filtering (right)

- Many 'PML modes'...
- Efficient modal filtering based on kinetic energy ratio: E_{PML}/E_{TOT} >threshold

Leaky mode (left) and PML mode (right)

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion
Contents					

Forced response

- Biorthogonality and solution
- Example of response

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion		
000	000	●○	000	00000			
Biorthogon	Biorthogonality and solution						

Knowing \mathbf{U}_m , we want to solve $(\mathbf{K}_1 - \omega^2 \mathbf{M} + ik(\mathbf{K}_2 - \mathbf{K}_2^T) + k^2 \mathbf{K}_3) \hat{\mathbf{U}} = \hat{\mathbf{F}}$ using the modal expansion: $\hat{\mathbf{U}} = \sum_m \alpha_m \mathbf{U}_m$

Biorthogonality relationship with PML

- fundamental property of the EVP: K_1 , K_3 , M are symmetric \rightarrow eigensolutions (k_m , U_m) and ($-k_m$, U_{-m}) of opposite travelling direction
- a general biorthogonality relationship, applicable to lossy waveguides^a:

$$\frac{\mathrm{i}\omega}{4}(\mathbf{U}_m^\mathsf{T}\mathbf{F}_{-n}-\mathbf{U}_{-n}^\mathsf{T}\mathbf{F}_m)=Q_{m,-m}\delta_{mn}$$

• \equiv discretized version of Auld's real orthogonality

^aTreyssède and Laguerre, JASA, 2013, $\mathbf{F}_m = (\mathbf{K}_2^{\mathsf{T}} + \mathrm{i}k_m\mathbf{K}_3)\mathbf{U}_m$

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion		
000	000	0	000	00000			
Biorthogon	Biorthogonality and solution						

Knowing \mathbf{U}_m , we want to solve $(\mathbf{K}_1 - \omega^2 \mathbf{M} + ik(\mathbf{K}_2 - \mathbf{K}_2^T) + k^2 \mathbf{K}_3) \hat{\mathbf{U}} = \hat{\mathbf{F}}$ using the modal expansion: $\hat{\mathbf{U}} = \sum_m \alpha_m \mathbf{U}_m$

Biorthogonality relationship with PML

- fundamental property of the EVP: K_1 , K_3 , M are symmetric \rightarrow eigensolutions (k_m , U_m) and ($-k_m$, U_{-m}) of opposite travelling direction
- a general biorthogonality relationship, applicable to lossy waveguides^a:

$$\frac{\mathrm{i}\omega}{4}(\mathbf{U}_m^{\mathsf{T}}\mathbf{F}_{-n}-\mathbf{U}_{-n}^{\mathsf{T}}\mathbf{F}_m)=Q_{m,-m}\delta_{mn}$$

• \equiv discretized version of Auld's real orthogonality

^aTreyssède and Laguerre, JASA, 2013, $\mathbf{F}_m = (\mathbf{K}_2^\mathsf{T} + \mathrm{i}k_m\mathbf{K}_3)\mathbf{U}_m$

 Biorthogonality relationship → unique modal coefficients α_m = - ωU^T_mÊ 4Q_{m,-m}(k_m-k)
 Inverse spatial Fourier transform thanks to Cauchy's residues theorem:

$$\mathbf{U}(z,\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{\mathbf{U}}(k,\omega) \mathrm{e}^{\mathrm{i}kz} dk = \sum_{m=1}^{M} \underbrace{\frac{\mathrm{i}\omega \mathbf{U}_m \mathbf{U}_{-m}^{\mathsf{T}}}{4Q_{m,-m}}}_{\mathbf{E}_m: \text{ excitability}} \hat{\mathbf{F}}(k_m) e^{\mathrm{i}k_m z}$$

③ Solution in the time domain (IFFT): $U(z,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} U(z,\omega) e^{-i\omega t} d\omega$

Axisymmetric SAFE-PML model of open waveguide PML parameters: $\hat{\gamma} = 4 + 4i$, h = 4a, d = a, M = 51

Steel into grout, low frequency: no trapped modes, 1 leaky mode, PML modes

Problem: PML modes are not intrinsic to the physics...

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion
Contents					

Introduction

Numerical method

Forced response

Further understanding

- Step 0: back to closed waveguides
- Step 1: spectrum of open waveguides
- Step 2: including a PML

Numerical results

Conclusion

Introduction	Numerical method	Forced response	Further understanding		Conclusion
			000		
Step 0: back to closed waveguides					

Assumptions:

- two-dimensional
- out-of-plane line source
- scalar (i.e. satisfying Helmholtz)

closed

The solution is of the form:

$$\hat{u}(x,k) = \frac{a(x,k)}{b(k)} \Rightarrow u(x,z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{a(x,k)}{b(k)} e^{ikz} dk = \sum \text{modes}^1 \quad (\text{residue theorem})$$

¹In closed waveguides, modes are propagative $(k_m \in \mathbb{R})$, evanescent $(k_m \in i\mathbb{R})$ or inhomogeneous

 Introduction
 Numerical method
 Forced response
 Further understanding
 Numerical results
 Conclusion

 000
 000
 00
 00
 000
 0000
 0000

The solution in the half-space is of the form:

$$u_{\infty}(x,z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{a(k)}{b(k)} e^{i\alpha_{\infty}x} e^{ikz} dk$$

with $\alpha_{\infty} = \pm \sqrt{\omega^2/c_{\infty}^2 - k^2}$: <u>multivalued</u>

Riemann surface for α_∞

The solution in the half-space is of the form:

$$u_{\infty}(x,z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{a(k)}{b(k)} e^{i\alpha_{\infty}x} e^{ikz} dk$$

with $\alpha_{\infty} = \pm \sqrt{\omega^2/c_{\infty}^2 - k^2}$: <u>multivalued</u>

The 'proper' sheet for \int_{C^+} to vanish: $\text{Im}(\alpha_{\infty}) > 0$ Im $(\alpha_{\infty}) = 0$: discontinuity (branch cut)

Solution for
$$z > 0$$
: $u(x, z) = \sum_{\text{poles of the proper sheet}} trapped modes and the proper sheet are provided by the proper sheet of the proper sheet are provided by the proper sheet of the proper shee$

Assumptions: infinite PML, $\gamma(x) = \gamma$ in the PML The solution in the half-space is now:

$$u_{\infty}(x,z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{a(k)}{b(k)} e^{i\gamma\alpha_{\infty}x} e^{ikz} dk$$

Riemann surface for α_{∞}

The sheet
$$\mathsf{Im}(\gamma \alpha_{\infty}) > 0$$

The new sheet for \int_{C+} to vanish: $\text{Im}(\gamma \alpha_{\infty}) > 0$ New branch cut: $\text{Im}(\gamma \alpha_{\infty}) = 0$

PML branch cut rotation, ▲: poles of the improper sheet without PML

^aLeaky modes are a good approximation of the initial continuum, only near the core

Introduction	Numerical method		Further understanding	Numerical results	Conclusion
000	000	00	000	00000	
Contents					

Introduction

2 Numerical method

Forced response

Further understanding

Numerical results

- Remaining issues
- The homogeneous test case
- Back to the waveguide configuration

6 Conclusion

		Forced response	Further understanding	Numerical results	Conclusion
000	000	00	000	00000	

Remaining issues:

- What about elastodynamics? (non-scalar waveguide)
- What about PML truncation to a finite thickness?

With a finite thickness PML:

$$u(x, z) = \sum \text{trapped} + \sum \text{revealed leaky} + \underbrace{\sum 'PML \text{ modes'}}_{2}$$

PML modes:

- discrete set
- dependent on user-defined parameters (PML thickness,...)
- \rightarrow non-intrinsic to the physics

- does the discrete set of PML modes still have any meaning?

- contribution of PML modes vs. leaky modes?

Axisymmetric SAFE-PML model of a homogeneous elastic medium

- Fully 3D homogeneous: no waveguide!
- No trapped, no leaky \rightarrow only PML modes...
- Analytical solution available (see e.g. Aki and Richards, 1980)

Excitation: point force, $\mathbf{f}(r, z, t) = \frac{F(t)}{2\pi r} \delta(r) \delta(z) \mathbf{e}_z$ Material: grout

PML parameters:

- complex thickness $d + \hat{\gamma}h = d + (4 + 4i) \times 4d$
- number of modes in modal expansion M = 50

	Forced response	Further understanding	Numerical results	Conclusion
			00000	

SAFE-PML Eigenspectrum

(dashed lines: theoretical branchcuts with infinite PML)

- Elastodynamics \rightarrow 2 continuum (1 for longitudinal waves + 1 for shear waves)
- Discrete PML modes = discretization of the continua

Introduction	Numerical method	Forced response	Further understanding	Numerical results	Conclusion
				00000	

Response to point force

• Discrete PML modes enables to reassemble the exact solution^a

^aA proof in scalar waveguides: Olyslager, SIAM J. Appl. Math., 2004

PML parameters: $\hat{\gamma} = 4 + 4i$, h = 4a, d = a, M = 51Steel into grout, low frequency: no trapped modes, only 1 leaky + 50 PML modes

Axisymmetric SAFE-PML model of open waveguide

PML

Elastic (blue) and viscoelastic (red) materials

Axisymmetric SAFE-PML model of open waveguide PML parameters: $\hat{\gamma} = 4 + 4i$, h = 4a, d = a, M = 51

Steel into grout, low frequency: no trapped modes, only 1 leaky + 50 PML modes

Introduction 000	Numerical method	Forced response OO	Further understanding 000	Numerical results 00000	Conclusion
Contents					

1 Introduction

Numerical method

Forced response

Further understanding

Numerical results

Introduction	Numerical method	Forced response	Further understanding	Conclusion
Conclusion				

Using PML for the numerical modeling of open waveguides:

- rather simple to implement
- 3 discrete sets: trapped, leaky and PML modes
- trapped and leaky modes: intrinsic to the physics
- PML modes: contribution to long-term diffraction what about alternative methods? (not possible with AL; Hu and Menyuk, AOP, 2009)
- provides orthogonality for all types of modes, leaky included in theory: orthogonality holds for trapped and radiation modes only
 → the contribution of leaky is revealed in a natural way (excitability)

For NDE, in practice:

- attention is restricted to leaky modes (+trapped modes if existence)
- the PML thickness can be greatly reduced
- the PML can be set close to the core to limit the transverse growth of leaky
- \rightarrow reduction of the computational domain

Drawbacks and future works:

- PML parameters are user-defined \rightarrow optimization?...
- many PML modes computed for a few leaky: computational time → numerical strategies?...

Branch cuts and poles: viscoelastic medium without PML, with PML and pure elastic case³

ightarrow only 2 sheets revealed by PML in pure elastic medium

²Lapwood, Trans. Roy. Soc. A, 1949

³Gallezot and al., JASA-EL, 2017

Error vs. distance:
$$e(z) = \sqrt{\frac{\int |u_z^{\text{ref}}(z,\omega) - u_z^{\text{num}}(z,\omega)|^2 d\omega}{\int |u_z^{\text{ref}}(z,\omega)|^2 d\omega}}$$

Relative error as a function of the propagation distance. $\hat{\gamma} = 4 + 4j$. h = 4d, M = 50; h = 4d, M = 30; h = 3d, M = 50.

			Further understanding		Conclusion	
000	000	00	000	00000		
Influence of the argument						

Figure : Relative error as a function of propagation distance for a complex thickness $25e^{i\theta}$. Dotted orange line: $\theta = 20 \deg$; crossed blue line: $\theta = 30 \deg$; black line: $\theta = 45 \deg$; dashed-dotted red line: $\theta = 60 \deg$; dashed green line: $\theta = 70 \deg$.