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We present a general formula for obtaining the zeros of the analytic continuation formula of the Riemann zeta function from Euler's quadratic equation and show that these zeros are all real. Furthermore, substituting this formula into the analytic continuation formula, the root of the Analytic Continuation Formula (ACF) of the Riemann zeta function is determined.

Introduction

We presented in [START_REF] Enoch | From the zeros of the Riemann zeta function to its analytical continuation formula[END_REF] that the Euler's quadratic equation is connected to the ACF of the Riemann Zeta Function by showing that the equation;

41 2 + + x x (1)
could be structured to give the ACF of the Riemann Zeta Function by doing the following:

• instead of the coefficients of 2 x and x, being 1, we wrote k;
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• for the constant integral, 41, we replaced it with ( ); t G

• multiplied the resulting equation with the trivial zeros of the Riemann zeta function;

Then the resulting equation was obtained as;

( () ) ( ) . 2 2 n z t G kz kz + + - (2) 
By discretizing (2), we obtained;

( ) ( ) ( ) ( () ) ∑ ∑ ∞ ≥ ∞ ≥ + - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ζ = γ 1 1 2 . 2 1 2 n n E t G kz kz n z n z z (3)
By the method of partial summation [START_REF] Atle | An elementary proof of the prime-number theorem[END_REF], we [START_REF] Enoch | From the zeros of the Riemann zeta function to its analytical continuation formula[END_REF] showed that

∑ ∑ ∑ ≤ ≤ ≤ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + n dq n d d n q n z n n z n 2 1 2 2 1 2 (4) 
where

n d 2 = and . 2 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = n z q
We eventually obtained (3) as

( ) ( ) ( ) ( () ) ∑ ∑ ∑ ∞ ≥ ≤ ≤ + - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ζ = γ 1 2 . 2 1 2 n n d d n q E t G kz kz n z n z z ( 5 
)
Such that equation (5) was written as;

( ) ( ) ( ) ( ) ( ) ∑ ≤ - ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ π ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + Γ π - - = γ n d z z n z t G kz z z z z . 2 1 2 1 2 2 2 (6)
By using the expression;

∑ ∞ = - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - 0 . 1 1 1 1 n nz z p p [1, 2]
We arrived at
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1 2 2 1 1 1 - ≤ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ π ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - γ ∑ n d z z n z t G kz p z ( ) ( ) ∑ ∞ = -Γ π - = 0 2 . 1 2 1 2 n nz z p z z z (7)
Then we obtained equation [START_REF] Enoch | The Eigenvalues (energy levels) of the Riemann zeta function[END_REF], by multiplying equation ( 7) over prime numbers;

( ) ( ) ( ) ∏ ∑ - ≤ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ π ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - γ p n d z z n z t G kz p z 1 2 2 1 1 1 ( ) ( ) ∏∑ ∞ ≥ -Γ π - = p n nz z p z z z 1 2 . 1 2 1 2 (8)

Obtaining the Zero of the ACF of the Riemann Zeta

Function from ( ) t G

We went on to set the LHS of (8) as follows:

( ) ( ) ( ) . 1 2 1 1 1 2 - ∞ ≤ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ π ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - γ = ε ∏ ∑ p n d z z e z t G kz n p z (9)
Then obtained a general formula for ( ) [START_REF] Enoch | From the zeros of the Riemann zeta function to its analytical continuation formula[END_REF] And on using the definition of ( )

t G ( ) ( ) ( ) ( ) 1 2 1 1 1 1 2 - - ε ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - π γ - = ∏ ∑ ∞ ≥ z kz n p z z t G p n e z z
z γ
as in [START_REF] Enoch | A Validation of the Real Zeros of the Riemann Zeta Function via the Continuation Formula of the Zeta Function[END_REF], we got

( ) ( ) , 1 ϑ - σ - = t z kz t G ( 11 
)
where

( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - Γ π = σ ∑ ∞ = - 0 2 1 1 1 1 2 2 n nz z z p p z z (12) ( ). 1 - ϑ = σ Such that; ( ) ∑ ∞ = - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - Γ π = ϑ 0 2 1 1 1 2 2 n nz z z p p z z (13) 
And

( ) ( ) ( ) ∏ ∑ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - π + - + π + - = τ ∞ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - π - p z n z z n p z n z n e z z . 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 2 2 (14)
From equation ( 11), we obtained a general equation for the zeros of the Analytic Continuation formula as;

( ) ( ) ( ) ( ) . 1 1 1 1 2 ϑ - τ - ϑ - = ϑ - τ σ - = + = z kz z kz kt t G (15) 
Such that;

( ) ( ) ( )( ) ( ) 4 ; 1 1 1 1 1 2 1 2 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ϑ - τ - ϑ - = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ϑ - τ σ - ± = k k z z k z z t (16) 4 = k
and t is the zero of the ACF of the Riemann Zeta Function.

The Realness of the Zeros of

The Analytic Continuation Formula, ( )

t ε Theorem 1. Let ( ) t G
be defined as it is in equation [START_REF] Enoch | From the zeros of the Riemann zeta function to its analytical continuation formula[END_REF] then it can be shown that the LHS RHS = of [START_REF] Tao | The Euler-Maclaurin formula[END_REF] and that the zeros of the analytic continuation formula, ( ),

t ε
of the Riemann Zeta Function will always be real as

. ∞ → n Proof. Let ( ) ( ) ( ) ( ). 1 2 1 1 1 1 2 2 - - ε - π γ - = + ∏ ∑ ∞ ≥ - z kz n P z z kt p n e z z (16) ( ) ( ) ( ) ( ) ; 1 1 2 1 1 2 1 1 1 2 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - - - ε - π γ - ± = ∑ ∏ ∞ ≥ - - - k z z n k P z z t n e P z z such . 4 = k (17)
If we take the limit of (17) as

∞ → n and , 2 1 it z + =
we obtain;

( ) ( ) ( ) ( ) 2 1 1 1 2 1 1 2 1 1 lim lim ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - - - ε - π γ - ± = ∑ ∏ ∞ ≥ - - - ∞ → ∞ → k z z n k P z z t n e P z z n n (18) ( ) . 1 lim 1 lim 0 lim 2 1 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - - - ± = ∞ → ∞ → ∞ → k z z t n n n (19) If we choose it z ± = 2 1 and 4 = k in (19), we arrival at: [ ] . , lim lim 2 1 2 R ∈ ± = ± = ∞ → ∞ → t t t t n n (20)

The Analytic Continuation Formula of the Riemann Zeta Function

Theorem 2. Let the Analytical continuation formula of the Riemann Zeta function be given as:

( ) ( ) ∫ ∞ - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ψ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + - = ε 1 4 3 2 ; log 2 cos 4 1 2 1 dx x t x x t t ( ) ∑ ∞ = π - = ψ 1 . 2 n x n e x ( 21 
)
If t is the zero of ( )

t ε then it can be shown that ( ) 0 = ε t anytime ( ) ( ) ( ) ( ) . 4 1 1 2 4 1 1 2 1 1 2 1 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - - - ε π - γ - ± = ∑ ∏ ∞ ≥ - - z z n P z z t n e z P z Proof. We show that ( ) ( ) ( ) ( ) ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - ε - π γ - - = ε ∑ ∏ ∞ ≥ - - - z n P z z t n e P z z 1 1 2 2 4 1 1 2 1 ( ) ∫ ∑ ∞ ∞ = - π - ϕ × 1 1 4 3 , log cos 2 n x n dx x x e (22)
where

( ) ( ) ( ) 2 1 1 1 2 4 1 2 4 1 1 2 1 2 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - ε - π γ - = = ϕ ∑ ∏ ∞ ≥ - - - z n P z z t n e P z z (23) ( ) . 0 = ε t Implies that; ( ) ( ) ( ) ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - ε - π γ - = ∑ ∏ ∞ ≥ - - - z n P z z n e P z z 1 1 2 2 4 1 1 2 1 ( ) ∫ ∑ ∞ ∞ = - π - ϕ × 1 1 4 3 . log cos 2 n x n dx x x e ( 24 
)
It follows that on further simplification of the RHS of (24), we obtain [START_REF] Patterson | An introduction to the theory of the Riemann zeta function[END_REF];

( ) ( ) . 2 ; 2 1 log cos 2 1 2 1 t x x x z z = ϕ + = ϕ - - (25) 
This will mean [START_REF] Patterson | An introduction to the theory of the Riemann zeta function[END_REF];

. 2

1 2 1 ϕ + = ⇒ ϕ = - i z i z (26) That is . 2 2 1 2 2 1 t i z t i z + = ⇒ = - (27) 
Such that it follows that;

( ) ( ) ( ). 2 1 2 1 log cos 2 2 t i t i i i x x x x x - ϕ - ϕ + = + = ϕ (28)
Because, if we have [START_REF] Patterson | An introduction to the theory of the Riemann zeta function[END_REF];

( )

x r log cos such that ; 2 1 ir z = - then ( ) ( ). 2 1 log cos 2 1 2 1 z z x x x r - -+ =
One can see that the intergrade in equation ( 24) is the same as;

( ) ∫ ∑ ∞ ∞ = - π - ϕ 1 1 4 3 log cos 2 n x n dx x x e ( ) ∫ ∑ ∞ ∞ = ϕ - ϕ - π - + = 1 1 4 3 2 2 1 n i i x n dx x x x e (29) ∫ ∑ ∫ ∑ ∞ ∞ = ∞ ∞ = ϕ - - π - ϕ + - π - + = 1 1 1 1 4 3 4 3 . 2 1 2 1 2 2 n n i x n i x n dx x e dx x e (30) 
The equation was solved and the resulting solution is given as:

⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ϕ + π + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ϕ - π + = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - ϕ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ϕ + - 4 3 2 4 3 2 1 4 3 1 4 3 2 1 i i i n i n . 4 3 2 2 2 1 2 ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + × ∑ ∞ = π - n e n n (31)
By using some transformations in complex analysis such that

i n e π = 2 1 in
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( )

, 4 3 4 3 2 2 2 2 1 2 2 3 2 ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + + ∑ ∞ = π - πϕ - πϕ π - n e i n e e e n n n n i n (32)
where 

⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + = β ∑ ∞ = π -
1 2 ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + ϕ = α ∑ ∞ = π - n e n n (34) Such that; ( ) ( ) ( ) . 4 3 4 1 2 4 1 1 2 1 2 2 2 1 2 1 1 2 1 2 ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ϕ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π + ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - π ε - γ - = α ∑ ∑ ∏ ∞ = π - ∞ ≥ - -
3 cos sinh ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α + π β πϕ = n n i n n n (37)
By substituting (37) into equation ( 22), we will obtain;

( ) ( ) ( ) ( ) πϕ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - π ε - γ - - ∑ ∏ ∞ ≥ - - n z n P z z n z e P z sinh 2 4 1 1 2 1 1 2 1 . 0 2 3 cos 2 3 sin 2 3 sin 2 3 cos = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α + π β ⋅ n n i n n (38)

Conclusion

We conclude by considering the analytical continuation formula as follows:

If ( ) , 0 = ε t then in equation (38) the term ( ) ( ) ( ) ( ) πϕ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - π ε - γ - ∑ ∏ ∞ ≥ - - n z n P z z n z e P z sinh 2 2 1 2 1 1 2 1 2 1 2 3 cos 2 3 sin 2 3 sin 2 3 cos = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α + π β ⋅ n n i n n (39) ( ) ( ) ( ) ( ) πϕ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - π ε - γ - ∑ ∏ ∞ ≥ - - n z n P z z n z e P z sinh 2 2 1 1 1 2 1 . 1 2 3 cos 2 3 sin 2 3 sin 2 3 cos = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α + π β ⋅ n n i n n ( 40 
)
Such that (39) implies; If we rationalize the RHS of (41), it will result into; 

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α + π β ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π α - π β + n n n n n n i ( 42 
)
And with this reality, equation (38) will always be equal to zero anytime t as defined in (16).

  can write the RHS of (29) as;
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