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Approximation of polynomial convariance functions of arbitrary degree

Introduction

Covariance function provides a powerful tool in time series analysis and in spatial data analysis. In this paper we consider for a class of stationary process X(u) with polynomial covariance function of C(t) = cov(X(u + t), X(u), -1 ≤ u < t + u ≤ 1 where

C(t) = n+1 i=0 b i |t| i , -1 ≤ t ≤ 1
In general, an arbitrary polynomial will not be a valid covariance function and it is not evident which conditions a polynomial should be fulfilled for the existence of such a stationary process. Clearly, to be a valid covariance function, polynomial must be positive definite.

Polynomial covariance model finds various applications in Geostatistics [START_REF] Gneiting | Isotropic correlation functions on d-dimensional balls[END_REF][START_REF] Zhang | Asymptotics and computation for spatial statistics[END_REF] and Hydrology [START_REF] Stol | Rainfall interstation correlation functions[END_REF] and attracts great interests of researchers. A polynomial covariance model of degree 4 is presented by a simulation study for the Stienen model spheres in threedimensional Euclidean space [START_REF] Wiencek | Spatial correlations in metal structures and their analysis, II: The covariance[END_REF]. Turning bands operator provides a convenient method to check for positive definiteness in the general case [START_REF] Matheron | The intrinsic random functions and their applications[END_REF]. Polynomial covariance function of degree k ≤ 3 was studied [START_REF] Gneiting | Analogies and correspondences between variograms and covariance functions[END_REF] and the quintic case was considered [START_REF] Mitchell | Existence of smoothed stationary processes on an interval[END_REF][START_REF] Lasinger | Integration of covariance kernels and stationarity[END_REF]. A more general form [START_REF] Mitra | Polynomial covariance functions on intervals[END_REF] was presented, which covers the quartic case except when the linear term vanishes.

The property of positive definiteness is, in general, difficult to check. Fortunately, Krein-Langer analytical technique [START_REF] Krein | On some continuation problems which are closely related to the theory of operators in spaces k . IV: Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions[END_REF] provides a powerful tool for characterization of covariance functions. In section 2 we review Krein-Langer theorem. In section 3 we study polynomial covariance function with vanishing odd terms. In section we present approximation theory for polynomial covariance functions of arbitrary degree.

Krein-Langer theorem

We begin this section by recalling the Krein-Langer theorem which is the key tool in this paper. Let C denote an even continuous function such that

1. C is second differentialble, i.e C 2 [-1, 1]; 2. the second H = -C exists for t = 0 and H is absolutely integrable over [-1, 1] 3. C (0+) < 0
Second derivative can be interpreted as accelerator. With the H we define an operator on L 2 [0, 1] For calculating the inner product we can use integral equation approach. We determine first the resolvent kernel of H

Hf (t) = 1 0 H(t -ξ)f (ξ)dξ, 0 < t < 1
Γ(t, s) + 1 0 H(t -u)Γ(u, s)du = H(t -s), 0 < t, s < 1 (1)
Here Γ is a real function, otherwise Γ -Γ is an eigenfunction of H with eigenvalue -1.

Let Γ be the operator on

L 2 [0, 1] Γ ϕ(t) = 1 0 Γ (t, s)ϕ(s)ds, 0 < t < 1
Then the equation (1) can be rewritten in the form

Γ + Γ H = H Finally (I + H)(I -Γ ) = I
The first condition of Krein-Langer theorem leads to calculation of eigenvalues. Let -µ be an eigenvalue of H

µV (t) + 1 0 H(t -u)V (u)du = 0 (0 < t < 1) (2) 
Differentiating l times yields

µV (l-1) (t) + 1 0 H (l-1) (t -u)V (u)du - l-2 m=0 b l-m (1 -(-1) l-m )V (m) (t) = 0 (3) 
for l = 1, 2, ...n. To calculate the inner product, we define a function G

G(t) := (ΓC )(t) = 1 0 Γ(t, s)C (s)ds
It holds obviously

((I + H) -1 C , C ) L 2 [0,1] = (C -G, C ) L 2 [0,1]
Differntialting the equation l times

G (l-1) (t) + 1 0 H (l-1) (t -s)(G(s) -C (s))ds - l-2 m=0 b l-m (1 -(-1) l-m )(G (m) (t) -C (m) (t)) = 0 (4) 
3 Polynomial covariance functions with vanishing odd terms

We consider polynomials with vanishing odd terms

C(t) = r - 1 2 |t| + b 2 |t| 2 + b 4 |t| 4 + b 6 |t| 6 ... + b n+1 |t| n+1 , -1 ≤ t ≤ 1
From (3) und (4) we see

V (n) (t) = 0 G (n) (t) = 0 (5) 
The solutions are

V (t) = n j=1 c j (j -1)! t j-1 (6) 
G(t) = n j=1 d j (j -1)! t j-1 (7) 
where c j and d j are constants.

Calculation of eigenvalues of H

Setting (6) into (3) with t = 1 yields

n j=l µ c j (j -l)! - n j=1 n+1 k=1+l b k c j (k -l + j -1)! = 0 and - l-1 j=1 c j n+1 k=1+l b k (k -l + j -1)! + n j=l c j (- n+1 k=1+l b k (k -l + j -1)! + µ (j -l)! ) = 0
This equations system can rewritten as matrix equation with respect to c = [c 1 , ..., c n ]

Bc = 0 where b l,j = -n+1 k=1+l b k (k-l+j-1)! for 1 ≤ j ≤ l -1 -n+1 k=1+l b k (k-l+j-1)! + µ (j-l)! for l ≤ j ≤ n For non-trivial V it must hold det(B) = 0

Calculation of inner product

We set [START_REF] Mitra | Polynomial covariance functions on intervals[END_REF] in (4) with t = 1, then

- l-1 j=1 d j n+1 k=1+l b k (k -l + j -1)! + n j=l d j ( 1 (j -l)! - n+1 k=1+l b k (k -l + j -1)! ) = - n+1 j=1 n+1 k=1+l b k b j (k -1 -l)! We rewrite in matrix form ED = G where e l,j = -n+1 k=1+l b k (k-l+j-1)! for 1 ≤ j ≤ l -1 -n+1 k=1+l b k (k-l+j-1)! + 1 (j-l)! for l ≤ j ≤ n g l = - n+1 j=1 n+1 k=1+l b k b j (k -1 -l)!
and D is the vector of coefficients of function V in [START_REF] Mitra | Polynomial covariance functions on intervals[END_REF].

Theorem 3.1. Let C be a polynomial with vanishing odd terms of the form

C(t) = r - 1 2 |t| + b 2 |t| 2 + b 4 |t| 4 + b 6 |t| 6 ... + b n+1 |t| n+1 , 0 < t < 1
Then C is a covariance function if and only if 1. the equation admits only solution µ <

1 det B = 0 where b l,j = -n+1 k=1+l b k (k-l+j-1)! for 1 ≤ j ≤ l -1 -n+1 k=1+l b k (k-l+j-1)! + µ (j-l)! for l ≤ j ≤ n 2. C(0) ≥ C -G, C where G is a polynomial of the form G(t) = n j=1 d j (j -1)! t j-1
The coefficients vector

D = [d 1 , d 2 , ..., d n ] of G can be determined by ED = G with e l,j = -n+1 k=1+l b k (k-l+j-1)! for 1 ≤ j ≤ l -1 -n+1 k=1+l b k (k-l+j-1)! + 1 (j-l)! for l ≤ j ≤ n g l = - n+1 j=1 n+1 k=1+l b k b j (k -1 -l)! Example 3.1. For n = 5 C(t) = r - 1 2 |t| + b 2 |t| 2 + b 4 |t| 4 + b 6 |t| 6
We calculate the determinant of matrix det(b i,j ) n×n and the inner product

(I -Γ )C , C det(b i,j ) n×n = - 1 22122558259200000 1209600µ 2 + 100800b 4 µ + 5040µb 6 -b 6 2 (25401600a 4 2 µ + 1524096000b 4 µ 2 + 907200b 4 µb 6 -18289152000µ 3 +76204800µ 2 b 6 + 18289152000b 2 µ 2 + 20160µb 6 2 -25401600b 2 µb 6 -a 6 3 ) (8) (I -Γ )C , C = 1 10059033600(-b 6 2 + 5040b 6 + 1209600 + 100800b 4 ) (1013950586880000b 2 2 -279417600b 2 b 6 2 -20118067200b 2 b 4 b 6 -603542016000b 6 b 2 + 50697529344000b 4 b 2 -3041851760640000b 2 -b 6 4 + 60480b 6 3 + 4536000b 4 b 6 2 + 533433600 b 6 2 + 4224794112000b 6 +279417600b 4 2 b 6 + 83825280000 b 4 b 6 + 1810626048000b 4 2 +10059033600b 4 3 + 3041851760640000) ≤ r (9) 
The polynomial C is a valid covariance function if and only the equation ( 8) only admits solutions µ < 1 and the inequality (9) holds The C is a valid covariance function if equation ( 10) admits only µ < 1 and inequality (11) holds.

Approximation theory for polynomial covariance functions

In this section we present a numerical approach to calculate inner product. For a function C be a function defined on interval [-1, 1], Toeplitz matrix is defined as

M n (C) = C( i -j n ) n i,j=0
And if C is a covariance function, then Toeplitz matrix M n (C) is positive definite for all natural number n. The Toeplitz matrix is symmetric and all the eigenvalues are positive. Moreover we define a function

C r C r (t) = C(t) -C(0) + r, (|t| ≤ 1)
Let r ∞ denote the inferium such that C r is a positive definite function

r ∞ = inf {r ∈ R : C r is positive definite} (12)
A sequence {r n } is defined

r n = sup {r ∈ R : M n (C r ) has a negative eigenvalue} (13)
The following theorem provides a rigorous approximation of r ∞ . 

if r ≥ r ∞ , then lim n→∞ r n = r ∞ We define a function L n L n (r) = det(M n (C r )) Lemma 4.2. The function L n is a linear function of r L n (r) = ar + b (14) 
where a and b are two constants.

Proof. We denote z i the i-th row and s j the j-th column.

L n (r) = det(M n (C r )) = det         C( 0-0 n ) -C(0) + r • • • C(-j n ) -C(0) + r • • • C(-1) -C(0) + r . . . . . . . . . . . . C( i n ) -C(0) + r • • • C( i-j n ) -C(0) + r . . . . . . C(1) -C(0) + r C( n-n n ) -C(0) + r         (n+1)×(n+1) z i+1 -z 1 = det         r • • • C(-j n ) -C(0) + r • • • 1×n     . . . C( i n ) -C(0) . . .     n×1     . . . C( i-j n ) -C(-j n ) . . .     n×n         (n+1)×(n+1) s j+1 -s 1 = det         r • • • C(-j n ) -C(0) • • • 1×n     . . . C( i n ) -C(0) . . .     n×1     . . . C( i-j n ) -C( i n ) -C(-j n ) + C(0) . . .     n×n         (n+1)×(n+1) (15) 
In this matrix, r appears only once, then L n (r) is a linear function of r. Furthermore, L n is a monotone increasing function from Krein-Langer theorem, then a > 0.

Proposition 4.3. r n is the zero point of L n , i.e.

L n (r n ) = 0

Proof. Let r * n be the zero point of L n and r be the middle point r := r * n +rn 2

If r n < r * n and recall that L n is a linear function

L n (r) < L n (r * n ) = det(M n (C r * n )) = 0
Then the matrix M n C r has at least one negative eigenvalue, which contradicts the definition of r n .

If r * n < r n , then for middle point r, there exists a unit vector x

x T M n (C r)x < 0 Fix this unit vector x, due to continuity, there exists a r 2 > r such that

x T M n (C r 2 )x = 0 then det(M n (C r 2 )) = 0
This implies that r 2 is a second zero point of L n , which contradicts the uniqueness of zero point of linear function.

Corollary. The r n can be expressed

r n = - det(β i,j ) n i,j=0 det(α i,j ) n i,j=1 (16) 
where

β i,j = C( i -j n ) -C(0) α i,j = C( i -j n ) -C( i n ) -C(- j n ) + C(0)
Proof. r n is the zero point of L n ar n + b = 0

From (15) a = det(α i,j ) n i,j=1

and set r = 0 into (14) b = det(β i,j ) n i,j=0

In the following table we present the coefficients of polynomial

C(t) = r - 1 2 |t| + b 2 2! |t| 2 + b 4 4! |t| 4 + b 6 6! |t| 6 + b 8 8! |t| 8
In the table are the values of r n for n = 10, 20, 30, 40, 50 and the analytical limit r ∞ . 

C(t) = r - 1 2 |t| + b 2 |t| 2 + b 4 |t| 4 , ... + b n+1 |t| n+1 , -1 ≤ t ≤ 1
Then C is a covariance function if and only if 1. the equation admits only solution µ <

1 det B = 0 where b l,j = -n+1 k=1+l b k (k-l+j-1)! for 1 ≤ j ≤ l -1 -n+1 k=1+l b k (k-l+j-1)! + µ (j-l)! for l ≤ j ≤ n
Proof. H is a finite rank operator by definition, then it is trace class operator. The Fredholm determinant is well-defined. -µ is an eigenvalue of H, then the function ϕ(λ) = det(I + λH) has a zero of order n at λ = 1 µ , where n is the algebraic multiplicity of -µ. Then the Fredholm determinant can be expressed

det(I + H µ ) = n≥0 1 µ n tr Λ n ( H µ )
where tr denotes operator trace and Λ denotes exterior product.

A Maple Program for calculation of eigenvalues of H 

Theorem 2 . 1 .

 21 (Krein-Langer theorem) Let C be an even function with function H and C (0+) = -1 2 . Furthermore, -1 is not an eigenvalue of H. Then C is a covariance function if and only if 1. the operator H + I has no negative eigenvalues; 2. C(0) ≥ (I + H) -1 C , C

Example 3 . 2 . 6 -279417600 µ b 6 b 8 + 12167407042560000 µ 3 + 1207084032000 b 8 µ 2 + 10059033600 b 8 µ b 4 -4536000 µ b 8 2 -b 8 3 + 1013950586880000 b 4 µ 2 )(105231523244566118400000 µ 4 -105231523244566118400000 µ 3 b 2 -10439635242516480000 µ 3 b 8 -438464680185692160000 µ 3 b 6 -8769293603713843200000 µ 3 b 4 + 28998986784768000 µ 2 a 8 b 4 -115995947139072000 µ 2 b 6 2 -5219817621258240000 µ 2 b 6 b 4 + 5219817621258240000 µ 2 b 8 b 2 -40437315072000 b 8 2 µ 2 +146154893395230720000 µ 2 b 6 b 2 -146154893395230720000 µ 2 b 4 2 -2855960819712000 µ 2 b 6 b 8 +130767436800 µ b 6 2 b 8 + 5753767219200 µ b 6 3 + 16632000 b 8 3 µ + 1676505600 b 8 2 µ b 6 -11507534438400 µ b 6 b 4 b 8 -130767436800 b 8 2 µ b 4 + 5753767219200 b 8 2 µ b 2 + b 8 -4536000b 8 2 -279417600b 6 b 8 + 1207084032000 b 8 + 12167407042560000 -10059033600b 6 2 +50697529344000b 6 ) - 1 (-172253981501521920000b 4 b 6 b 8 -36643119701232844800000 b 2 b 6 b 8 -1254008985331079577600000b 2 b 4 b 8 -13651643417908264713584640000000 b 2 +18960615858205923213312000000 b 6 + 677164852078782971904000000 b 8 +13463815292928000 b 4 b 6 2 b 8 -90288646943837729587200000 b 2 b 4 b 6 +172613016576000 b 4 b 6 b 8 2 + 227527390298471078559744000000 b 4 b 2 +8125978224945395662848000000 b 4 2 + 376202695599323873280000000 b 4 b 6 +4788034307627758387200000 b 4 b 8 -2708659408315131887616000000 b 6 b 2 +2394017153813879193600000 b 6 2 + 39461821216712294400000 b 6 b 8 -631597932172247040000 b 8 2 -300962156479459098624000000 b 8 b 2 -8975876861952000 b 6 a 2 b 8 2 -1254008985331079577600000 b 2 b 6 2 -99176534803906560000 b 2 b 8 2 + 1254008985331079577600000 b 4 2 b 6 -4071457744581427200000 b 4 2 b 8 + 20357288722907136000000 b 4 b 6 2 -3044893612400640000 b 4 b 8 2 + 45144323471918864793600000 b 4 3 +271430516305428480000 b 6 3 + 423686495232000 b 8 3 -4487938430976000 b 6 4 + 6089787224801280000 b 6 2 b 8 + 86996960354304000 b 6 b 8 2 -4487938430976000 b 4 2 b 8 2 + 915372057600 b 4 b 8 3 -86306508288000 b 6 3 b 8 -915372057600 b 6 2 b 8 2 -7264857600 b 6 b 8 3 -b 8 5 -86306508288000 b 8 3 b 2 -49896000 b 8 4 + 4550547805969421571194880000000 b 2 2 +45144323471918864793600000 b 8 b 2 2 +

 3268324832428644242222883684828826188826886222682282222268223334822382852422 For n = 7C(t) = r -1 2 |t| + b 2 |t| 2 + b 4 |t| 4 + b 6 |t| 6 + b 8 |t| 8 Analog we calculate det(b i,j ) n×n and (C -G, C ) L 2 [0,1] det(b i,j ) = 1 1280394777025250130271722799104000000000 (-10059033600 µ b 6 2 + 50697529344000 µ 2 b Γ )C , C = (448793843097600010059033600b 4 b 8 + 1013950586880000b 4 -b 8 3 13651643417908264713584640000000) ≤ r([START_REF] Zhang | Asymptotics and computation for spatial statistics[END_REF] 

Theorem 4 . 1 (

 41 Mitra-Gneiting-Sasvari). If C is a continuous function on [-1, 1] and there exists a positive number r ∞ such that C r is a covariance function if and only

  ->eval(-1/2+sum(a[k]*t^(k-1)/(k-1)!,k=2..n+1),expr); b:=(l,j)->piecewise(j<l,eval(-sum(a[k]/(k-l+j-1)!,k=1+l..n+1),expr), j>=l,eval(mu/(j-l)!-sum(a[k]/(k-l+j-1)!,k=1+l..n+1),expr)); B:=Matrix(n,n,(x,y)->b(x,y)); factor(eval(Determinant(B)))=0; B Maple Program for calculation of inner product ->eval(-1/2+sum(a[k]*t^(k-1)/(k-1)!,k=2..n+1),expr); a:=(l,j)->piecewise(j<l,eval(-sum(a[k]/(k-l+j-1)!,k=1+l..n+1),expr), j>=l,eval(1/(j-l)!-sum(a[k]/(k-l+j-1)!,k=1+l..n+1),expr)); f:=l->eval(-sum(sum(a[k]*a[j]/(k-1-l+j)!,k=1+l..n+1),j=1..n+1),expr); A:=Matrix(n,n,(x,y)->a(x,y)); F:=Matrix(n,1,x->f(x)); p:=t->Determinant(Transpose(Matrix(n,1,j->t^(j-1)/(j-1)!)).A^(-1).F); factor(eval(int((CL(t)-p(t))*CL(t),t=0..1))); C Maple Programm for calculation of r m ->piecewise(t>=0,eval(r-1/2*t+sum(a[k]*t^k/k!,k=2..n+1),expr),t<0,eval(r+1/2*t +sum(a[k]*(-t)^k/k!,k=2..n+1),expr)); A:=Matrix(m,m,(x,y)->c((x-y)/m)+c(0)-c(x/m)-c(-y/m)): B:=Matrix(m+1,m+1,(x,y)->c((x-y)/m)-r):

Table 1 :

 1 Numerical values of b k

	case (i) (ii) (iii)	(iv)
	b 2	0	-1	6	0.08084
	b 4	1	0	1	3.04749
	b 6	4	2	0	5.43217
	b 8	3	5	-4 -11.35261

Table 2 :

 2 r n and r ∞ From the table two we see that all zero points r n tend to the lower bound r ∞ . Theorem 4.4. Let C be a polynomial with vanishing odd terms of the form

	case	(i)	(ii)	(iii)	(iv)
	r 10 0.2286409660 0.5783240166 1.612114043 0.1837180146
	r 20 0.2286639511 0.5789134327 1.632410822 0.1838883736
	r 30 0.2286682283 0.5790225524 1.636167163 0.1839200018
	r 40 0.2286697268 0.5790607420 1.637481711 0.1839310802
	r 50 0.2286704207 0.5790784180 1.638090129 0.1839361972
	r ∞ 0.2286716547 0.5791098412 1.639171713 0.1839453225

the inequality holds

C(0) ≥ r n , ∀n ∈ N where

with

For polynomial with non-vanishing odd terms, there is no simple numerical formula to calculate the eigenvalue of H. But as H is a compact operator, we can use Fredholm determinant [START_REF] Reed | Methods of modern mathematical physics IV: analysis of operators[END_REF].

Theorem 4.5. Let C be a polynomial of the form

Then C is a covariance function if and only if 1. the following equation admits only µ <

2. the inequality holds