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We calculate the charge susceptibility and the linear and differential conductances of
a double quantum dot coupled to two metallic reservoirs both at equilibrium and when
the system is driven away from equilibrium. This work is motivated by recent progress
in the realization of solid state spin qubits. The calculations are performed by using the
Keldysh nonequilibrium Green function technique. In the noninteracting case, we give
the analytical expression for the electrical current and deduce from there the linear con-
ductance as a function of the gate voltages applied to the dots, leading to a characteristic
charge stability diagram. We determine the charge susceptibility which also exhibits
peaks as a function of gate voltages. We show how the study can be extended to the
case of an interacting quantum dot. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5043108

I. INTRODUCTION

The idea introduced two decades ago of a quantum computer based on solid state spin qubits1 has
led to an intensive effort in the realization of spin qubits on the basis of double quantum dots.2–4 The
basic idea is to manipulate the spin encoded in the first of the quantum dots by means of various dc or
ac external fields, then use the quantum exchange interdot coupling to carry out two-qubit operations,
and finally readout the information on the spin encoded in the second quantum dot. The challenge
becomes all the more accessible now that long spin coherence time has been recently achieved for
individual spin qubits5,6 which ensures high-fidelity to quantum computation operations.7 This quest
for realizing solid state quantum bits has motivated parallel theoretical studies on double quantum
dots. The electron-electron interactions when present have been taken into account in a capacitive
model with an additional interdot capacitance. It has thus been possible to establish the charge
stability diagram of these systems in which the Coulomb oscillations of conductance observed in a
single quantum dot are changed into a characteristic honeycomb structure as a function of the gate
voltages applied to each dot.8,9 Another topic that has been widely discussed in the last years on
both experimental and theoretical sides, is the possibility of exposing the double quantum dot to an
electromagnetic radiation (i.e. to an ac external field) allowing the transfer of an electron from one
to the other reservoir even at zero bias voltage.10–15 In this way, ac-driven double quantum dots act
as either charge or spin pumps. The transport can then be either incoherent via sequential tunneling
processes or coherent via inelastic cotunnelling processes. Most of the theoretical studies so far
have been done by using the master equations12,15 or real time diagrammatic approach14 or time
evolution of the density matrix.10,13 It is worth noting that even if these methods make it possible
to describe the regimes of either weak or strong interdot tunnel coupling, their domain of validity is
mainly restricted to the regime of weak tunneling between the dots and the reservoirs. We propose
in this paper to develop a study of the double quantum dot in the framework of the Keldysh non-
equilibrium Green function technique (NEGF) following the same strategy as we developed16,17
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before for a single quantum dot, i.e. by starting from the noninteracting case and then incorporating
interactions by using the Keldysh NEGF technique. We present here the method and the results
obtained in the case of a noninteracting double quantum dot. We give the analytical expression for
the electrical current as a function of the Green functions and deduce from there the linear and
differential conductances. In order to meet the concerns of experimentalists who have directly access
to charge susceptibility via reflectometry measurements,18 we establish the charge susceptibility
of a double quantum dot related to the mesoscopic capacity. This study brings the foundations
for further studies to come on interacting double quantum dots where the geometric configuration
offers the possibility of observing Pauli spin blockade in addition to the standard Coulomb charge
blockade.

II. MODEL

We consider two single-orbital quantum dots 1 and 2 with spin degeneracy equal to 2 (σ = ±1)
coupled together in series through a tunnel barrier with a hopping constant tσ , and connected to two
metallic reservoirs L and R through spin-conserving tunnel barriers with hopping constants tLσ and
tRσ respectively. In the absence of interactions, the hamiltonian writes H = HDQD + H leads + HT

with

HDQD =
∑
σ

[
ε1σd†1σd1σ + ε2σd†2σd2σ + tσd†2σd1σ + t∗σd†1σd2σ

]

Hleads =
∑

k,α∈(L,R),σ

εkασc†kασckασ

HT =
∑
kσ

[
tLσc†kLσd1σ + t∗Lσd†1σckLσ + tRσc†kRσd2σ + t∗Rσd†2σckRσ

]
(1)

where d†iσ (i=1 or 2) is the creation operator of an electron with spin σ (σ = ±1) in the dot i with

energy εiσ; c†kασ (α=L or R) is the creation operator of an electron with momentum k and spin σ
in the lead α with energy εkασ . The energies εiσ in the dots are tuned by the application of a dc
gate voltage VGi on each dot. Since we are considering the noninteracting case in the absence of dot
Coulomb interaction, all the results obtained in this paper are spin independent as though we were
working with a spinless quantum dot system. For simplicity we will omit the σ subscript in the rest
of the paper.

The retarded Green functions in the dots, Gr
1,1(ω), Gr

2,2(ω), Gr
1,2(ω) and Gr

2,1(ω), are solutions
of the following Dyson equation written in matrix form along the {1, 2} basis

¯̄Gr(ω)= ¯̄G(0)r(ω) + ¯̄G(0)r(ω) ¯̄Σr(ω) ¯̄Gr(ω) (2)

where ¯̄Gr(ω) and ¯̄G(0)r(ω) are respectively the exact and the unrenormalized Green functions in the
dots, and ¯̄Σr(ω), the self-energies, defined as

Ḡr(ω)= *
,

Gr
1,1(ω) Gr

1,2(ω)

Gr
2,1(ω) Gr

2,2(ω)
+
-

¯̄G(0)r(ω)= *
,

(ω − ε1)−1 0

0 (ω − ε2)−1
+
-

¯̄Σr(ω)= *
,

Σr
L(ω) t∗

t Σr
R(ω)

+
-

(3)

where Σr
α(ω)= |tα |2

∑
k(ω − εkα + iη)−1 (η being an infinitesimal positive). In the wide band limit:

Σr
α(ω)=−iΓα(ω) where Γα(ω)= π |tα |2ρ

(0)
α (ω) and ρ(0)

α (ω) is the unrenormalized density of states in
the reservoir α.
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By solving Eq.(3), one obtains the following expressions for the Green functions in the dots

Gr
1,1(ω)=

ω − ε2 − Σ
r
R(ω)

Dr(ω)

Gr
1,2(ω)=

t∗

Dr(ω)

Gr
2,1(ω)=

t
Dr(ω)

Gr
2,2(ω)=

ω − ε1 − Σ
r
L(ω)

Dr(ω)
(4)

with Dr(ω)= (ω − ε1 − Σ
r
L(ω))(ω − ε2 − Σ

r
R(ω)) − |t |2.

III. GENERAL EXPRESSION FOR THE CURRENT

We derive the expression for the current through the double quantum dot by using the Keldysh
nonequilibrium Green function technique.

The current IL from the L reservoir to the central region can be calculated from the time evolution
of the occupation number operator in the L reservoir

IL =−e

〈
dn̂L(t)

dt

〉
=−ie

〈[
Ĥ, n̂L

]〉
(5)

where n̂L(t)= exp(iĤt)n̂L exp(−iĤt) is the number of electrons in the L reservoir in the Heisenberg
representation (with n̂L =

∑
k,α∈(L) c†kαckα). The current IR from the R reservoir to the central region

can be defined in an analogous way.
Defining the lesser Green functions mixing the electrons in the dot and in the reservoir according

to G<
kα,i(t, t ′)= i

〈
d†i (t ′)ckα(t)

〉
and G<

i,kα(t, t ′)= i
〈
c†kα(t ′)di(t)

〉
, the currents write

IL = e
∑

k

[
tLG<

1,kL(t, t) − t∗LG<
kL,1(t, t)

]
(6)

and a similar expression for IR. The lesser Green functions G<
kα,i(t, t ′) and G<

i,kα(t, t ′) are then evaluated

by applying the analytic continuation rules provided by the Langreth theorem19 to the Dyson equations
for the Green functions. It results in

IL = i
e
π

∫ ∞
−∞

dωΓL(ω)
[
G<

1,1(ω) + nL
F(ω)

(
Gr

1,1(ω) − Ga
1,1(ω)

)]
(7)

where nαF (ω)= 1
eβ(ω−µα )+1

is the Fermi-Dirac distribution function in the reservoir α with chemical
potential µα.

When the system is in the steady state, one gets:

IL =
2e
π

∫ ∞
−∞

dωΓL(ω)Gr
1,2(ω)ΓR(ω)Ga

2,1(ω)
[
nL

F(ω) − nR
F(ω)

]
(8)

and IL = −IR, where Ga
i,j(ω) are the four advanced Green functions in the dots.

IV. CHARGE SUSCEPTIBILITY

In order to calculate the charge susceptibility of the system, one needs to connect each quantum
dot i through a capacitance Ci

ac to an ac voltage Vac(t) (see Ref. 15), bringing the additional following
term to the hamiltonian Ĥ: Hac(t)=

∑
i=1,2 eαin̂diVac(t) where n̂i = d†i di, the number of electrons in

the dot i, and αi measures the charge on the capacitance Ci
ac.

The total charge Q̂ac on the capacitances is given by

Q̂ac =
∑
i=1,2

[−eαin̂dieVac(t)] + (C(0)
1 + C(0)

2 )Vac (9)
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where C(0)
1 and C(0)

2 are the capacitances of the two quantum dots when they are isolated (i.e. for
t = tL = tR = 0).

From Eq.(9) and by using the linear response theory, one can obtain the charge susceptibility
χ(t − t ′)

χσ(t − t ′)=−iθ(t ′ − t)
∑

ij

αiαj

〈[
n̂iσ(t ′), n̂jσ(t)

]〉
(10)

By taking its Fourier transform, one gets the dynamical charge susceptibility χ(ω) and in par-
ticular the static charge susceptibility in the ω = 0 limit. The static charge susceptibility can simply
be derived from

χ(ω = 0)=
∑
i,j

αiαj
∂〈n̂i〉0

∂εj
(11)

where 〈n̂i〉0 is the expectation value of the occupancy in the dot i at Vac(t) = 0, which can be calculated

from the lesser Green functions by using: 〈n̂i〉=−
i

2π ∫
dωG<

i,i(ω). In the case when both Γα(ω) is

independent on ω, it is straightforward to calculate 〈n̂i〉0 and then take its derivative with respects to
εj which allows to find the charge susceptibility χ(ω = 0).

V. RESULTS

The color-scale plots of the linear conductance are shown in FIG. 1 as a function of the energy
levels ε1 and ε2 in the dots for µL = µR = 0 at four different temperatures. FIG. 2 reports the dependence
of G with the energy ε1 along the first diagonal ε1 = ε2 of the previous figure. The state of the system
with occupation numbers n1 and n2 in each dot is denoted as (n1, n2). At low temperature, the states
(0, 0) and (2, 2) are clearly separated from the (0, 2) and (2, 0) states by two conductance peaks
thanks to the effect of the finite interdot hopping term t. With increasing temperatures, this frontier
is getting blurrier and the conductance is higher along the (0, 2) − (2, 0) frontier.

FIG. 3 shows the static charge susceptibility χ(ω) at T = 1 K and µL = µR = 0 for four different
configurations of couplings to the reservoirs, capacitances αL, αR (related to the geometry of the

FIG. 1. Color-scale plots of the linear conductance G of the noninteracting double quantum dot as a function of the energy
levels ε1 and ε2 in the dots for ΓL = ΓR = 0.25 meV (symmetric couplings), t = 1 meV and µL = µR = 0 at four different
temperatures T = 0, 2, 5, 10 K. (n1, n2) denotes the state of the system with occupation numbers n1 and n2 in each dot.
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FIG. 2. Linear conductance G as a function of the energy ε1 along the first diagonal ε1 = ε2 of the plots in FIG. 1 at five
different temperatures T = 0, 1, 2, 5, 10 K.

device) and interdot hopping t. It shows the existence of peaks for the static charge susceptibility in
the (ε1, ε2) plane along two arcs located in the 1st and 3rd quadrants (ε1 > 0, ε2 > 0, and ε1 < 0,
ε2 < 0 respectively). The corner spaces encircled by these two arcs correspond to the regimes (0,0)
and (2,2) respectively. The central region between the two arcs corresponds to the other two regimes
(0,2) and (2,0). As can be seen, the charge susceptibilities are equal in both (0,0) and (2,2) regimes,
but differ from the one observed in the (0,2) and (2,0) regimes. This can be easily understood on the
basis of the following physical argument. Let us first point out that in the limit t � (ΓL, ΓR), the
peaks in χ(ω) occur near the two horizontal and vertical axes delimiting the four (0,0), (2,0), (2,2),
(0,2) regimes, with an equal χ(ω) in each quadrant brought by the intradot transition contributions

FIG. 3. Color-scale plots of the static charge susceptibility χ(0) of the noninteracting double quantum dot as a function of
the energy levels ε1σ and ε2σ in the dots at T = 1 K and µL = µR = 0 for four sets of parameters (a) ΓLσ = ΓRσ = 0.25 meV
(symmetric couplings),αL =αR =−0.5 (symmetric geometry), tσ = 1 meV; (b) ΓLσ = 5ΓRσ1.25 meV (asymmetric couplings),
αL = αR = −0.5 (symmetric geometry), tσ = 1 meV; (c) ΓLσ = ΓRσ = 0.25 meV (symmetric couplings), αL = αR = −0.5
(symmetric geometry), tσ = 2 meV; and (d) ΓLσ = ΓRσ = 0.25 meV (symmetric couplings), αR = 5αL = −0.5 (asymmetric
geometry); tσ = 1 meV.
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only (i.e. by the
∂〈n̂i〉0

∂εi
terms). In the presence of a finite t, the latter pattern transforms into two

arcs located in the 1st and 3rd quadrants respectively as mentioned above. The larger t is, the larger
the distance between the two arcs is, as can be seen by comparing FIG. 3 a and c. Gradually as the
two arcs are formed from the initial pattern, the contributions to the charge susceptibility brought by

the interdot transitions (i.e.
∂〈n̂i〉0

∂εj
with i , j) become more and more important, showing a strong

dependence inside the (ε1, ε2) plane. Consequently, χ(ω) in the (0,0) and (2,2) regimes belonging
to the two quadrants inside which the arcs are formed, differ from χ(ω) in the other (0,2) and (2,0)
regimes, which explains the difference observed in FIG. 3. The last comment concerns the role of an
asymmetry in either dot-lead couplings or geometry of the device. As can be seen, the effect of an
asymmetry is to reduces the intensity of χ(ω) along one of the arms of the arcs.

VI. CONCLUSION

We have studied the linear and differential conductances as well as the charge susceptibility of
a noninteracting quantum dot by using the Keldysh nonequilibrium Green function technique. The
obtained expressions are exact and allows one to study the variation of the conductances and charge
susceptibility with temperature and any parameters of the double quantum dot model, energy levels
ε1, ε2 of the dots, ΓL, ΓR and interdot hopping t. We have then discussed the evolution of the stability
diagram of the system with the different parameters. This work opens the way for extension to the
case of a double quantum dot in the presence of Coulomb interactions as is relevant for spin-qubit
silicon-based devices.
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