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The fluctuations of electrical current provide information on the dynamics of electrons
in quantum devices. Understanding the nature of these fluctuations in a quantum dot is
thus a crucial step insofar as this system is the elementary brick of quantum circuits. In
this context, we develop a theory for calculating the quantum noise at finite frequency
in a quantum dot connected to two reservoirs in the presence of interactions and for any
symmetry of the couplings to the reservoirs. This theory is developed in the framework
of the Keldysh non-equilibrium Green function technique. We establish an analytical
expression for the quantum noise in terms of the various transmission amplitudes
between the reservoirs and of some effective transmission coefficient which we define.
We then study the noise as a function of the dot energy level and the bias voltage.
The effects of both Coulomb interactions in the dot and asymmetric couplings with
the reservoirs are characterized. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5043076

I. INTRODUCTION

The understanding of noise in quantum systems is a fundamental issue when one wants to control
the transfer of charges in an accurate way. The efforts in that direction in the last ten years are numerous
both from the experimental side1–7 and from the theoretical side.8–18 Some of the main issues raised
by the works on noise in quantum systems are the following: (i) Is the measured noise the symmetrized
one or the non-symmetrized one? (ii) Can we have over bias noise at low temperature? (iii) How is
the noise affected by the presence of Coulomb interactions? (iv) Does the asymmetry in the couplings
between the system and the reservoirs change the noise? The answer to the first point is known: the
measured noise will be the symmetrized noise for active (classical) detector whereas it will be the non-
symmetrized one for passive detector.19–22 The second point is the subject of several studies.23–25 To
answer to the third and fourth points, we develop a theory for calculating the noise at finite frequency in
a quantum dot (QD) coupled to two reservoirs, in the presence of Coulomb interactions in the dot and
asymmetry in the couplings to the reservoirs. By using the Keldysh non-equilibrium Green function
technique, we establish an analytical expression for the noise in terms of the transmission amplitudes
between the reservoirs and of some effective transmission coefficients which will be defined. The
result that we obtain for the noise can be considered as the analog of the Meir-Wingreen formula26

for the current. Moreover, a physical interpretation is given on the basis of the transmission of one
electron-hole pair to one of the reservoirs, where it emits an energy corresponding to the measurement
frequency after recombination. The results for the noise as a function of the dot energy level and
voltage show a zero value until |eV | = hν, where ν is the frequency, followed by a signal which strongly
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depends on the presence of Coulomb interactions in the dot and on the asymmetry of the couplings to
the reservoirs. These findings are compared to measurements recently performed in a Kondo carbon
nanotube QD.4,7

II. FINITE-FREQUENCY NOISE

We consider a single level interacting QD coupled to a left (L) and a right (R) reservoirs as
depicted on Fig. 1. The couplings between the QD and the reservoirs are denoted ΓL ,R and can be
arbitrary. The asymmetry factor is defined as a = ΓL/ΓR. When the QD is in a steady state and the flat
wideband limit is considered, we show that the finite-frequency non-symmetrized noise is given by
the expression:27

Sαβ(ν)=
e2

h

∑
γδ

∫ ∞
−∞

dεMγδ
αβ(ε, ν)f e

γ (ε)f h
δ (ε − hν), (1)

where f e
γ (ε)= 1/(1 + exp(ε − µγ)/kBT ) is the distribution function for electrons with energy ε in the

γ reservoir, and f h
δ (ε − hν)= 1 − f e

δ (ε − hν), the distribution function for holes with energy ε − hν
in the δ reservoir. The indices α, β, γ and δ can take either the L value when it relates to the left
reservoir, or the R value when it relates to the right reservoir. The expressions for the matrix elements
entering in Eq. (1) and denoted as Mγδ

αβ(ε, ν) are given in Table I. They depend on the transmission
amplitudes tαβ(ε), the reflexion amplitudes rαα(ε), the transmission coefficients Tαβ(ε), and some
effective transmission coefficients T eff,α

LR (ε), which are defined as:

FIG. 1. Schematic view of the single level QD (in purple) coupled to biased reservoirs (in blue). µL ,R are the chem-
ical potentials of the reservoirs with eV = µL − µR, and T their temperature. The dot is characterized by its level
energy ε0 and Coulomb energy U. The coupling energies to the reservoirs, ΓL ,R, can be distinct as observed in many
experiments.

TABLE I. Expressions of the matrix elements Mγδ
αβ (ε,ν) involved in the Eq. (1) for the noise Sαβ (ν) of an interacting QD

with arbitrary coupling symmetry to the reservoirs.

Mγδ
αβ (ε,ν) γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = L T eff,L
LR (ε)T eff,L

LR (ε − hν) TLR(ε)TLR(ε − hν) [1 − T eff,L
LR (ε)]TLR(ε − hν) TLR(ε)[1

β = L + |tLL(ε) � tLL(ε � hν)|2 −T eff,L
LR (ε − hν)]

α = R TLR(ε)TLR(ε − hν) T eff,R
LR (ε)T eff,R

LR (ε − hν) TLR(ε)[1 − T eff,R
LR (ε − hν)] [1 − T eff,R

LR (ε)]

β = R + |tRR(ε) � tRR(ε � hν)|2 ×TLR(ε − hν)

α = L tLR(ε)t∗LR(ε − hν) t∗LR(ε)tLR(ε − hν) tLR(ε)tLR(ε � hν) t∗LR(ε)t∗LR(ε − hν)

β = R × [r∗LL(ε)rLL(ε − hν) − 1] × [rRR(ε)r∗RR(ε − hν) − 1] × r∗LL(ε)r∗RR(ε − hν) × rRR(ε)rLL(ε � hν)

α = R t∗LR(ε)tLR(ε − hν) tLR(ε)t∗LR(ε − hν) t∗LR(ε)t∗LR(ε − hν) tLR(ε)tLR(ε � hν)

β = L × [rLL(ε)r∗LL(ε − hν) − 1] × [r∗RR(ε)rRR(ε − hν) − 1] × rLL(ε)rRR(ε � hν) × r∗RR(ε)r∗LL(ε − hν)
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tαβ(ε)= i
√
ΓαΓβGr(ε), (2)

rαα(ε)= 1 − tαα(ε), (3)

Tαβ(ε)= |tαβ(ε)|2, (4)

T eff,α
LR (ε)= 2Re{tαα(ε)} − Tαα(ε), (5)

where Gr(ε) is the retarded Green function in the QD, and Γα is the coupling strength between the QD
and the α reservoir. Eq. (1) is obtained considering the approximation in which the two-particle Green
function in the dot is factorized into a product of two single-particle Green functions in the dot. From
Eqs. (2)–(5), we see that once Gr(ε) is known, the transmission amplitudes and coefficients are entirely
determined, and consequently, the noise given by Eq. (1) can be calculated explicitly. We want to
underline that the effective transmission coefficient defined in Eq. (5) takes into account the inelastic
scattering contributions.28,29 When only elastic scattering is present or/and for a non-interacting
system, T eff,α

LR (ε) coincides with TLR(ε) since in that case, we have: 2Re{tαα(ε)} = Tαα(ε) + TLR(ε),
thanks to the optical theorem.

According to Eq. (1), Sαβ(ν) is given by the summation over ε and all possible configurations
{γ, δ}, of the transmission element Mγδ

αβ(ε, ν) weighted by the factor f e
γ (ε)f h

δ (ε − hν) corresponding
to the probability of having a pair formed by an electron of energy ε in the γ reservoir and a hole
of energy ε − hν in the δ reservoir. Hence we interpret the auto-correlator Sαα(ν) as the probability
of transmission of an electron-hole pair from all possible configurations, to the final state for which
both electron and hole are in the α reservoir, where by recombining it emits an energy hν. The
additional presence of inelastic scattering does not affect this interpretation.27 In the case when there
are several possible transmission paths, as happens for Mαα

αα (ε, ν), we point out the importance of
considering the quantum superposition of the transmission amplitudes for all possible transmission
paths.30

III. KONDO QUANTUM DOT

The retarded Green function Gr(ε) for the interacting single level QD is determined numer-
ically by using a self-consistent renormalized equation-of-motion approach,31–33 which applies
to both equilibrium and non-equilibrium situations. Note that in the presence of interactions,
i.e. when U,0, Gr(ε) depends on the chemical potential µL and µR. When one incorporates
the expression of the Green function into Eqs. (1)–(5), we are able to calculate both the auto-
correlators SLL(ν) and SRR(ν), the cross-correlators SLR(ν) and SRL(ν), and the “total” noise
defined as

Stot(ν)=
SLL(ν) + a2SRR(ν) − a[SLR(ν) + SRL(ν)]

(1 + a)2
. (6)

This total noise corresponds to the noise which is measured in experiments.34–36 In Fig. 2, we report
the color-scale plots of SLL(ν), SRR(ν), 2Re{SLR(ν)} =SLR(ν) + SRL(ν) and Stot(ν) as a function
of both dot energy ε0 and voltage V for four sets of parameters: (a) U = 0 and a = 1, (b) U = 0
and a = 4, (c) U = 3 meV and a = 1, and (d) U = 3 meV and a = 4. We underline that with our
choice of parameters, the estimation of the Kondo temperature with the help of the Haldane formula
kBTK ≈

√
UΓ/2 exp(πε0(ε0 +U)/2UΓ) gives TK ≈ 4.38 K, which is much larger than the temperature

in the reservoirs (T = 80 mK) and larger than the frequency (ν = 78 GHz ≈ 3.74 K), which ensures
the QD to be in the Kondo regime when U = 3 meV.

We remark first that at voltage smaller in absolute value than the frequency, here ν = 78 GHz
(≈0.32 meV), the noise is equal to zero in all graphs, as expected at low temperature (here T = 80 mK)
for the reason that the system cannot emit energy at a frequency larger than the energy |eV | provided
to it. Thus, there is a central region of width equal to 2hν (delimited by two parallel horizontal dashed
lines) in the {ε0, eV} plane inside which the noise is strongly suppressed, in full agreement with
experiments performed in a carbon nanotube Kondo QD.4,7

Next, we turn our interest to the effect of interactions on the dependence of the cross-correlator
SLR(ν) with ε0 and V. We note that when interactions are present (U,0), the real part of the
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FIG. 2. Color-scale plots of SLL(ν), SRR(ν), 2Re{SLR(ν)} and Stot(ν) as a function of the dot energy level ε0 (horizontal
axis) and the bias voltage eV (vertical axis) at frequency ν = 78 GHz and temperature T = 80 mK. The chemical potentials
are taken symmetrical: µL = eV /2, µR = −eV /2 and the interval of variation for the bias voltage eV is [-4 meV,4 meV]. The
two top rows are obtained for a non-interacting QD (U = 0) within the interval ε0 ∈[− 3 meV,3 meV] whereas the two bottom
rows corresponds to an interacting QD (U = 3 meV) within the interval ε0 ∈[− 6 meV,3 meV]. (a) Non-interacting U = 0;
Symmetric coupling a = 1. (b) Non-interacting U = 0; Asymmetric coupling a = 4. (c) Interacting U = 3 meV; Symmetric
coupling a = 1. (d) Interacting U = 3 meV; Asymmetric coupling a = 4.

cross-correlator changes its sign from negative sign (blue regions) to positive sign (yellow-red regions)
when ε0 varies (see the third column in Figs. 2(c) and 2(d)). This is not the case in the absence of
interactions (see the third column in Figs. 2(a) and 2(b)). Indeed, in that case the real part of the
cross-correlator stays negative (blue) as expected for carriers (here electrons) obeying a fermionic
statistic. It means that when interactions are absent, the statistic of the carriers is fermionic whereas
in the presence of interactions, the statistic of the carriers looks bosonic-like in some regions and
fermionic-like in some others regions of the {ε0, eV} plane. Thus, a positive sign in the real part of
the cross-correlator can be seen as the seal of the Coulomb interactions present in the QD.

We now focus on the effect of interactions on the profile of the auto-correlatorsSLL(ν) andSRR(ν)
shown on the first and second columns in Fig. 2. We remark that the intensity of the auto-correlators is
reduced when interactions are present (compare the color scale intensities in the graphs of Figs. 2(c)
and 2(d) to the ones of Figs. 2(a) and 2(b)), in full agreement with the fact that the charge becomes
frozen when the QD is in the Kondo regime,37,38 leading to a reduction of the noise. We also remark
the doubling of the number of red triangles in the color-scale plots of SLL(ν) and SRR(ν) and the
appearance of a more complex structure when U,0 in comparison to the U = 0 case: notably, there
appears a Coulomb diamond-like structure, centered around the point of coordinates (ε0 = −U/2, eV
= 0) in the {ε0, eV} plane, inside which the noise is strongly reduced. This means that by setting
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adequately the values of ε0 and eV inside the region defined by this structure, one could reduce
drastically the noise in experiments.

Finally, we discuss the effect of the coupling asymmetry on the noise color-scale plots. Whereas
the dependences of the auto-correlators SLL(ν) and SRR(ν) are neither odd nor even functions of both
ε0 and eV, we note that the real part of the cross-correlator SLR(ν) and the total noise Stot(ν) are even
functions of both ε0 and eV when the couplings are symmetrical (a = 1) as shown in Figs. 2(a) and
2(c). This is no longer the case for asymmetric couplings (a = 4) as shown in Figs. 2(b) and 2(d). We
also observe that in the presence of interactions the noise is strengthened in the less-coupled reservoir,
here the R reservoir since the value a = 4 corresponds to ΓR = ΓL/4. Intuitively, this happens because
the transmission of carriers from the R reservoir to the QD is weaker, and it is this transmission which
mainly contributes to SLL(ν), than the transmission from the L reservoir to the QD, which mainly
contributes to SRR(ν).

IV. CONCLUSION

We have developed a theory to calculate the finite-frequency noise in a non-equilibrium Kondo
QD, which allows us to analyze the features observed in the evolution of the noise as a function of dot
energy level and bias voltage. We have discussed the effect of the asymmetry in the couplings to the
reservoirs. We predicted a change of sign in the real part of the cross-correlator when interactions are
present in the QD; this is related to the fact that the statistics of the carriers are no longer fermionic. We
also highlighted the appearance at U,0 of a Coulomb diamond like structure in the auto-correlators
and total noise profiles inside which the fluctuations are reduced.
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