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Optimal observer design for disturbed state affine systems

Francisco González de Cossı́o, Madiha Nadri and Pascal Dufour

Abstract— This paper investigates the problem of designing
a robust high-gain observer for a class of disturbed state affine
systems. The considered non-autonomous system takes into
account both dynamic and output disturbances. The strategy
is to provide a bound for the estimation error, independently
of the initial condition, and to develop an algorithm for its
minimization. The two arguments of this minimization problem
are the tuning parameter of the observer and the systems input.
This approach provides a new method to simultaneously design
the input of the system and the tuning of the observer in order
to minimize the effect of disturbances in state estimation.

I. INTRODUCTION

The problem of the design of asymptotic state observers
for nonlinear systems is an important topic in control theory.
It is often the case that the internal states of a given system
are not measurable. The estimation of the unmeasured states
of the system with an observer provides useful information
to achieve different goals such as: feedback control [1],
supervision and diagnostic, identification and, more recently,
input design [2], [3]. On the other hand, accurate modeling of
physical phenomena can be challenging and the measurement
of the system output is often inexact. One way to face
these challenges is by considering disturbances in both the
dynamics of the system and its output.

One of the well-known standard methods of nonlinear
observer design is the high-gain observer [4]. A tuning
parameter is used in this structure to allow an arbitrary rate
of convergence of the estimation error. This has a major
drawback in practice where disturbances usually affect the
system. Namely, the tuning parameter is highly sensitive to
noise. This leads to a well-known trade-off problem between
efficient estimation and noise amplification [5], [6].

A typical strategy to use in this trade-off problem is to
formulate an adaptive gain. Simply put, the gain is high
when the state needs to be reconstructed and then it drops
down to prevent noise amplification. In this context we
mention [7] and more recently [8], [9] where the high-gain
parameter is dynamic. Another case of adaptive high-gain
observers can be seen in [10]. Here the author bounded the
limiting estimation error by the magnitude of measurement
disturbance for a specific kind of systems.

The authors in [5] considered a switched high-gain ob-
server which they applied to a class of uniformly observable
nonlinear systems. They provided a bound for the estimation
error that shows the trade-off arising from the tuning param-
eter and then proceeded to switch the gain according to this.
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In [11] the authors addressed the problem for systems with
high dimension. They developed an observer that restricts
the gain power to 2 for general systems of dimension n at
the price of having a 2n − 2 dimensional state vector. On
the other hand, the authors in [12] developed a constant gain
observer for systems with a triangular structure that avoids
the high-gain.

However, the systems involved in most of these studies
are uniformly observable and must be represented in their
canonical observability form. Although this form character-
izes the observability of systems [13], it is not always easy
to compute the transformation that takes the system into this
form.

The topic that we investigate in this paper is mainly
motivated by the practical problem of identification of un-
known parameters using an observer. A common strategy to
solve this problem is to design an input for the system that
optimizes the approximation of these parameters. Indeed,
due to the trade-off between convergence speed and noise
sensitivity, the selection of the input has a considerable
impact on the performance of the observer [2], [14], [15],
[16]. Designing inputs with special characteristics is not a
trivial issue and, in practice, it is usually done in a heuristic
way. However, some notable exceptions can be seen in [17],
[18].

In this paper, the problem of observer design for state
affine non-autonomous systems in presence of disturbances
is considered. This class of systems is not necessarily in
canonical form. Two types of bounded time-varying distur-
bances are distinguished: measurement disturbances affecting
the output of the system and model uncertainties involved in
the dynamics of the system. We investigate the robustness to
noise of the observer and quantify a bound for the limiting
estimation error. This bound depends on both: the high-
gain parameter and the systems input. We then redefined
the bound for inputs with a proper excitation, the so-called
regular persistence [19]. We present a novel approach of
simultaneous off-line design of the high-gain parameter and
the system input by minimizing this bound. Therefore, this
method provides a new degree of freedom, in the problem
of noise attenuation, by considering not only the high-gain
parameter but also the input to the system.

The paper is organized as follows: the preliminaries in
Section II provide necessary notation and some of the as-
sumptions for stating our results. In this section we also study
the basic properties of the observer used in this paper. The
first part of Section III presents a bound for the estimation
error of the systems state. In the second part of Section III,
this bound is redefined in order to develop our optimization



algorithm. Finally, a simple academic case is discussed in
Section IV and some final remarks are given in Section V.

II. PRELIMINARIES

A. Notation

The following standard notations are used in this paper:
• R+ stands for the non-negative real numbers and Rn

for the n-dimensional Euclidean space. We consider
elements of Rn as column vectors. Rn×m is the set
of all matrices of size n×m with real coefficients.

• In×n is the n-dimensional identity matrix
• The transpose of the real matrix M is M ′

• The maximum and minimum eigenvalues of a real sym-
metric matrix N are denoted respectively by λmax (N)
and λmin (N)

• ‖·‖ denotes the Euclidean norm of a vector or the
spectral norm of a matrix. Recall that the spectral norm
of M is given by:

‖M‖2 = λmax (M ′M).

B. Systems dynamics and observer design

The class of state affine nonlinear systems under consid-
eration is described by the following equations:{

ẋ(t) = A(u(t))x(t) + d1(t)

y(t) = Cx(t) + d2(t),
(1)

where t ≥ 0, x : R+ → Rn is the state, A : R→ Rn×n is a
continuous matrix functional, u : R+ → R is a continuous
input, d1 : R+ → Rn and d2 : R+ → R are bounded and
continuous disturbances, C ∈ R1×n and y : R+ → R is
the output. We omit the dependence on time in the notation
when no confusion might arise.

In this paper we consider the observer developed in [15],
[14]: {

˙̂x = A(u)x̂+ S−1C ′(y − Cx̂)

Ṡ = −θS −A(u)′S − SA(u) + C ′C,
(2)

where x̂ : R+ → Rn is the state estimate, S : R→ Rn×n is
the solution to the Riccati equation in (2) and θ is a positive
tuning parameter. Notice that S depends on both the input u
and the parameter θ.

It is known that system (1) is not uniformly observable.
In fact, this is closely related to the boundedness of the
eigenvalues of S(t). Is it not difficult to check that

S(t) = exp (−θt)φ(0, t)′S(0)φ(0, t)+

exp (−θt)
∫ t

0

exp (θτ)φ(τ, t)′C ′Cφ(τ, t)dτ, (3)

where Φ stands for the transition matrix associated with A
and u. Namely, the unique solution on R+ ×R+ to{

∂φ(τ,t)
∂τ = A(u(τ))φ(τ, t)

φ(τ, τ) = In×n.
(4)

From the expression of S(t) in (3) we can see that, if S(0)
is symmetric and positive definite, then S(t) remains this
way for all positive t.

Assumption 1: S(0) is a symmetric and positive definite
matrix in Rn×n.

Unfortunately, the eigenvalues of S(t) can still be
arbitrarily close to zero for the so-called singular inputs;
inputs where observability is lost. We add the next
assumption to avoid this situation.

Assumption 2: There exist real positive constants
c1(u, θ) and c2(u, θ) such that if t is large enough then we
have

λmax (S2(t)) ≤ c1(u, θ),

λmin (S(t)) ≥ c2(u, θ).
(5)

The explicit dependencies of ci on u and θ are usually
omitted to simplify the notation.

The authors in [15], [14] considered system (1) without
disturbances, that is, with d1 and d2 set to zero. They show
that, under a proper input excitation, the observer in (2)
makes the estimation error

e := x− x̂ (6)

converge to zero exponentially fast. Moreover, any desired
rate of convergence may be achieved by increasing the tuning
parameter θ. Unfortunately, this is no longer true when
disturbances are considered. Nevertheless, the estimation
error of the states can be bounded. This bound is developed
in the following section.

III. ROBUSTNESS OPTIMIZATION BASED ON LYAPUNOV
TECHNIQUES

The estimation problem depends on finding a quantifiable
bound for the estimation error e in the case of dynamic
and output disturbances. Naturally, this bound will depend
on the magnitude of these disturbances. By minimizing the
estimation error bound over an admissible space, we provide
a systematic way to find an optimal excitation u and an
optimal observer tuning θ in terms of noise robustness.

A. Bound on the estimation error

One of the usual Gronwall-type lemmas is instrumental
to the proof of our main result, see for example [20].

Lemma 1: Let t0 < t1 be non-negative real numbers
and f, g : [t0, t1] → R continuous. Suppose also that
h : [t0, t1]→ R is of class C1 and that on their domain,

ḣ ≤ fh+ g.

Then, the next inequality holds for all t in [t0, t1]:

h(t) ≤ h(t0) exp

(∫ t

t0

f(s)ds

)
+

∫ t

t0

exp

(∫ t

s

f(r)dr

)
g(s)ds.



For the sake of clarity, we denote the limiting disturbance
magnitudes as

L1 = lim sup
t→∞

‖d1(t)‖,

L2 = lim sup
t→∞

‖d2(t)‖.
(7)

Theorem 1: Consider systems (1) and (2). Suppose that
Assumption 1 and Assumption 2 are both fulfilled. Based
on the definitions given in (5), (6) and (7), the following
inequality is satisfied:

lim sup
t→∞

‖e(t)‖ ≤
2L1c1 + 2L2

√
c1 λmax (C ′C)

c2(θ
√
c1 + λmin (C ′C))

.

Proof : We use the usual Lyapunov techniques. For this we
define V : Rn ×R+ → R+ along the error as

V (t, e(t)) := e(t)′S(t)e(t).

By the chain rule, we have along the error trajectories that

V̇ = 2e′Sė+ e′Ṡe

= 2e′S(A(u)x+ d1 −A(u)x̂

− S−1C ′(Cx+ d2 − Cx̂))

+ e′(−θS −A(u)′S − SA(u) + C ′C)e.

If we rearrange the equality shown above,

V̇ = 2e′SA(u)e− 2e′C ′Ce− 2e′C ′d2

+ 2e′Sd1 − θe′Se− e′A(u)′Se

− e′SA(u)e+ e′C ′Ce

= −e′C ′Ce− 2e′C ′d2 + 2e′Sd1 − θe′Se.

This implies then that
√̇
V =

1

2
√
V

(−e′C ′Ce− 2e′C ′d2 + 2e′Sd1

− θe′Se).

On the other hand, by the Cauchy-Schwartz inequality we
have

e′Sd1 ≤ ‖Se‖‖d1‖,
−e′C ′d2 ≤ ‖Ce‖‖d2‖.

Using (5) and denoting

µ =
c1
c2
,

µ1 =
λmax (C ′C)

c2

we obtain:

‖Se‖2 = e′S2e ≤ µV,
‖Ce‖2 = e′C ′Ce ≤ µ1V.

Similarly,
λmin (C ′C)
√
c1

V (·, e) ≤ e′C ′Ce.

Putting all this together, we get that

√̇
V ≤

√
V

2
(−θ − µ2) +

√
µ‖d1‖+

√
µ1‖d2‖, (8)

where
µ2 =

λmin (C ′C)
√
c1

.

Note that µ is a positive constant and that µ1 and µ2 are
non-negative constants. An inequality with this form is quite
useful since Lemma 1 implies that for t ≥ t0,√

V (t, e(t)) ≤

exp

(
t

4
(−θ − µ2)

)√
V

(
t

2
, e

(
t

2

))
+

√
µ

∫ t

t
2

exp

(
(−θ − µ2)

(t− s)
2

)
‖d1(s)‖ds+

√
µ1

∫ t

t
2

exp

(
(−θ − µ2)

(t− s)
2

)
‖d2(s)‖ds.

Notice that for any non-zero constant r,∫ t

t
2

exp (r(t− s)) ds = −1

r
+

1

r
exp

(
r
t

2

)
and since V , d1, d2 are bounded, we can take the superior
limit on both sides of the inequality to conclude that

lim sup
t→∞

√
V (t, e(t)) ≤ L1

2
√
µ

θ + µ2
+ L2

2
√
µ1

θ + µ2
.

Since also
‖e‖2 ≤ 1

c2
V,

the terms can be expanded and arranged to conclude the
result. 2

B. Optimization of the bound

Theorem 1 provides a bound that can be minimized
by playing simultaneously over positive tunings θ and
admissible inputs u. To set this optimization problem
correctly, we first need to specify a target function and its
domain. We define the domain by considering inputs with
the proper excitation, defined below, as in [15], [14]. We
then redefine the bound in Theorem 1 as a function of u and
θ by specifying an explicit choice of c1(u, θ) and c2(u, θ)
in (5).

Definition 1: The input u is regularly persistent for sys-
tem (1) with respect to the triplet of positive real numbers
(T, α, t0) if t0 ≥ T and if for all t ≥ t0 we have∫ t

t−T
Φ(τ, t− T )′C ′CΦ(τ, t− T )dτ ≥ αIn×n. (9)

Here Φ stands for the transition matrix as defined in (4).

Bounds c1 and c2, as in (5), do exist for regularly
persistent inputs. Moreover, these bounds have explicit



expressions. We need the following assumption in order to
formulate an explicit choice of c1 and c2.

Assumption 3: The matrix functional A(u(t)) is
bounded. This means that

σ = sup
t≥0
‖A(u(t))‖ <∞. (10)

The next lemma is a direct consequence of the work
developed in [19]. The proof relies in using the form of
S(t) given in (3) and basic properties of the transition matrix.

Lemma 2: Consider systems (1) and (2) and suppose
Assumption 1 and Assumption 3 hold. For all θ > 2σ and
t ≥ 0 we have

S(t) ≤ β1In×n,

where
β1 =

‖C ′C‖
θ − 2σ

+ ‖S(0)‖.

Moreover, if u is also regularly persistent for system (1) with
respect to (T, α, t0) then for any θ > 0 and t ≥ t0 we have

β2In×n ≤ S(t),

where
β2 = α exp(−T (θ + 2σ)).

Remark 1: Lemma 2 implies that Assumption 2 is sat-
isfied when u is regularly persistent. In fact, let us set the
constants in (5) as:

c1 = β2
1 ,

c2 = β2.

This selection of constants c1 and c2, together with
Theorem 1, provide immediately the following corollary.

Corollary 1: Consider systems (1) and (2). Suppose that
Assumption 1 and Assumption 3 are satisfied. If u is regu-
larly persistent for system (1) with respect to (T, α, t0), then
for any θ > 2σ:

lim sup
t→∞

‖e(t)‖ ≤

L1

(
2(θ − 2σ)‖S(0)‖+ 2‖C ′C‖
αθ(θ − 2σ) exp(−T (θ + 2σ))

)
+

L2

(
2
√
‖C ′C‖

αθ exp(−T (θ + 2σ))

)
.

The bound in Corollary 1 has an advantage over the bound
in Theorem 1. Namely, the influence of the tuning parameter
θ in the bound is now explicit. Our goal now is to define a
functional that assigns to each pair (u, θ) the bound given
by Corollary 1. The optimal design of u and θ is then given
by the minimization of this functional.

Consider a set U of regularly persistent inputs for system
(1) parametrized by a given bounded interval, say

P = [pmin, pmax].

Suppose also that

σ∗ = sup
u∈U

σ(u) <∞, (11)

where σ(u) is given in (10). This constraint on U is usually
set in order to respect physical limitations of the system. In
a similar way, the tuning parameter θ might have magnitude
requirements and it needs also to verify the assumptions in
Corollary 1. Consider then the bounded interval

Θ = [θmin, θmax]

for given
θmax > θmin > 2σ∗.

In order to define a functional

J : Θ× P → R+

by using the bound in Corollary 1, it suffices to assign to
each u ∈ U a selection of the regularly persistent parameters
T and α. We do this in a natural way. For each u ∈ U select
and fix T (u) such that the set

RP(u) = {α ∈ (0,∞)|∃ t0 > 0 satisfying (9)}

is non-empty. Then simply set

α(u) = supRP(u). (12)

Of course, the actual implementation of this design
strategy of u and θ is not trivial and needs to be adapted
to the specific system under consideration. This strategy
is based on the properties of the resulting functional J .
For example, suppose the parametrization of U and the
assignment T (u) are done in a continuous way. Then J
results in a continuous functional with compact domain and
a minimum is reached. There exist several tools available
in the Matlab to perform the minimization. In particular, if
J is also strictly convex then the unique global minimum is
easily obtained by the “fmincon” solver.

Let us summarize next the off-line design strategy of the
optimal input u∗ and the optimal tuning parameter θ∗.



1. Choose a regularly persistent input space U ,
2. Parametrize U continuously with P interval,
3. Choose a tuning parameter space Θ,
4. Set a continuous length assignment T (u) and

compute α(u) as in (12),
5. The optimal design is obtained by:

(θ∗, p∗) = arg min
θ∈Θ,p∈P

J(θ, p),

where J is given by the bound in Corollary 1 and
where u∗ ∈ U corresponds to p∗.

(13)



The next section shows an academic example of this off-
line design strategy. The dimension of the considered state
affine system is two and the input space U is set to be a
family of parametrized cosine functions.

IV. ILLUSTRATION

Here we apply the design strategy (13) to a specific
academic case in order to illustrate the procedure. Let us
consider system (1) in the specific case of n = 2 and

A(u(t)) =

(
0 u(t)
0 0

)
,

C =
(

1 0
)
.

(14)

The disturbances d1(t) and d2(t) will be discussed below. It
is not needed to consider specific units for the time t.

Suppose that the physical limit of this system does not
allow inputs with values outside the interval [−1, 1]. For any
input u, we obtain in this case that

σ(u) = sup
t≥0
|u(t)|

and we need to define U such that σ∗ = 1. On the other hand,
the inputs have to be carefully selected since not every input
to the system defined by (14) is regularly persistent [21]. Let
us then choose the parametrized input space

U = {u = cos (pu · t)|pu ∈ [pmin, pmax]}.

It is clear that in practice a realistic input frequency is lower
and upper bounded. Since this an academic example, we
instead use a rough approximation of the optimal frequency;
Set pmin = 0.1 and pmax = 14. In a similar fashion, we set
a top tuning of θmax = 9. Finally, following the hypotheses
of Corollary 1, we select θmin = 2.1 > 2σ∗.

We proceed to show that the inputs u ∈ U are regularly
persistent with respect to their period

T (u) =
2π

pu

and we give a formula for α(u). Since A(u(t))A(u(s)) = 0
for any t, s ≥ 0, the transition matrix is simply given by:

Φu(s, t) = exp

∫ s

t

A(u(τ))dτ

=

(
1
∫ s
t
u(τ)dτ

0 1

)
,

see for example [22]. It follows that the observability gram-
mian in the left hand side of inequality (9) is the symmetric
matrix G(u, t) given by: T (u)

∫ t
t−T (u)

∫ s
t−T (u)

cos(pu · τ)dτds

(?)
∫ t
t−T (u)

(∫ s
t−T (u)

cos(pu · τ)dτ
)2

ds

 .

Then u is regularly persistent if we can find α > 0 such
that the matrix G(u, t)−αI has non-negative trace and non-
negative determinant for all t ∈ [T, T +pu]. After some easy

computations, this is equivalent to stating

2π

pu
+

π

p3
u

− 2α ≥ 0,

α2 −
(

2π

pu
+

3π

p3
u

)
α+

2π2

p4
u

≥ 0. (15)

Finally, the largest admissible α(u) is the smallest root of
the polynomial on the left hand side of the inequality in (15).

Let us now proceed with step five of the design strategy in
(13). We suppose that the system is being affected by a two-
dimensional dynamic disturbance d1(t) represented as pairs
of uniform random numbers between 0 and

√
200. Similarly,

the output measurements are corrupted by uniformly random
noise between 0 and 10. Hence, L1 = 20 and L2 = 10.
We fix S(0) as the identity matrix and the functional J is
fully determined. It can be shown that the resulting functional
J , specified by the bound in Corollary 1, is in fact strictly
convex and continuous in this case. We run the “fmincon”
solver in Matlab to continue with step five in (13). The solver
outputs immediately the optimal design:

(θ∗, p∗u) = (3.3024, 11.1651). (16)

Consider system (1) and its observer (2) in the particular
case of (14). Our goal now is to implement the optimal input
and tuning given by (16) and to compare the performance of
this optimal selection against other combinations of inputs
and tunings. The measure of performance used here is
given by the mean of the norm of the real estimation error
over a fix time length. Several simulations of the system
were run by setting an initial error derived from x(0)′ =
(1, 1) and x̂(0)′ = (0, 0). Then the mean of the norm of
the estimation error was computed over 50 time units for
different combinations of tunings and inputs. The results
can be seen in Table I. It is essential to notice that these
values do not correspond to the functional J but to the actual
estimation error. Although the optimization domain did not
include θ < 2.1, θ = 0.1 was also simulated for comparison.
The design of the observer given by (13) provided a close to
optimal performance with a value of 9.9. Notice the almost
convex behavior of the table column-wise and row-wise.

Other systems states and their estimations can be seen in
Figure 1 for the first ten time units and for different inputs
and tunings. Here we initialized the systems at x(0)′ =
(10, 0) and x̂(0)′ = (5, 50). Small values of the tuning θ fail
to approximate fast and correctly both states simultaneously
(Figure 1, first and second row from the top). But if θ is too
large then the effect of the noise gets amplified (Figure 1,
bottom row, second column). The optimal combination θ∗

and u∗ is shown in the third row from the top of Figure 1.

V. CONCLUSION

In this paper we addressed the problem of robustness to
measurement noise and model uncertainties of a high-gain
observer for state affine non-autonomous systems.

As a first step, we provided an upper bound for the limiting
estimation error in norm that depends on the magnitude of
the disturbances. Then, we reformulated the bound of the



TABLE I
MEAN NORM OF THE REAL ESTIMATION ERROR; THE VALUE 9.9

CORRESPONDING TO THE STRATEGY DESIGN DEVELOPED HERE IS IN

THE LOWER %10.2.

θ/pu 0.1 4 6 8 11.1 12 14

0.01 269.3 157.7 169.7 177.9 186.5 187.9 190.2
0.5 36.6 19.3 20.0 21.3 21.6 21.7 24.3
1 20.8 11.0 11.1 11.7 11.6 11.4 12.9

3.3 22.1 9.6 9.9 9.8 9.9 10.1 10.9
5 24.1 9.8 10.2 10.2 10.4 10.7 11.6
7 26.9 10.5 10.7 10.5 11.0 11.4 12.4
9 29.1 11.3 11.4 11.1 11.7 12.1 13.3

Fig. 1. Influence of θ and pu on the state estimation. In dotted line the
states, in solid their estimations. The optimal design corresponds to the third
row from the top.

estimation error for obtaining a more feasible optimization
problem. Finally, using the obtained bound, we formulated
an optimization algorithm for the off-line design of the
input and the high-gain parameter. This approach provides a
new degree of freedom to improve the performance of the
observer with respect to measurement noise and unknown
nonlinearities. Given the speed of the optimization algorithm,
future studies will focus in the development of an on-line
design of the observer. The work developed in this paper also
opens a perspective for optimal input design for identification
problems.
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[19] G. Besançon, G. Bornard, and H. Hammouri, “Observer Synthesis for
a Class of Nonlinear Control Systems,” European Journal of Control,
vol. 2, no. 3, pp. 176–192, 1996.

[20] C. M. Hackl, Non-identifier Based Adaptive Control in Mechatronics:
Theory and Application, ser. Lecture Notes in Control and Information
Sciences. Springer International Publishing, 2017.
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