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High power converters based on SiC

Exemple: step-up converter for offshore wind turbines [1]
Medium voltage DC bus between wind turbine and HVDC converter

Ü Higher voltages switches allow simpler conversion circuits
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High power converters based on SiC – 2

SiC allows for:
I Higher voltage switches

I Ideally 10 kV or more
I Higher frequency operation

I 10’s of kHz vs. ≤ kHz for Si IGBTs
I Higher ambiant/junction temp.?

Ü Not necessarily so, let’s find out why
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Thermal run-away mechanism [2]

I an imaginary device
I its associated cooling system
I in region A, the device

dissipates more than the
cooling system can extract

I in region B, the device
dissipates less than the
cooling system can extract

I two equilibrium points: one
stable and one unstable

I above the unstable point,
run-away occurs
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Thermal run-away mechanism [2] – 2

Unconditionally stable

Unconditionally
unstable

Stable becoming
unstable as TA

increases

I Other cases possible, e.g. device with a negative
temperature coefficient
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On-state Resistance (RDSon) of SiC MOSFETs

1200 V devices [3] 3300 V MOSFET [4]

I RDSon increases with temperature
I For high voltage devices, Rn is dominant

Ü On-losses > double from 25 to 150°C
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Run-Away behavior of SiC MOSFETs

I Considering only conduction losses
I P = RDSon I2

D
I Considering only mobility reduction

I RDSon(TJ) = RDSon,273 ×
(

TJ
273

)2.4
[5]

Ü Strong increase of losses with TJ
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Ü What are the suitable thermal resistance and ambient temperature?
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Run-Away behavior of SiC MOSFETs – 2
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Conclusions on thermal Run-Away

I Strong sensitivity to thermal-run-away in conduction mode
I Ambient temperature to be kept as low as possible

I Refrigeration not desirable (risks of condensation)
I Thermal resistance should be minimized

I Trade-off between thermal resistance and insulation
Ü Objective: to keep TJ < 100°C

I Better electrical performances (acceptable conduction losses)
I Safety margin regarding thermal run-away
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High Performance Cooling of SiC Devices

Packaging of SiC dies
I Backside cooling
I Electrical insulation of

baseplate

Ceramic substrate Ensures
I Electrical insulation
I Heat conduction
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Ceramic Substrates

Source: Dielectric properties of ceramic substrates and current developments for medium
voltage applications, L. Laudebat et al., MVDC Workshop 2017

Ceramic materials
I BeO discarded (toxic)
I AlN next best thermal

conductivity
I AlN best electrical strength

Substrate structure
I “Triple point”
I Sharp edge of metallization
Ü Electric field reinforcement
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New Substrate Geometry for Higher Voltages

“Protruding” structure
I Shielding of triple point
I Rounded electrodes
I Ideally, encapsulant and

ceramic with matched εR
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εR encapsulant=1 εR encapsulant=9
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Substrate Manufacturing

Manufacturing process:
I Machine AlN (mechanical)

I 1 mm-thick AlN
I 150 µm recess
I Could be etched

I Prepare electrode
I 500 µm-thick copper
I 250 µm edge radius

I Assemble the substrate
I Tanaka TKC-651 active braze
I Ceramic alignment jig
I Vacuum brazing
I 800°C peak temp.
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Substrate after Manufacturing

Copper

Aluminium nitride

Excess solder

Triple point

40 mm40 mm

I Good copper/ceramic interface (no voiding observed)
I Excess solder flowed along copper, not ceramic
I Substrate backside coated with Ti/Ag by PVD for testing
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Testing

I Partial Discharge (PD) testing (LAPLACE Lab. Toulouse, France)

I Immersion in dielectric fluid (Novec 649)
I Sample conditioning to eliminate relaxation effects
I Considered PD threshold: 10 pC
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Results
I Clear improvement of protruding over “standard” substrate

I Same total ceramic thickness (1 mm), same ceramic provider
I Further improvement possible:

I Use of encapsulant with εR ≈ 9 (εR Novec 649: 1.8)
I Better manufacturing process (smoother ceramic surface)
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Conclusion

I SiC MOSFETs are sensitive to thermal runaway
I Strong increase in conduction losses with junction temperature
I Ideally, operate at junction temperature of 100°C or less

I Important trade-off on ceramic substrates
I Thin enough to get low thermal resistance
I Thick enough to sustain voltage

Ü Proposed changes in substrate structure
I “Protruding structure” for reduction of field reinforcement
I Permittivity matching of encapsulant and ceramic (todo)

Ü Solution probably valid for 10-15 kV devices
I Above that, more dramatic changes needed in the cooling system.
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