Packaging with double-side cooling capability for SiC devices, based on silver sintering IECON 2018

Cyril BUTTAY¹, Raphaël RIVA¹, Bruno ALLARD¹, Marie-Laure LOCATELLI², Vincent BLEY²

¹ Laboratoire Ampère, Lyon, France ² Laboratoire LAPLACE, Toulouse, France

21/10/18

Introduction

Manufacturing of the 3-D structure

Results

Conclusion

Introduction

Manufacturing of the 3-D structure

Results

Conclusion

Double Side Cooling

- SiC JFETs (or MOSFETs) sensitive to thermal run-away
- → Need for efficient cooling, despite high temperature capability
- Standard packaging offers cooling through one side of the die only
- "Sandwich" package performs thermal management on both sides
- Requires special features for topside contact

Double Side Cooling

- SiC JFETs (or MOSFETs) sensitive to thermal run-away
- → Need for efficient cooling, despite high temperature capability
- Standard packaging offers cooling through one side of the die only
- "Sandwich" package performs thermal management on both sides
- Requires special features for topside contact

Double Side Cooling

- SiC JFETs (or MOSFETs) sensitive to thermal run-away
- → Need for efficient cooling, despite high temperature capability
- Standard packaging offers cooling through one side of the die only
- "Sandwich" package performs thermal management on both sides
- Requires special features for topside contact

Introduction

Manufacturing of the 3-D structure

Results

Conclusion

The proposed 3-D Structure

- Two ceramic substrates, in "sandwich" configuration
- ► Two SiC JFET dies (SiCED)
- Assembled using silver sintering
- 25.4 mm×25.4 mm (1 in×1 in)

Ceramic Substrates

Scale drawing for 2.4×2.4 mm² die

- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- → Custom etching technique

plain DBC board

- ► Final patterns within 50 µm of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μm of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

3b - Exposure and Developpment

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μm,
 ≈ 150 μm per step

- ► Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

Bonding Material: Silver Sintering

Göbl, C. et al "Low temperature sinter technology Die attachment for automotive power electronic applications" proc of APE, 2006

Silver Paste

- Based on micro-scale silver particles (Heraeus LTS-117O2P2)
- ► Low temperature (240 °C) sintering
- Low pressure (2 MPa) process

No liquid phase involved:

- No movement of the die
- No bridging across terminals
- No height compensation thanks to wetting

Screen printing

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

Screen printing

2- Mounting in alignment jig

Ceramic jigs for alignment of dies and substrate

- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

Screen printing

2- Mounting in alignment jig

 Ceramic jigs for alignment of dies and substrate

- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

6 - Screen printing on "drain" substrate

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

- Ceramic jigs for alignment of dies and substrate
- Pre-drying of paste to prevent smearing
- Two sintering steps using the same temperature profile

Introduction

Manufacturing of the 3-D structure

Results

Conclusion

- Very good form factor, especially around gate contact
- Uniform silver layers
- Encapsulation with parylene HT (not shown here)

- Contact on Gate, Source and Drain of all JFETs
- No short-circuit between contacts

Introduction

Manufacturing of the 3-D structure

Results

Conclusion

SD structure using only high-temperature-rated materials Should be able to operate continuously at 300 ℃

- Silver sintering is suited to rigid sandwich structures.
- Proposed etching technique offers satisfying resolution
- Package for demonstration of technology, no cooling attempted yet
 - Current structure fragile, new modules should integrate mechanical reliefs (solid encapsulant, direct substrate-substrate bonding...)

- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C
- Silver sintering is suited to rigid sandwich structures.
- Proposed etching technique offers satisfying resolution
- Package for demonstration of technology, no cooling attempted yet
 - Current structure fragile, new modules should integrate mechanical reliefs (solid encapsulant, direct substrate-substrate bonding...)

- ► 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C
- Silver sintering is suited to rigid sandwich structures.
- Proposed etching technique offers satisfying resolution
- Package for demonstration of technology, no cooling attempted yet
 - Current structure fragile, new modules should integrate mechanical reliefs (solid encapsulant, direct substrate-substrate bonding...)

- 3D structure using only high-temperature-rated materials
 - Should be able to operate continuously at 300 °C
- Silver sintering is suited to rigid sandwich structures.
- Proposed etching technique offers satisfying resolution
- Package for demonstration of technology, no cooling attempted yet
 - Current structure fragile, new modules should integrate mechanical reliefs (solid encapsulant, direct substrate-substrate bonding...)

Thank you for your attention.

CNIS

This work was supported through the grants EPAHT (French National Fundation for Aeronautic and Space Research - FNRAE) and THOR (EURIPIDES-CATRENE).

cyril.buttay@insa-lyon.fr