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THE EXTINCTION PROBLEM FOR A CLASS OF
DISTYLOUS PLANT POPULATIONS

By Gerold Alsmeyer∗ and Kilian Raschel†

University of Münster and CNRS, University of Tours

In this paper, the extinction problem for a class of distylous plant
populations is considered within the framework of certain nonhomo-
geneous nearest-neighbor random walks in the positive quadrant. For
the latter, extinction means absorption at one of the axes. Despite
connections with some classical probabilistic models (standard two-
type Galton-Watson process, two-urn model), exact formulae for the
probabilities of absorption seem to be difficult to come by and one
must therefore resort to good approximations. In order to meet this
task, we develop potential-theoretic tools and provide various sub-
and super-harmonic functions which, for large initial populations,
provide bounds which in particular improve those that have appeared
earlier in the literature.

1. Introduction. In distylous flowering plant populations, where each
plant belongs to one of two classes, sporophytic self-incompatibility means
that every plant produces pollen that can only fecundate the stigmata of
plants from the opposite class but not from its own class. A general model for
such populations was developed by Billiard and Tran [1], which allowed them
to study different relationships between mate availability and fertilization
success and to compare the dynamics of distylous species and self-fertile
species. An important problem in this context is to find the probability of
extinction for one of the styles or at least good approximations thereof. In
[8] by Lafitte-Godillon et al., this is done under the following more specific
assumptions which are also the basis of the present article:

• Each plant in the population is diploid and its style is characterized
by the two alleles it carries at a particular locus.
• There are two allelic types, say A and B, the last one being dominant.

Hence, the possible genotypes of the plants are AA, AB and BB, the
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resulting phenotypes, i.e., types of proteins carried by their pollen and
stigmates, being A, B and B, respectively.
• Due to self-incompatibility, only pollen and stigmates with different

proteins can give viable seeds, i.e., pollen of a plant of phenotype A
can only fecundate stigmates of a plant of phenotype A and vice versa.

By the last assumption, seeds of type BB cannot be created. One may there-
fore consider, without loss of generality, populations made of individuals of
genotypes AA and AB only. Each seed is then necessarily also of one of these
two genotypes, with probability 1/2 each. It is assumed that ovules are pro-
duced in continuous time at rate r > 0 and that there is no pollen limitation,
that is, each ovule is fecundated to give a seed provided there exists compat-
ible pollen in the population. The lifetime of each individual is supposed to
follow an exponential distribution with mean 1/d, where d > 0. Denoting by
NA
t and NB

t the number of individuals of genotype AB (phenotype A) and
BB (phenotype B) at time t ∈ R+, the process (NA

t , N
B
t )t>0 forms a Markov

jump process on the quarter plane N2
0 := {0, 1, 2, . . .}2 with transition rates

on N2 := {1, 2, 3, . . .}2 displayed in the left panel of Fig. 1. The associated
jump chain (Xn, Yn)n>0, also called embedded Markov chain and obtained
by evaluation of (NA

t , N
B
t )t>0 at its jump epochs, then has transition prob-

abilities (displayed in the right panel of Fig. 1)

p(x,y),(x+1,y) = p(x,y),(x,y+1) =
λ

2
,

p(x,y),(x−1,y) = λ · x

x+ y
, p(x,y),(x,y−1) = λ · y

x+ y

(1)

for x, y ∈ N2, where

λ :=
d

d+ r
and λ := 1− λ.

Note that it may also be viewed as a spatially nonhomogeneous nearest-
neighbor random walk in the quarter plane. Self-incompatibility implies that
reproduction becomes impossible and thus extinction occurs once one of the
phenotypes disappears, i.e., ZB

t = 0 or ZA
t = 0 for some t. Consequently, both

introduced processes are absorbed when hitting one of the axes. Defining the
extinction probabilities

(2) qx,y := Px,y(τ <∞),

where Px,y := P(·|X0 = x, Y0 = y) and

τ := inf{n > 0 : Xn = 0 or Yn = 0},
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Fig 1. Transition rates at (x, y) for the population-size Markov jump process (NA
t , N

B
t )t>0

(left) and the transition probabilities for its associated embedded Markov chain (ZA
n , Z

B
n)n>0

(right).

it is of great interest to compute these probabilities or to find good approx-
imations. Billiard and Tran [1, Prop. 9] used a coupling argument to show
that

(3) µx+y 6 qx,y 6 µx + µy − µx+y = 1− (1− µx)(1− µy)

for all x, y ∈ N0 if

µ :=
d

r
< 1 (supercritical case),

while qx,y = 1 for all x, y ∈ N0 if µ > 1.

From now on we will focus on the supercritical case and therefore make
the standing assumption µ < 1, equivalently λ = µ

1+µ <
1
2 , unless explicitly

stated otherwise.

As usual, we put x∧ y := min{x, y} and x∨ y := max{x, y}. If P denotes
the transition operator of (Xn, Yn)n>0, thus Pf(x, y) = f(x, y) if x ∧ y = 0
and

Pf(x, y) = λ

(
x

x+ y
f(x− 1, y) +

y

x+ y
f(x, y − 1)

)
+ λ

f(x+ 1, y) + f(x, y + 1)

2

(4)

for x, y ∈ N, then qx,y is P -harmonic, i.e., Pq = q or, in explicit form,

qx,y = λ

(
x

x+ y
qx−1,y +

y

x+ y
qx,y−1

)
+ λ

qx+1,y + qx,y+1

2
(5)
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for all x, y ∈ N0. Hence q forms a solution to the Dirichlet problem

Pf(x, y) = f(x, y) and f(x, 0) = f(0, y) = 1 for all x, y ∈ N.

There are infinitely many positive solutions, for instance f ≡ 1, among
which q constitutes the minimal one as has been shown in [8, Prop. 2.1]
by a standard martingale argument. It is also shown there that in fact any
specification of f(x, 1) for x ∈ N uniquely determines a solution. By the
symmetries of the model, any solution f must clearly satisfy f(x, y) = f(y, x)
for all x, y ∈ N0.

As it seems impossible to find explicit formulae for qx,y, which a priori
might appear surprising, there is need for good approximations, lower and
upper bounds, and asymptotic estimates as x and/or y tend to infinity. This
is the main topic of the present article. Apart from inequality (3), which
appears to be rather crude, the only further result, obtained in [8, Prop. 2.3
and Rem. 2.4], asserts that, for any fixed y ∈ N and x→∞,

(6) qx,y ' (2µ)y
y!

xy
.

On the other hand, the behavior of qx,y as x and y both get large (including
the case of particular interest when x = y) appears to be completely open.
Already the determination of the lower and upper rate of exponential decay
of qx,x, viz.

(7) κ∗ := lim inf
x→∞

q1/xx,x and κ∗ := lim sup
x→∞

q1/xx,x ,

including the question whether or not κ∗ = κ∗, poses a very difficult problem.
By inequality (3),

(8) µ2 6 κ∗ 6 κ∗ 6 µ.

An improvement of (3) and (8) will be stated as Theorem 3.1 and derived
in Section 4 by quite different, rather simple potential-theoretic arguments
along with an interpretation of the bounds. It will also be shown in Section 8
that µx + µy − µx+y, the upper bound in (3), equals exactly the extinction
probability function for the two 2-type population models with transition
probabilities shown in Fig. 2. In the first one (left panel), here called indepen-
dent branching with complete segregation (IBCS), the two subpopulations A
and B evolve independently, meaning that, given current subpopulation sizes
x and y, a birth or death “picks” an individual at random and thus with
probabilities x

x+y and y
x+y from A and B, respectively. In the second model,
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Fig 2. Transition probabilities at (x, y) for (Xn, Yn)n>0 in the branching model with com-
plete segregation (left panel) and the model with fully symmetric type selection (right panel).

here called branching with unbiased type selection (BUTS), it is the subpop-
ulation (and thus the type) which is picked at random by a birth and death
and thus with probability 1

2 each (before absorption). Obviously, the model
studied in this work constitutes a hybrid of the two aforementioned ones
and this may be taken as some evidence for the conjecture that the upper
bound in (3) is also a good approximation for qx,y, at least in the sense that
it determines the asymptotic exponential decay of qx,x, thus κ∗ = κ∗ = µ.
However, Theorem 3.3, one of our main results, will actually show that κ∗

is always strictly less than µ. For an explanation of this outcome we refer
to Section 3.

We conclude this introduction by mentioning some related work. First, the
probabilities of absorption at a given axis for the BUTS model are computed
in [7, Thm. 13] in terms of integrals of Chebychev polynomials; applications
of these results in finance (study of Markovian order books) can be found in
[2], see in particular Prop. 3 there. For a generalization of the BUTS model
with eight jump directions (see the right panel of Fig. 3), it is shown in [7,
Prop. 9] (in the presence of a positive drift) that

ax,y
2 6 qx,y 6 ax,y, with

ax,y =

(
p−1,−1 + p0,−1 + p1,−1
p−1,1 + p0,1 + p1,1

)x
+

(
p−1,−1 + p−1,0 + p−1,1
p1,−1 + p1,0 + p1,1

)y
.

Second, when restricting our model (with jumps as in Fig. 1) to the very
particular case λ = 1 (pure death model), i.e., with no jumps to the North
and the East, the probabilities of absorption at a given axis are computed in
[3], together with a proposed interpretation within the framework of a war-
of-attrition problem. Finally, for a queueing model with South and West
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Fig 3. Transition probabilities at (x, y) for (Xn, Yn)n>0 in the M/M/∞ parallel queu-
ing model with simultaneous arrivals of [5] (left panel) and for a generalization to eight
neighbors of the unbiased type selection model (right panel).

rates as in Fig. 1, and one last homogeneous North-East rate (see Fig. 3),
Foddy in her PhD thesis arrives at a closed-form expression for the gener-
ating function of the stationary distribution, see [5, Thm. 24].

2. The random walk (Xn, Yn)n>0 in alternative contexts. From
a mathematical point of view, it is useful to see the random walk (Xn, Yn)n>0

appearing in various contexts, three of which we shortly describe hereafter.
The last of these will be particularly interesting because it offers an extended
framework by introducing a random environment. This will allow us to look
at the behavior of (Xn, Yn)n>0 also on a quenched level and thus provide an
additional leverage for the derivation of good bounds for the qx,y.

2.1. Standard 2-type binary splitting. Consider a two-type binary split-
ting population model in continuous time, in which individuals act indepen-
dently and any individual v has a type σv ∈ {A,B}, a standard exponential
lifetime and a random number N x

v of type-x offspring for x ∈ {A,B} which is
produced at the end of her life and independent of the lifetime. Furthermore,

P((NA
v , N

B
v ) = (0, 0)|σv = A) = P((NA

v , N
B
v ) = (0, 0)|σv = B) =

d

d+ r
= λ,

P((NA
v , N

B
v ) = (1, 1)|σv = A) = P((NA

v , N
B
v ) = (2, 0)|σv = A) =

λ

2
,

P((NA
v , N

B
v ) = (1, 1)|σv = B) = P((NA

v , N
B
v ) = (0, 2)|σv = B) =

λ

2

for parameters r, d > 0 such that d < r. Denoting by Zx
t the number of living

individuals of type x at time t, the process (ZA
t ,ZB

t )t>0 is a supercritical
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two-type Bellman-Harris branching process with mean reproduction matrix(
mAA mAB

mBA mBB

)
=

(
3r

2(d+r)
r

2(d+r)
r

2(d+r)
3r

2(d+r)

)
,

where mxy = E(N y
v |σv = x). Due to the symmetric reproduction mechanism,

the total population size Zt = ZA
t +ZB

t at time t forms a supercritical binary
splitting Bellman-Harris process with offspring mean

m = mAA + mAB = mBA + mBB = 2λ > 1.

As a consequence, the pertinent total generation-size sequence (Zn)n>0 is
an ordinary binary splitting Galton-Watson process with offspring mean m,
offspring distribution

p0 = λ = 1− p2
and extinction probability

q =
d

r
= µ

when starting with one ancestor (Z0 = 1). Clearly, q is also the probability
of extinction for (Zt)t>0.

To make the connection with our original model, notice that (ZA
t ,ZB

t )t>0

also constitutes a continuous-time birth and death process on N2
0 and has

the same transition rates as (NA
t , N

B
t )t>0 on N2. Consequently,

(NA
t , N

B
t )t>0

d
= (ZA

t∧T ,ZB
t∧T )t>0 and (Xn, Yn)n>0

d
= (ZA

n∧ν , Z
B
n∧ν)n>0,

where (ZA
n , Z

B
n )n>0 denotes the associated jump chain of (ZA

t ,ZB
t )t>0,

T := inf{t > 0 : ZA
t ∧ ZB

t = 0}, ν := inf{n > 0 : ZA
n ∧ ZB

n = 0}

and
d
= denotes equality in law. We thus see that our extinction problem may

be rephrased as an extinction problem for a particular 2-type Galton-Watson
process which, however, is nonstandard because for the latter process it
means to find the probability for each of the types to disappear momentarily
(by irreducibility, new individuals of that type may be produced afterwards
as offspring from the other type).

2.2. A two-urn model. Another very simple way to obtain the sequence
(Xn, Yn)n>0 is by considering the following nonterminating two-step proce-
dure of adding or removing a ball, one per round, from one of two urns, say
A and B. Initially, these urns contain X̂0 and Ŷ0 balls, respectively. In the
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first step of each round, we toss a coin so as to determine whether a ball is
removed or added, which happens with respective probabilities 0 < λ < 1/2
and λ. Then, if a ball is to be removed, we just pick one at random not
regarding the urn in which it lies. But if a ball is to be added, then we pick
the designated urn at random. Let X̂n and Ŷn be the number of balls in A
and B after n rounds, respectively, and put

ν := inf{n > 0 : X̂n ∧ Ŷn = 0}.

Then (Xn, Yn) := (X̂n∧ν , Ŷn∧ν), n ∈ N0, is indeed a random walk on N2
0

with transition probabilities and transition operator given by (1) and (4),
respectively, and this time obtained from the nonhomogeneous random walk
(X̂n, Ŷn)n>0 on N2

0 by killing the latter when it first hits one of the axes.
Unfortunately, this nice alternative interpretation of our model does again
not lead to any additional clue about how to solve our extinction problem.

2.3. A Markov chain with iid random transition probabilities. Rather
than yet another alternative, our last model description should be seen as
an extension of the one given in Subsection 2.1 by enlarging our perspective
in some sense. Recall from there that (ZA

n , Z
B
n )n>0 denotes the jump chain

of the 2-type Bellman-Harris process (ZA
t ,ZB

t )t>0 and that (ZA
n + ZB

n )n>0

has iid increments e1, e2, . . . taking values −1 and +1 with respective prob-
abilities λ and λ. Obviously, the value of en determines whether the nth
jump epoch marks a birth (+1) or a death (−1) in the population. Let us
adopt the perspective of e = (en)n>1 being a random environment for the
Markov chain (ZA

n , Z
B
n )n>0. Then, given e, this sequence is still Markovian

but temporally nonhomogeneous, its transition operator at time n being
Pen , where

P1f(x, y) :=
f(x+ 1, y) + f(x, y + 1)

2
and

P−1f(x, y) :=
x

x+ y
f(x− 1, y) +

y

x+ y
f(x, y − 1)

for x, y ∈ N0. In other words,

Ee
x,y(f(ZA

n , Z
B
n )|ZA

n−1, Z
B
n−1) = Penf(ZA

n−1, Z
B
n−1) a.s.

and

Ee
x,yf(ZA

n , Z
B
n ) = Pe1Pe2 · · · Penf(x, y) a.s.
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for all n ∈ N and x, y ∈ N0, where Ee
x,y := Ex,y(·|e). Freezing (ZA

n , Z
B
n )n>0

when it hits the axes leads to (Xn, Yn)n>0 which in turn implies that

Ee
x,y(f(Xn, Yn)|Xn−1, Yn−1) = Penf(Xn−1, Yn−1) a.s.

and
Ee
x,yf(Xn, Yn) = Pe1Pe2 · · ·Penf(x, y) a.s.

for all n ∈ N and x, y ∈ N0, where P±1 equals the modification of P±1 which
is absorbing on the axes, i.e., P±1(x, y) = f(x, y) if x∧y = 0. So we see that,
by introduction of e, (Xn, Yn)n>0 becomes a Markov chain with iid random
transition probabilities, viz.

p(x,y),(x+1,y)(en) = p(x,y),(x,y+1)(en) =
1

2
1{en=1},

p(x,y),(x−1,y)(en) =
x

x+ y
1{en=−1},

p(x,y),(x,y−1)(en) =
y

x+ y
1{en=−1}

(9)

for x, y ∈ N2 and p(x,0),(x,0)(en) = p(0,y),(0,y)(en) = 1 for x, y ∈ N2
0. The

associated quenched extinction probabilities are denoted by qx,y(e), so

qx,y(e) := P e
x,y(τ <∞)

for x, y ∈ N0. Plainly, qx,0(e) = q0,y(e) = 1, and

qx,y = E qx,y(e).

3. Results. Let us define the following functions on N2
0 that will appear

in our results and frequently be used in our analysis, namely

f0(x, y) := µx+y, f1(x, y) := µx + µy(10)

and

h(x, y) := µx + µy − µx+y = f1(x, y)− f0(x, y).(11)

The very same functions multiplied with
(
x+y
x

)−1
are denoted as f̂0, f̂1 and

ĥ, respectively. Our first theorem restates inequalities (3) and (8) with im-
proved lower bounds.

Theorem 3.1. For all x, y ∈ N0,

(12) f0(x, y) ∨
[(

1 +
µ

2(1 + µ)

)x∧y
f̂1(x, y)

]
6 qx,y 6 h(x, y)
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As a consequence,

(13) µ2 ∨
[
µ

4

(
1 +

µ

2(1 + µ)

)]
6 κ∗ 6 κ∗ 6 µ.

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

Fig 4. The curves µ 7→ µ2 (orange) and µ 7→ µ
4

(1 + µ
2(1+µ)

) (green) for small values of µ.
The identity function is shown in blue.

It will be shown in Section 4 that the functions h and ĥ are super- and
subharmonic for P , respectively, with h(x, y) = ĥ(x, y) = 1 if x∧y = 0. This
leads to

(14) ĥ(x, y) 6 qx,y 6 h(x, y)

for all x, y ∈ N0 as an almost direct consequence (use Lemma 4.1). But since

ĥ(x, y) = f̂1(x, y) − f̂0(x, y) 6
(

1 +
µ

2(1 + µ)

)x∧y
f̂1(x, y),

we see that inequality (12) stated in our Theorem 3.1 is stronger. Its lower
bound does indeed provide a strong improvement over that in (8) for small
values of the parameter µ (see Fig. 4). On the other hand, our conjecture,
supported by Fig. 5, is that κ∗ = κ∗ = κ and

(15) κ =


µ

2
if µ ∈ [0, 12),

µ2 if µ ∈ [12 , 1],

and that a phase transition occurs at µ = 1
2 . Further evidence in support

of (15) for µ ∈ (12 , 1] is provided by Fig. 6: for the random walk to reach
the boundary, it has to traverse one of the regions confined by an axis and
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Fig 5. Simulations of the exponential decay κ in (7) (black) and comparison with the
conjectured curve (15) (blue). The simulations were realized with R.

a neighboring red line, where the drift vector (Ex,yX1 − x,Ex,yY1 − y) has
a negative component which pushes the walk closer to the origin. In other
words, in the event that the walk hits one of the axes, its nonzero component
should not be too large either and thus become eventually absorbed as well.
Equivalently, the probability of absorption at one of the axes for remote
starting points (x, x) is essentially the same as the probability of absorption
of Xn+Yn at 0. But the latter equals µ2x and has therefore asymptotic expo-
nential decay µ2 as x→∞. Unfortunately, we have no intuitive explanation
for the rate µ

2 in the case µ ∈ [0, 12 ].
The following corollary is a straightforward consequence of (14), more

precisely qx,y > ĥ(x, y), when using the standard asymptotics for
(
x+y
x

)
.

Corollary 3.2. For any fixed y ∈ N and x→∞,

lim inf
x→∞

xyqx,y > y!µy.

The result should be compared with the exact asymptotics stated in (6),
the only difference there being an extra term 2y.

As announced in the Introduction, it is one of our main results that the
exponential decay of the extinction probability qx,x is strictly less than µ:

Theorem 3.3. If µ < 1, then there exists ν ∈ (0, µ) such that

qx,x = o (νx)
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Fig 6. Drift vectors for µ = 0.2 (left), µ = 0.53 (middle), and µ = 0.66 (right). The red
lines are y = (2µ − 1)x and y = (2µ − 1)−1x. They are located in the positive quarter
plane if, and only if, µ ∈ [ 1

2
, 1]. Within the cone delimitated by these two lines, both drift

coordinates are positive, while outside the cone one of them becomes negative.

as x→∞, thus κ∗ < µ.

It is intuitively appealing if not obvious that qx,y decreases in both ar-
guments. Although confirmed by our last theorem, the proof requires some
care and will be based on a coupling argument.

Theorem 3.4. As a function of (x, y) ∈ N2, qx,y is nonincreasing in
each argument, thus

qx,1 6 qx,2 6 . . . qx,x 6 qx,x+1 6 . . .

for all x ∈ N.

In connection with the later use of P -sub- and P -superharmonic functions
in order to prove Theorem 3.1, a required property of our random walk is
the following standard behavior : If (Xn, Yn)n>0 is not absorbed at one of the
axes (τ = ∞), then explosion not only of the total population size occurs,
i.e., Xn+Yn →∞ a.s., but actually of both subpopulation sizes as well, i.e.,
Xn ∧ Yn →∞ a.s., see Lemma 4.1 for the result where this property enters.
The property is stated in the subsequent proposition and proved at the end
of Section 4.

Proposition 3.5. The random walk (Xn, Yn)n>0 on N2
0 with transition

probabilities defined by (1) on N2 exhibits standard behavior in the sense that

(16) lim
n→∞

Xn ∧ Yn = ∞ Px,y-a.s. on {τ =∞}

for all x, y ∈ N.
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Let us finally stipulate for the rest of this work that P will be used for
probabilities that are the same under any Px,y, x, y ∈ N0.

4. Annealed harmonic analysis and proof of Theorem 3.1. The
purpose of this section is to show that standard harmonic analysis for the
transition operator P of (Xn, Yn)n>0, see (4), provides the appropriate tool
to rather easily derive bounds for qx,y of the form stated in Theorem 3.1.

4.1. Sub(super)harmonic functions and applications. We begin with the
statement of the following basic result, valid for any transition operator P
on N2

0 that is absorbing on the axes.

Lemma 4.1. Let f be any nonnegative sub[super]harmonic function for
P such that f(x, y) = 1 for x ∧ y = 0 and limx∧y→∞ f(x, y) = 0. Then
qx,y > [6]f(x, y) for all x, y ∈ N0.

Proof. By the assumptions, (f(Xn, Yn))n>0 forms a nonnegative bounded
sub[super]martingale satisfying f(Xτ , Yτ ) = 1 on {τ < ∞}. Moreover, by
Proposition 3.5, f(Xn, Yn) → 0 a.s. on {τ = ∞} so that f(Xτ∧n, Yτ∧n)
converges a.s. to 1{τ<∞}. Now use the Optional Sampling Theorem to infer

f(x, y) 6 [>] lim
n→∞

Ex,yf(Xτ∧n, Yτ∧n) = Px,y(τ <∞) = qx,y

for all x, y ∈ N0.

Besides f0, f1 and h already defined at the beginning of Section 3, the
following functions will also be useful hereafter:

f∧(x, y) := µx∧y,

f∨(x, y) := µx∨y,

f2(x, y) := f∧(x, y)− f∨(x, y) = µx∧y − µx∨y.
(17)

Their counterparts multiplied with
(
x+y
x

)−1
are denoted f̂∧, f̂∨ and f̂2. In or-

der to prove Theorem 3.1, we continue with a derivation of the P -harmonic
properties of these functions. The results will particularly show that h is P -
superharmonic (Lemma 4.5), and that f̂1 and ĥ are P -subharmonic (Lem-
mata 4.6 and 4.8).

Lemma 4.2. The function f0(x, y) = µx+y is P -harmonic.
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Proof. For all x, y ∈ N, we have that

Pf0(x, y) = λµx+y−1 + λµx+y+1 = λµx+y + λµx+y = µx+y,

which proves the assertion.

The subsequent lemmata will provide formulae for Pf∧, Pf∨, etc.

Lemma 4.3. For x, y ∈ N, the function f∧(x, y) satisfies

Pf∧(x, y) =


2λ f∧(x, y), if x = y,(

1− (1− 2λ)
|x− y|

2(x+ y)

)
f∧(x, y), if x 6= y.

As a consequence,

Pf∧(x, y)

{
> f∧(x, y), if x = y,

6 f∧(x, y), if x 6= y.

Proof. It suffices to consider x 6 y. Note that λ < 1−λ implies λx+λy 6
1
2(x+ y). Using this, we find for x < y

Pf∧(x, y) = λ

(
x

x+ y
µx−1 +

y

x+ y
µx
)

+ λ
µx+1 + µx

2

= µx
(
λ

x

x+ y
+ λ

y

x+ y
+

1

2

)
= µx

(
1 − (1− 2λ)

|x− y|
2(x+ y)

)
6 µx = f∧(x, y),

whereas for x = y,

Pf∧(x, x) = λµx−1 + λµx = 2λµx > µx = f∧(x, x)

holds true as claimed.

Lemma 4.4. For x, y ∈ N, the function f∨(x, y) satisfies

Pf∨(x, y) =


2λf∨(x, y), if x = y,(

1 + (1− 2λ)
|x− y|

2(x+ y)

)
f∨(x, y), if x 6= y.
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As a consequence,

Pf∨(x, y)

{
6 f∨(x, y), if x = y,

> f∨(x, y), if x 6= y.

Proof. Again, it suffices to consider x 6 y. Note that λ < 1 − λ then
implies λx+ λy > 1

2(x+ y). For x < y, we obtain

Pf∨(x, y) = λ

(
x

x+ y
µy +

y

x+ y
µy−1

)
+ λ

µy + µy+1

2

= µy
(
λ

x

x+ y
+ λ

y

x+ y
+

1

2

)
= µy

(
1 + (1− 2λ)

|x− y|
2(x+ y)

)
> µy = f∨(x, y),

where λx+ λy > 1
2(x+ y) has been utilized. If x = y, then

Pf∨(x, x) = λµx + λµx+1 = 2λµx 6 µx = f∨(x, x),

which completes the proof.

Lemma 4.5. For x, y ∈ N, the function h in (11) satisfies

Ph(x, y) = h(x, y) − (1− 2λ)
|x− y|

2(x+ y)
f2(x, y) 6 h(x, y)(18)

with f2 defined in (17), and is thus P -superharmonic. Furthermore, the same
identity holds true for f1 = h− f0, and

Pf2(x, y) =


(1− 2λ)f1(x, y), if x = y,

f2(x, y)− (1− 2λ)
|x− y|

2(x+ y)
f1(x, y), if x 6= y.

(19)

Proof. It suffices to prove (18) for f1, for f0 = f1 − h is harmonic by
Lemma 4.2. With the help of Lemmata 4.3 and 4.4, we obtain for x < y

Pf1(x, y) = Pf∧(x, y) + Pf∨(x, y)

= f∧(x, y) + f∨(x, y) − (1− 2λ)
|x− y|

2(x+ y)
(f∧(x, y)− f∨(x, y))

= f1(x, y) − (1− 2λ)
y − x

2(x+ y)
f2(x, y)
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6 f1(x, y),

and for x = y (note that obviously f∧(x, x) = f∨(x, x))

Pf1(x, x) = (2λ+ 2λ)f∧(x, x) = 2f∧(x, x) = f1(x, x),

which proves (18). Eq. (19) follows in a similar manner.

Turning to the harmonic properties of f̂0, f̂1 and ĥ, we first study f̂1.

Lemma 4.6. The function f̂1 is subharmonic for P , in fact for x, y ∈ N

P f̂1(x, y)− f̂1(x, y)
=

1

2

(
1 +

1

x+ y + 1

)
f̂1(x, y), if x = y

>
λ

2

(
1 +

1

x+ y + 1

)
f̂1(x, y), if x 6= y

 >
λ

2
f̂1(x, y).

Proof. Using

x

x+ y

(
x+ y − 1

x− 1

)−1
=

(
x+ y

x

)−1
for x, y ∈ N, we find

P f̂1(x, y) = λ

(
x

x+ y
f̂1(x− 1, y) +

y

x+ y
f̂1(x, y − 1)

)
+ λ

(
f̂1(x+ 1, y) + f̂1(x, y + 1)

2

)

= f̂1(x, y) +
1

2

(
x+ y

x

)−1
µx
(
λ

x+ 1

x+ y + 1
+ λ

y + 1

x+ y + 1

)
+

1

2

(
x+ y

x

)−1
µy
(
λ

x+ 1

x+ y + 1
+ λ

y + 1

x+ y + 1

)
,

and from this, the assertion is easily derived.

Lemma 4.7. The functions f̂0 and f̂(x, y) :=
(
x+y
x

)−1
(2µ)x+y = 2x+yf̂0(x, y)

are both P -subharmonic.

Proof. Regarding f̂0, we obtain, for x, y ∈ N,

P f̂0(x, y) = 2λ f̂0(x, y) +
λ

2

(
1 +

1

x+ y + 1

)
f̂0(x, y)
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> λ
(

2 +
µ

2

)
f̂0(x, y) > f̂0(x, y)

and analogously

P f̂(x, y) = λ f̂(x, y) + λ

(
1 +

1

x+ y + 1

)
f̂(x, y) > f̂(x, y).

Lemma 4.8. The function ĥ is P -subharmonic.

Proof. Noting that ĥ = f̂1 − f̂0 and λ
2 f̂1(x, y) > f̂0(x, y) for x, y ∈ N,

the previous calculations provide us with

Pĥ(x, y) = P f̂1(x, y) − P f̂0(x, y)

> f̂1(x, y) +
x+ y + 2

x+ y + 1
f̂0(x, y)

−
(

2

1 + µ
+

µ

2(1 + µ)

x+ y + 2

x+ y + 1

)
f̂0(x, y)

> ĥ(x, y) +
x+ y + 2

x+ y + 1
f̂0(x, y)

−
(

1− µ
1 + µ

+
µ

2(1 + µ)

x+ y + 2

x+ y + 1

)
f̂0(x, y)

> ĥ(x, y) +

(
1− 2− µ

2(1 + µ)

)
x+ y + 2

x+ y + 1
f̂0(x, y)

= ĥ(x, y) +
µ

2(1 + µ)

x+ y + 2

x+ y + 1
f̂0(x, y)

> ĥ(x, y)

for all x, y ∈ N (including the case x = y).

4.2. Proofs of Theorem 3.1 and of Proposition 3.5.

Proof of Theorem 3.1. Since (Xn, Yn)n>0 exhibits standard behavior

(Proposition 3.5) and, using Lemmata 4.4 and 4.8, h and ĥ are obviously
functions satisfying the conditions of Lemma 4.1, we directly infer ĥ(x, y) 6
qx,y 6 h(x, y) for all x, y ∈ N0. As for f0, it does not meet the boundary
conditions stated in Lemma 4.1, yet

f0(x, y) = lim
n→∞

Ex,yµXτ∧n+Yτ∧n

=

∫
{Xτ=0}

µYτ dPx,y +

∫
{Yτ=0}

µXτ dPx,y
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6 Px,y(Xτ = 0) + Px,y(Yτ = 0)

= qx,y

for all x, y ∈ N0 as asserted. Turning to the proof of (13), it suffices to note
that

lim
x→∞

f0(x, x)1/x = µ2, lim
x→∞

h(x, x)1/x = µ

and

lim
x→∞

ĥ(x, x)1/x = lim
x→∞

(
2x

x

)−1/x
h(x, x)1/x =

µ

4
,

having used Stirling’s formula for the last assertion.

Proof of Proposition 3.5. Recall from Subsection 2.1 that, on {τ =
∞}, Xn+Yn can be viewed as the total population size of a 2-type Bellman-
Harris process at its nth jump epoch. The extinction-explosion principle for
such branching processes (see [6, Thm. (6.5.2)]) implies that Xn + Yn →∞
Px,y-a.s. on {τ =∞} for all x, y ∈ N. Now use that (h(Xn, Yn))n>0 forms a
bounded supermartingale under any Px,y and thus converges a.s. Consider
the event

E :=
{
τ =∞, lim

n→∞
Xn =∞, lim sup

n→∞
Yn <∞

}
and write

h(Xn, Yn) = 1− (1− µXn)(1− µYn).

Then we see that the integer-valued Yn must a.s. eventually stay constant
on E. But this is impossible because at each birth epoch Yn changes by +1
with probability 1

2 . So Px,y(E) = 0. Similarly, we find

P
(
τ =∞, lim

n→∞
Yn =∞, lim sup

n→∞
Xn <∞

)
= 0

and so Xn ∧ Yn →∞ a.s. on {τ =∞} as claimed.

4.3. Construction of harmonic functions. A central role in the present
work is played by the use of harmonic and sub(super)harmonic functions.
Indeed, the various functions that are provided in Subsection 4.1 are all
of this kind and used to get bounds for the lower and upper exponential
decay κ∗ and κ∗ of the extinction probability, respectively, which forms a
crucial tool to establish our main results. An obvious key point is that the
functions f0, f1, h, etc., and their counterparts f̂0, f̂1, ĥ, etc., are explicit
and rather simple. In this subsection, we would like to discuss some aspects
of the construction of these functions.
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Finding exact expressions for harmonic functions reveals intrinsic proper-
ties of the model at hand. For instance, harmonic functions can be used to
define martingales, which in turn yield information on the pathwise behav-
ior of the random walks. Of related interest, one may cite the constructive
theory of Lyapunov functions for nonhomogeneous random walks, see [4, 9].

Our (sub,super)harmonic functions can be interpreted both combinato-
rially and probabilistically. From a combinatorial viewpoint, they are con-
structed from classical binomial coefficients

(
x+y
x

)
and power functions µx,

µx+y, etc. On the probabilistic side, they can be interpreted as absorption
probabilities for related models (which later will appear in some coupling
arguments):

• First, f0(x, y) in (10) is the probability that the simple random walk
on the nonnegative integers with probabilities λ and λ for making a
jump to the left and right, respectively, is eventually absorbed at the
origin when starting from x+ y.

• The quantity h(x, y) in (11) is the probability that a homogeneous
random walk in the positive quadrant N2 which jumps to the four
nearest neighbors →, ↑, ← and ↓ with respective probabilities λ

2 , λ2 , λ2
and λ

2 (see right panel of Fig. 2) is eventually absorbed at the boundary
when starting from (x, y), see [7, 1].

• Finally, the binomial coefficient
(
x+y
x

)−1
has a simple interpretation,

since the probability of the path

(x, y)→ (x, y − 1)→ (x, y − 2)→ · · · → (x, 1)→ (x, 0)

is exactly ( µ
1+µ)y

(
x+y
x

)−1
. This path is the shortest one for the ran-

dom walk to get absorbed (if x < y). Notice further that this bino-
mial coefficient does respect the symmetry of the model, as obviously(
x+y
x

)−1
=
(
x+y
y

)−1
.

5. Quenched harmonic analysis. Adopting the framework of Sub-
section 2.3, we will now turn to an analysis of the model given the iid random
environment e = (e1, e2, . . .), i.e., under the probability measures P e

x,y, where
the value of en marks whether the nth jump is a birth (+1) or a death (−1).
As we explained in this subsection, the sequence (Xn, Yn)n>0 then becomes
a Markov chain with iid random transition probabilities p(x,y),(x±1,y±1)(en)
which are displayed in (9) for x, y ∈ N and p(x,0),(x,0)(en) = p(0,y),(0,y)(en) = 1
for x, y ∈ N2

0.

Put T0 := 0 and let T1 + 1, T2 + 2, . . . denote the successive epochs when
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en = −1, thus

Tn + n := inf{k > Tn−1 + n− 1 : ek = −1}

for each n > 1. Notice that all Tn are measurable with respect to e and thus
constants under any P e

x,y. Furthermore, (Tn)n>0 has iid increments χ1, χ2, . . .
under any Px,y with a geometric distribution on N0, more precisely

P(χ1 = n) = λλ
n

for n ∈ N0. Its generating function ϕ(θ) = E θχ1 equals

ϕ(θ) =
λ

1− λθ

for θ < λ
−1

, giving in particular ϕ((2λ)−1) = 2λ. As a direct consequence,
to be used later on, we note that:

Lemma 5.1. Under each Px,y, the sequence(
1

(2λ)n(2λ)Tn

)
n>0

forms a product martingale with mean 1 and almost sure limit 0.

Since absorption at the axes can clearly occur only at the Tn + n, we will
study hereafter the behavior of the subsequence

(X̂n, Ŷn)n>0 := (XTn+n, YTn+n)n>0

under P e
x,y. Recall from Subsection 2.3 the definition of the transition oper-

ators P1 and P−1.

Lemma 5.2. Put P̂n := Pχn1 P−1. Then (X̂n, Ŷn)n>0 is a nonhomoge-

neous Markov chain under P e
x,y with transition operators P̂1, P̂2, . . ., thus

P̂1 · · · P̂nf(x, y) = E e
x,yf(X̂n, Ŷn)(20)

for any x, y, n ∈ N and any nonnegative function f on N2
0.

Proof. Recalling that χ1, χ2, . . . and thus the Tn are measurable with
respect to e and that (Xn, Yn)n>0 is Markovian under Pe

x,y, we obtain

Ee
x,yf(X̂n, Ŷn) = Ee

x,yEe
x,y(f(X̂n, Ŷn)|X̂n−1, Ŷn−1) = Ee

x,yP̂nf(X̂n−1, Ŷn−1)

and then (20) upon successive conditioning.
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The following lemma provides the crucial information about the spectral
properties of P1 and P−1 with respect to the functions f0 and f1 introduced
in (10). Let us put

(21) γ :=
1− µ
1 + µ

= λ− λ = 1− 2λ ∈ (0, 1).

Lemma 5.3. For all x, y ∈ N, the following assertions hold true:

P1f0(x, y) = µf0(x, y) and P−1f0(x, y) = µ−1f0(x, y),(22)

P1f1(x, y) =
1 + µ

2
f1(x, y) =

1

2λ
f1(x, y),(23)

P−1f1(x, y) =
1− δ1(x, y)

2
(µx−1 + µx + µy + µy−1)

=
1− δ1(x, y)

2λ
f1(x, y),

(24)

where

δ1(x, y) = γ
1− µ|x−y|

1 + µ|x−y|
|x− y|
x+ y

.

Proof. We will only prove (24), for all other identities are readily checked.
Let us start by noting that, if y = x+m for some m ∈ N0, then

1

2
− x

x+ y
=

y

x+ y
− 1

2
=

m

2(x+ y)

and therefore(
1

2
− x

x+ y

)
(µx−1 + µy) +

(
1

2
− y

x+ y

)
(µx + µy−1)

=
m

2(x+ y)
µx−1(1− µm)(1− µ).

It follows that

P−1f1(x, y) =
x

x+ y
(µx−1 + µy) +

y

x+ y
(µx + µy−1)

=
1

2
µx−1(1 + µm)(1 + µ) +

m

2(x+ y)
µx−1(1− µm)(1− µ),

and with this at hand, it remains to assess for (24) that the last term in the
previous line equals

δ1(x, y)

2
(µx−1 + µx + µy + µy−1) =

δ1(x, y)

2
µx−1(1 + µm)(1 + µ)

and that m = y − x = |y − x|.
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Note that δ1(x, x) = 0 and

γ2
|x− y|
x+ y

6 δ1(x, y) 6 γ
|x− y|
x+ y

(25)

for all x, y ∈ N.

Lemma 5.4. For all n ∈ N0 and x, y ∈ N such that (x∧ y)∧ |y−x| > n,

(26)
1− an(x, y)

2λ(2λ)n
f1(x, y) 6 Pn1 P−1f1(x, y) 6

1− γ an(x, y)

2λ(2λ)n
f1(x, y),

where

an(x, y) := γ
|x− y|
x+ y + n

+ γ2
n

x+ y + n
.

Proof. We use induction over n ∈ N0. For n = 0, the result follows from

(24) and (25). Put b
(i)
n (x, y) := 1− γi an(x, y) for i ∈ N0. Assuming (26) be

true for n, we obtain for x, y ∈ N, w.l.o.g. x 6 y, such that x∧(y−x) > n+1

2λ(2λ)n Pn+1
1 P−1f1(x, y) > P1

[
b(0)n (x, y)f1(x, y)

]
=

1

2

(
b(0)n (x+ 1, y)(µx+1 + µy) + b(0)n (x, y + 1)(µx + µy+1)

)
=

1

2

(
b
(0)
n+1(x, y) +

γ2

x+ y + n+ 1

)(
µx+1 + µy + µx + µy+1

)
+

1

2

(
γ

x+ y + n+ 1

)(
µx+1 + µy − µx − µy+1

)
=

1 + µ

2

(
b
(0)
n+1(x, y) +

γ2

x+ y + n+ 1

)
(µx + µy)

− 1

2

(
γ

x+ y + n+ 1

)(
µx + µy

)
(1− µ)

=
1

2λ
b
(0)
n+1(x, y) f1(x, y)

and in exactly the same way

2λ(2λ)n Pn+1
1 P−1f1(x, y) 6 P1

[
b(1)n (x, y) f1(x, y)

]
=

1

2λ
b
(1)
n+1(x, y) f1(x, y)

which proves the assertion.
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6. Proof of Theorem 3.3. Given a sequence (Zn)n>0 of random vari-
ables, we stipulate for our convenience that its extension to the time domain
[0,∞) is defined by Zt := Zbtc for t > 0. For c > 0, let

τc := inf{n > 0 : Xn ∧ Yn 6 c},

thus τc = τbcc and τ = τ0.

The proof of Theorem 3.3 is furnished by a number of lemmata, but let us
sketch its main arguments first. In order to hit one of the axes, the random
walk (Xn, Yn)n>0, when starting at (x, x), must clearly first hit one of the
halflines

{(y, bβxc) : N 3 y > bβxc} or {(bβxc, y) : N 3 y > bβxc}

for any β ∈ (0, 1) (see Fig. 7), and the probability for this to happen, that
is for τβx to be finite, can easily be bounded by 2µ(1−β)x, see Lemma 6.1.
On the other hand, it can further be shown for sufficiently large x that
|Xτβx −Yτβx | is not too small with very high probability, namely larger than
αx for some α > 0, see Lemma 6.2. With the help of the strong Markov

property and the obvious fact that (τβx, Xτβx)
d
= (τβx, Yτβx) under Px,x, it

then follows that

qx,x 6 2

∫
{τβx<∞,Xτβx=bβxc,Yτβx−Xτβx>αx}

qbβxc,Yτβx dPx,x + r(x)

6 Px,x(τβx <∞) sup
y>(1+α)bβxc

qbβxc,y + r(x)

6 2µ(1−β)x sup
y>(1+α)bβxc

qbβxc,y + r(x)

where r(x) is a remainder of order o(µ(1+ε)x) for some ε > 0. The proof of
the theorem is finally completed by showing that, for some ν < µ,

sup
y>(1+α)x

qx,y = o(νx)

as x→∞, see Lemma 6.5. This is actually accomplished by choosing β and
then α in a appropriate manner.

Lemma 6.1. For all x, y ∈ N and c ∈ [0, x ∧ y),

Px,y(τc <∞) 6 f1(x− c, y − c) 6 2µ(x−c)∧(y−c).

In particular

(27) Px,y(τβx <∞) 6 2µ(1−β)x

if x 6 y and β ∈ (0, 1).
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•
(bβxc,bβxc)

(x,x)•

Fig 7. In the event of absorption at one of the axes, the walk (Xn, Yn)n>0, when starting
at (x, x), must necessarily pass through one of the halflines emanating from (bβxc, bβxc)
for β ∈ (0, 1). A typical absorbed trajectory can thus be split in two parts: a first part prior
to τβx (in blue) and a final part (in red) which in fact may return to the inner cone before
absorption.

Proof. Let c be an integer. By Lemma 4.5, (h(Xτc∧n, Yτc∧n))n>0 forms
a bounded nonnegative supermartingale, and it converges Px,y-a.s. to

h(c, Yτc)1{τc<∞,Xτc=c} + h(Xτc , c)1{τc<∞,Yτc=c} > µc 1{τc<∞}

because, by Proposition 3.5, Xn ∧ Yn → ∞ a.s. on {τc = ∞} ⊂ {τ = ∞}.
Consequently,

µc Px,y(τc <∞) 6 lim
n→∞

Ex,yh(Xτc∧n, Yτc∧n) 6 h(x, y)

and therefore

Px,y(τc <∞) 6 µ−c h(x, y) 6 f1(x− c, y − c) 6 2µ(x−c)∧(y−c)

for all x, y ∈ N and c ∈ [0, x ∧ y), as claimed.

Lemma 6.2. Given any β ∈ (0, 1) and α > 0,

Px,x(|Xτβx − Yτβx | 6 αx) 6 µ(2−2β−α)x

for all x ∈ N.

Proof. The Optional Sampling Theorem provides us with

µ2x = Ex,xµXτβx+Yτβx > µ2βx Ex,xµXτβx∨Yτβx−Xτβx∧Yτβx ,

thus

µ2(1−β)x > Ex,xµXτβx∨Yτβx−Xτβx∧Yτβx
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> µαx Px,x(Xτβx ∨ Yτβx −Xτβx ∧ Yτβx 6 αx)

= µαx Px,x(|Xτβx − Yτβx | 6 αx)

which immediately implies the assertion.

Recall that Tn + n denotes the epoch at which the nth death (downward
step) occurs, so that Tn provides the number of births (upward steps) until
then. Since any birth is equally likely to be of phenotype A (upward jump
in the x-coordinate) and B (upward jump in the y-coordinate), the total
number of A-type births until Tn + n, say Sn, has a binomial distribution
with parameters Tn and 1

2 under any P e
x,y, and the increments Sk−Sk−1 are

independent and binomial with parameters χk and 1
2 . Notice also that

Ŷn − X̂n = YTn+n −XTn+n

> y − x− n+ Tn − 2Sn > y − x− n− Tn
(28)

for all n ∈ N, a fact to be used in the proof of the subsequent lemma.

Lemma 6.3. For any β > 0, there exists ξ > µ−1 large enough such that

P (Tβx > ξβx) = o(µ(1+2β)x)(29)

and, for any α > (ξ + 2)β,

sup
y>(1+α)x

Px,y
(

min
16n6βx

(Ŷn − X̂n) 6 βx

)
= o(µ(1+β)x)(30)

as x→∞.

Proof. Fix β > 0. Since, for each n ∈ N, Tn is the sum of n iid geometric
random variables with parameter λ (thus mean λ/λ = µ−1) under any Px,y,
Cramér’s theorem implies that, for sufficiently large ξ > µ−1 and n→∞,

P
(
Tn
n
> ξ

)
= o(µ(2+1/β)n)

and thus (29) holds true as x → ∞. Now pick an arbitrary α > (ξ + 2)β.
Using (28), we then obtain for 1 6 n 6 βx and y > (1 + α)x

Px,y
(
Ŷn − X̂n 6 βx

)
6 P (y − x− n− Tn 6 βx)

6 P (Tn > (α− 2β)x)

6 P (Tβx > ξβx)



26 G. ALSMEYER AND K. RASCHEL

and thereupon with the help of (29)

Px,y
(

min
16n6βx

(Ŷn − X̂n) 6 βx

)
6

∑
16n6βx

Px,y
(
Ŷn − X̂n 6 βx

)
6 βxP (Tβx > ξβx) = o(µ(1+β)x)

as x→∞.

Lemma 6.4. Let β ∈ (0, 1), ξ > 0, α > (ξ+ 3)β, y = (1 +α)x, γ defined
in (21), and put n(x) := bβxc+1. Then there exists θ = θ(α, β, γ, ξ) ∈ (0, 1)
such that, for all sufficiently large x,

sup
16n6n(x)

(2λ)n(2λ)Tn

θn
P̂1 · · · P̂nf1(x, y) 6 f1(x, y) P e

x,y-a.s.

on the event

Eβ,ξ :=

{
min

16n6n(x)
|X̂n − Ŷn| > βx, Tn(x) 6 ξn(x)

}
,

in particular

P̂1 · · · P̂n(x)f1(x, y) 6
θβx

(2λ)n(x)(2λ)Tn(x)
f1(x, y) P e

x,y-a.s.

Proof. Recall from Lemma 5.4 the definition of an(x, y) and observe
that P e

x,y-a.s. on Eβ,ξ

aχn(X̂n−1, Ŷn−1) > γ
|X̂n−1 − Ŷn−1|

X̂n−1 + Ŷn−1 + χn

= γ
|X̂n−1 − Ŷn−1|

x+ y + Tn + n− 1
>

γβ

2 + α+ β(1 + ξ)

for all n = 1, . . . , n(x)− 1. With this at hand, we use Lemmata 5.2 and 5.4
to infer for such n

P̂1 · · · P̂nf1(x, y) = Ee
x,yP̂n(X̂n−1, Ŷn−1)

6 Ee
x,y

[
1− γ aχn(X̂n−1, Ŷn−1)

2λ(2λ)χn
f1(X̂n−1, Ŷn−1)

]

6
1

2λ(2λ)χn

(
1− γ2β

2 + α+ β(1 + ξ)

)
Ee
x,yf1(X̂n−1, Ŷn−1)
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=
1

2λ(2λ)χn

(
1− γ2β

2 + α+ β(1 + ξ)

)
P̂1 · · · P̂n−1f1(x, y) P e

x,y-a.s.

Upon setting

(31) θ := 1− γ2β

2 + α+ β(1 + ξ)

and iteration, the assertions now easily follow.

Lemma 6.5. Let Eβ,ξ be the set defined in Lemma 6.4. Given any β > 0,
let ξ > µ−1 be such that, by Lemma 6.3, Px,y(Ecβ,ξ) = o(x(1+β)x) as x→∞.
Then

sup
y>(1+α)x

qx,y 6 θβxµx + o(µ(1+β)x)

for θ defined in (31), α > (ξ + 2)β and all x ∈ N.

Proof. For α, β, ξ as claimed and n(x) = bβxc + 1, we obtain with the
help of the previous lemmata in combination with Lemma 5.1

qx,y 6 Ex,yh(XTn(x)+n(x), YTn(x)+n(x)) = Ex,yh(X̂n(x), Ŷn(x))

6 Ex,yf1(XTn(x)+n(x), YTn(x)+n(x)) = P̂1 · · · P̂n(x)f1(x, y)

6 Ex,y
(

1

(2λ)n(x)(2λ)Tn(x)

)
θβx f1(x, y) + Px,y(Ecβ,ξ)

6 θβx(µx + µ(1+α)x) + o(µ(1+β)x)

for all x ∈ N and y > (1 + α)x.

We are now in position to prove Theorem 3.3.

Proof of Theorem 3.3. Fix α > 0 such that, by Lemma 6.5, qx,y =
o(µ(1+ε)x) for all x ∈ N, y > (1 + α)x and some ε > 0. Then pick β ∈ (0, 1)
so small that (2 + α)β < 1− ε. Lemma 6.2 then provides us with

Px,x(|Xτβx − Yτβx | 6 βαx) 6 µ(2−β(2+α))x = o(µ(1+ε)x).

Note also that, by Lemma 6.1,

Px,y(τβx <∞) 6 2µ(1−β)x

for all x ∈ N and y > (1 + α)x. By combining these facts and using the
strong Markov property, we now obtain

qx,x =

∫
{τβx<∞}

qXτβx ,Yτβx dPx,x
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6 Px,x(|Xτβx − Yτβx | 6 βαx)

+

∫
{|Xτβx−Yτβx |>βαx,τβx<∞}

qXτβx ,Yτβx dPx,x

6 Px,x(|Xτβx − Yτβx | 6 βαx) + qβx,(1+α)βx Px,x(τβx <∞)

6 o(µ(1+ε)x) + o(µ(1+ε)βx)2µ(1−β)x = o(µ(1+εβ)x)

and this proves our assertion.

7. Proof of Theorem 3.4. Since qx,y = qy,x, it suffices to prove qx,y >
qx+1,y for all x, y ∈ N. Let (Xn, Yn)n>0 and (X ′n, Y

′
n)n>0 be two coupled

Markov chains on a common probability space (Ω,A,P) with increments
(ζn, χn) and (ζ ′n, χ

′
n), respectively, and joint canonical filtration (Gn)n>0 such

that the following conditions hold:

(C1) (X0, Y0) = (x, y) and (X ′0, Y
′
0) = (x+ 1, y).

(C2) Both chains have transition kernel P .

(C3) The two ordinary random walks

(Sn)n>0 := (Xn + Yn)n>0 and (S′n)n>0 := (X ′n + Y ′n)n>0

have the same increments ξ1, ξ2, . . ., but starting points S0 = x + y
and S′0 = x+ y + 1, thus S′n − Sn = 1 for all n ∈ N0.

(C4) The conditional laws of (ζn, χn) and (ζ ′n, χ
′
n) given ξn and Gn−1 are

specified as follows: If (Xn−1, Yn−1) = (x, y), (X ′n−1, Y
′
n−1) = (x′, y′) ∈

{(x, y + 1), (x+ 1, y)} and Sn−1 = S′n−1 − 1 = x+ y =: s, then

P((ζn, χn) = (ζ ′n, χ
′
n) = (1, 0)|ξn = 1,Gn−1) =

1

2
,

P((ζn, χn) = (ζ ′n, χ
′
n) = (0, 1)|ξn = 1,Gn−1) =

1

2
,

P((ζn, χn) = (ζ ′n, χ
′
n) = (−1, 0)|ξn = −1,Gn−1) =

x

s
∧ x′

s+ 1
,

P((ζn, χn) = (ζ ′n, χ
′
n) = (0,−1)|ξn = −1,Gn−1) =

y

s
∧ y′

s+ 1
,

P((ζn, χn) = (−1, 0), (ζ ′n, χ
′
n) = (0,−1)|ξn = −1,Gn−1)

=

(
x

s
− x′

s+ 1

)+

=
x

s(s+ 1)
1x=x′ ,

P((ζn, χn) = (0,−1), (ζ ′n, χ
′
n) = (−1, 0)|ξn = −1,Gn−1)

=

(
y

s
− y′

s+ 1

)+

=
y

s(s+ 1)
1y=y′ .
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We claim that (X ′n, Y
′
n) equals either (Xn + 1, Yn) or (Xn, Yn + 1) for all

n ∈ N0 and note that this is true for n = 0 by (C1). Assuming it be true
for all k = 0, . . . , n − 1 (inductive hypothesis) and further (Xn−1, Yn−1) =
(x, y), (X ′n−1, Y

′
n−1) = (x′, y′), the claim must be checked for (X ′n, Y

′
n) only

in the case when ξn = −1 and (ζn, χn) and (ζ ′n, χ
′
n) take different values. But

if this happens, then x = x′ leads to (Xn, Yn) = (x − 1, y) and (X ′n, Y
′
n) =

(x′, y′−1) = (x, y), while y = y′ leads to (Xn, Yn) = (x, y−1) and (X ′n, Y
′
n) =

(x′ − 1, y′) = (x, y). This proves our claim. Finally, recalling that

τ = inf{n > 0 : Xn = 0 or Yn = 0}

and defining τ ′ accordingly for the primed chain, we conclude τ 6 τ ′ and
thus

qx,y = P(τ <∞) > P(τ ′ <∞) = qx+1,y.

8. The absorption probabilities for IBCS and BUTS. As pointed
out in the Introduction, our model constitutes a hybrid of the two homoge-
neous models IBCS (independent branching with complete segregation) and
BUTS (branching with unbiased type selection) for which one-step tran-
sition probabilities of the associated random walk (Xn, Yn)n>0 are shown
in Fig. 2. Homogeneity refers to the fact that these transition probabilities
are the same regardless of whether a birth or a death of an individual has
occurred.

Lemma 8.1. Let (Xn, Yn)n>0 be a random walk on N2
0 which is absorbed

at the axes and has transition probabilities

p(x,y),(x+1,y) = λ p+(x, y), p(x,y),(x,y+1) = λ p+(x, y),

p(x,y),(x−1,y) = λ p−(x, y), p(x,y),(x,y−1) = λ p−(x, y)
(32)

for (x, y) ∈ N2 and arbitrary functions p± : N2 → (0, 1). Then the function
h in (11) is harmonic for the associated transition operator P .

The proof of this lemma is very easy and therefore omitted.

Proposition 8.2. Given any of the 2-type population models IBCS or
BUTS, let (Xn, Yn)n>0 be the random walk describing the subpopulation sizes
for the two types and, as usual, qx,y the probability of absorption at one of
the axes given X0 = x and Y0 = y. Then

qx,y = h(x, y)

for all x, y ∈ N0.
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Proof. By Lemma 8.1 in combination with Lemma 4.1, the assertion
follows if we can verify that (Xn, Yn)n>0 is standard, i.e., Xn ∧ Yn → ∞
a.s. on {τ = ∞}, where τ denotes the absorption time. For the BUTS
model, this follows in the same manner as for our hybrid model (see proof
of Proposition 3.5), but for the IBCS model, we need an extra argument.
To this end, observe that (Xn, Yn)n>0 may be obtained as the jump chain
of a 2-type Bellman-Harris process (NA

t , N
B
t )t>0 with independent compo-

nents, the latter being both single-type supercritical Bellman-Harris pro-
cesses. Now, if neither Xn nor Yn ever hits the axis, then the same must
hold for NA

t and NB
t , giving

lim
n→∞

Xn ∧ Yn = lim
t→∞

NA
t ∧NB

t = ∞ a.s.

by the extinction-explosion principle.
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Orléans-Ring 10
D-48149 Münster, Germany
E-mail: gerolda@uni-muenster.de

Kilian Raschel
CNRS
Institut Denis Poisson
Université de Tours
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