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On the Statistical Leak of the

GGH13 Multilinear Map and some Variants

Léo Ducas1? and Alice Pellet--Mary2??

1 Cryptology Group, CWI, Amsterdam, The Netherlands
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France.

Abstract. At EUROCRYPT 2013, Garg, Gentry and Halevi proposed a candidate construc-
tion (later referred as GGH13) of cryptographic multilinear map (MMap). Despite weaknesses
uncovered by Hu and Jia (EUROCRYPT 2016), this candidate is still used for designing ob-
fuscators.

The naive version of the GGH13 scheme was deemed susceptible to averaging attacks, i.e., it
could su�er from a statistical leak (yet no precise attack was described). A variant was there-
fore devised, but it remains heuristic. Recently, to obtain MMaps with low noise and modulus,
two variants of this countermeasure were developed by Döttling et al. (EPRINT:2016/599).

In this work, we propose a systematic study of this statistical leak for all these GGH13
variants. In particular, we con�rm the weakness of the naive version of GGH13. We also show
that, among the two variants proposed by Döttling et al., the so-called conservative method
is not so e�ective: it leaks the same value as the unprotected method. Luckily, the leak is
more noisy than in the unprotected method, making the straightforward attack unsuccessful.
Additionally, we note that all the other methods also leak values correlated with secrets.

As a conclusion, we propose yet another countermeasure, for which this leak is made unrelated
to all secrets. On our way, we also make explicit and tighten the hidden exponents in the size
of the parameters, as an e�ort to assess and improve the e�ciency of MMaps.

Keywords: Cryptanalysis, Multilinear Maps, Statistical Leaks, Ideal Lattices.

1 Introduction

Since their introduction in cryptographic constructions by [Jou00], cryptographic bilinear maps, as
provided by pairings on elliptic curves, have enabled the construction of more and more advanced
cryptographic protocols, starting with the seminal Identity-Based Encryption scheme of Boneh and
Franklin [BF01]. More abstractly, a group equipped with an e�cient bilinear map, and on which
some discrete-logarithm like problems are hard (such as the bilinear-Di�e-Hellmann problem),
provides foundation for a whole branch of cryptography. A natural open question is whether it can
be generalized to degrees higher than 2 while ensuring hardness of generalizations of the Di�e-
Hellmann problem. Such hypothetical objects are referred to as Cryptographic Multilinear Maps
(or, for short, MMaps).

In 2013, Garg, Gentry and Halevi [GGH13] proposed a candidate construction for MMaps related
to ideal-lattices, yet without a clearly identi�ed underlying hard lattice problem. It di�ers from the
pairing case in the sense that elements in the low-level groups have no canonical representation, and
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that the representation is noisy. Yet, these di�erences are not too problematic on the functionality
front.

On the security front, it rapidly turned out that this construction was insecure, at least in its
original set-up. In particular, the natural one-round k-partite protocol based on this MMap was
broken by the zeroizing attack of Hu and Jia [HJ16]: this construction fails to securely mimic the
tripartite protocol of [Jou00]. More generally, the mere knowledge of a non-trivial representative of
0 tends to make constructions based on this MMap insecure. Orthogonally, it has been discovered
that solving over-stretched versions of the NTRU problem (whose intractability is necessary for the
security of the GGH MMap) was signi�cantly easier than previously thought, due to the presence
of an unusually dense sublattice [ABD16,CJL16,KF17], yet this can be compensated at the cost
of increasing parameters. Also, due to recent algorithms for the Principal Ideal Problem [BS16,
BEF+17] and Short generator recovery [CGS14, CDPR16], the GGH MMap can be broken3 in
quantum polynomial time, and classical subexponential time exp(Õ(

√
n)), where n is the dimension

of the used ring.
Nevertheless, this candidate MMap was still considered in a weaker form,4 to attempt realizing

a cryptographic Grail, namely, indistinguishability obfuscation (or, for short, iO). Several iO can-
didates were broken by attacks that managed to build low-level encodings of zero even if no such
encodings were directly given (this is referred to as zeroizing attacks, see e.g. [CGH17]). To try to
capture and prevent such attacks, a Weak MMap model was devised in [MSZ16,GMM+16].

Some iO constructions come with a security proof based on assumptions in the standard
model [Lin16, Lin17, AS16], but cannot be securely instantiated with the GGH13 MMap as they
require low-level encodings of 0. Others are proved secure in a non-standard model (the Generic
MMap model [BGK+14, BR14] or the Weak MMap Model [GMM+16, DGG+16]). These models
remain not fully satisfactory, as they imply Virtual-Black-Box Obfuscation [BR14, GMM+16], a
provably impossible primitive [BGI+01]. The latest candidate of Lin and Tessaro [LT17] did escape
these pitfalls by relying on pairings, but it required special Pseudo-Random Generators that were
rapidly proved not to exist [LV17,BBKK17].

Statistical leaks in lattice-based cryptography. Early signature schemes based on lattices [GGH97,
HPS01,HHGP+03] su�ered from statistical leaks, which led to devastating attacks [GS02,NR06].
Those leaks can be �xed in a provably secure way using a Gaussian Sampling algorithm from
Klein [Kle00], as proven in [GPV08]: the samples available to the adversary are made statistically
independent from the secret key.

Similar leaks are a worry in the original construction of [GGH13], and therefore, a candidate
countermeasure was developed, making use of Klein's sampling procedure. Nevertheless, no formal
statement was made on what this countermeasure prevents: the countermeasure is heuristic. This
particular countermeasure turned out to be a hassle when considering variants of the original
scheme, as done in [DGG+16], which aims at reaching polynomially small errors and modulus �
aiming at improving both e�ciency and security of the GGH map, especially in the light of the
dense sublattice attacks [ABD16, CJL16,KF17]. Two modi�ed versions of [GGH13] are proposed
in [DGG+16], a so-called conservative one, leading to quite e�cient parameters, and a so-called
aggressive one.

Ideally, one wishes to make provable statements about those four variants, as done in other
contexts [GPV08]. Unfortunately, in the context of MMaps, it is not even clear what the statement

3 The secret value h can be recovered exactly, allowing in particular to construct zero-tester at larger levels.
4 Without providing any low-level encoding of 0, and keeping the order of the multilinear group secret.
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should exactly be. The next best guarantee is a precise understanding of what can be done from a
cryptanalytic point of view, as initiated in [GGH13].

The analysis of the leak of [GGH13] focuses on the covariance of products of encodings of zero.
One can (informally) argue that this analysis captures all the information of the leak. Indeed,
up to discretization, such a product is the product of several centered Gaussian distributions (non
necessary spherical), and such a distribution is fully identi�ed by its covariance. The countermeasure
proposed in Section 6.4 of [GGH13] attempts to make this covariance proportional to the identity
matrix (and therefore unrelated to all secrets) by sampling each element of the product according
to a spherical distribution, that is a distribution whose covariance is proportional to the identity
matrix. As we shall see, this attempt is unsuccessful, as one of the factor of the product (namely,
the one related to the zero-testing parameter) is �xed. Obtaining several independent multiples of
it, with covariance proportional to the identity matrix, then reveals an approximation of this factor.

Contributions. Our main contribution is to give a systematic study of the statistical leak in the
GGH13 scheme and its variants, in a simple framework we de�ne. We �rst suggest a common
formalism that encompasses all the variants at hand, by parametrising the sampling procedure for
encodings by an arbitrary covariance matrix. Following the nomenclature of [GGH13, DGG+16],
except for the second one that had no clear name, we consider:

1. The simplistic method: the GGH MMap without countermeasure [GGH13, Sec. 4.1]. This
method was only given for simplicity of exposition and was already highly suspected to be
insecure;

2. The exponential method:5 the GGH MMap with countermeasure [GGH13, Sec. 6.4];

3. The conservative method, proposed in [DGG+16] �which we partly revisit to tackle some of
its limitations;

4. The aggressive method, proposed in [DGG+16] �we note that this method is speci�c to the iO
construction of [DGG+16], and is not applicable to all constructions over the GGH MMap.

In order to formalize our study of the leak, we propose a simple setting of the GGH multilinear
map. Indeed, due to the attacks in presence of encodings of zero, the exact set-up for the analysis
of the leak in [GGH13] is not relevant anymore. We adjust their setting to not provide low-level
encodings of zero directly. Still, some relations between encodings are needed for the MMaps to
be non-trivial; to ensure that those relations do not allow zeroizing attacks, we provide a security
proof in the weak multilinear map model of [MSZ16,GMM+16,DGG+16]. For ease of exposure, we
restrict ourselves to degree κ = 2, yet our analysis easily extends to higher degrees.

Using this framework, we are able to analyse a particular averaging attack against the GGH
multilinear map. On the one hand, our analysis shows that Method 3 leads to the same leak as
Method 1. We also prove that with Method 1, a polynomial-time attack can be mounted using
the leak. Interestingly, it does not require the Gentry-Szydlo algorithm [GS02], unlike the approach
discussed in [GGH13, Sec. 6.3.2 and Sec. 7.6]. Nevertheless, we did not manage to extend the attack
to Method 3: while the same quantity is statistically leaked, the number of samples remains too
low for the attack to go through completely. On the other hand, we show that the statistical leak
of Method 4 is similar to the one of Method 2: perhaps surprisingly the aggressive method seems
more secure than the conservative one.

5 The naming re�ects the fact that this method leads to a modulus q which is exponential in the number
` of so-called atoms.
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Finally, having built a better understanding of which information is leaked, we devise a coun-
termeasure that we deem more adequate than all the above:

5. The compensation method.

This method is arguably simpler, and provides better parameters. More importantly, applying the
same leakage attack than above, one only obtains a distribution whose covariance is independent
of all secrets. We wish to clarify that this is in no way a formal statement of zero-knowledgedness.
The statistical attacks considered in this work are set up in a minimalistic setting, and extensions
could exist beyond this minimalistic setting. For example, one could explore what can be done by
varying the zero-tested polynomial, or by keeping certain encodings �xed between several successful
zero-tests.

As a secondary contribution, we also make explicit and tighten many hidden constants present
in the previous constructions, in an e�ort to evaluate and improve the e�ciency of GGH13-like
MMaps.

Impact. This result may be useful in pursuit of an underlying hard problem on which one could based
the GGH multilinear map. Indeed, we show here that it is possible to recover some information
about secret elements, for all the previously proposed sampling methods. Hence, an underlying
hard problem (or the security reduction) should capture this leak. This enables us to get a bit more
insight into what could be (or could not be) an underlying hard problem for the GGH map. In that
regard, �nding such a hard underlying problem could be easier with our new method, since one
speci�c leak has been sealed. Again, we do not claim that no other leaks exist.

Further, our analysis shows that the weak multilinear map model does not capture averaging
attacks. This is not surprising, as the weak multilinear map model only allows to evaluate polyno-
mials in the post-zero-test values, while we need to average on them for this attack. But proving
that averaging cannot be achieved by evaluating polynomials is not so immediate. Interestingly,
our results prove it. Indeed, using averaging techniques, we were able to mount a polynomial time
attack against our setting when using the simplistic sampling method (Method 1), but we also
proved that in the weak multilinear map model, no polynomial time attacks could be mounted.
This proves that the weak multilinear map model does not capture averaging attacks.6

Finally, our new method severely decreases the length of encodings in the GGH13 multilinear
map, which substentially contribute to their practical feasibility.

Outline of the article. In Section 2, we recall some mathematical background about cyclotomic
number �elds and statistics. We also describe the GGH multilinear map and precise the size of its
parameters. In Section 3, we describe di�erent sampling methods for the GGH multilinear map,
which come from [GGH13] and [DGG+16], using a common formalism so as to factor the later
analysis. We describe our simple setting and analyse the leak in Section 4. The security proof of
this simple setting in the weak multilinear map model is postponed in Appendix B. Finally, we
discuss the design of sampling methods in Section 5, and propose a design we deem more rational.

Acknowledgments. The authors are grateful to Alex Davidson, Nico Döttling and Damien Stehlé
for helpful discussions.

6 The precise component of the attack which is not captured by the weak multilinear map model is the
rounding operation performed at the end.
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2 Preliminaries

2.1 Mathematical Background

Rings. We denote by R the ring of integers Z[X]/(Xn + 1) for some n which is a power of 2 and
K = Q[X]/(Xn + 1) its fraction �eld. We denote by σj : K → C, with 1 ≤ j ≤ n, the complex
embeddings of K in C. We also denote KR = R[X]/(Xn + 1) the topological closure of K. For

x ∈ KR, we denote xi ∈ R its i-th coe�cient, so that x =
∑n−1
i=0 xiX

i. For g ∈ K (or even KR)
we denote gR the ideal generated by g: gR = {gx|x ∈ R}. The complex conjugation over R and K
is denoted ·̄. It is the automorphism of R sending X to X−1. We denote S the subring of KR of
symmetric elements, that is S = {x ∈ KR|x = x̄}. We set S+ the subset of symmetric positive
elements of S, de�ned by S+ = {xx̄|x ∈ KR}. Alternatively, S is the completion of the real sub�eld
of K, and S+ is (the completion of) the set of elements of K whose embeddings are all non-negative
reals. Note that S+ is closed under addition, multiplication, division, but not under subtraction.
The elements of S+ also admit one and exactly one square root (resp. k-th root) in S+, which we
denote

√
· (resp. k

√
·) . Finally, we call xx̄ ∈ S+ the autocorrelation7 of x ∈ KR, and note it A(x).

For Σ ∈ S+ it holds that A(
√
Σ) = Σ. We also de�ne equivalence over S+ up to scaling by reals,

and write x ∼ y for invertible elements x, y ∈ S+ if x = αy for some positive real α > 0. Let q
be a prime congruent to 1 modulo 2n. We denote by Rq the quotient ring R/(qR). For x ∈ R,
we denote by [x]q (or [x] when there is no ambiguity) the coset of the element x in Rq. We will
often lift back elements from Rq to R, in which case we may implicitly mean that we choose the
representative with coe�cients in the range [−q/2, q/2]. To avoid confusion, we will always note
x−1 for the inversion in Rq, and keep the fraction symbols 1/x and 1

x for inversion in K and KR.

Geometry. Because we work in the ring Z[X]/(Xn + 1), the canonical geometry of the coe�cients
embeddings is equivalent, up to scaling, to the geometry of the Minkowski embeddings. We stick
with the former, following the literature on multilinear maps. More precisely, the inner product of
two elements x, y ∈ K is de�ned by 〈x, y〉 =

∑
xiyi. The Euclidean norm (or `2-norm) is de�ned

by ‖x‖ = 〈x, x〉. The `∞-norm is noted ‖x‖∞ = max |xi|.
We recall the following inequalities:

‖xy‖ ≤
√
n · ‖x‖ · ‖y‖ (1)

‖x‖∞ ≤ ‖x‖ ≤
√
n · ‖x‖∞ (2)

‖x‖2 ≤ ‖xx̄‖∞ (3)

‖x̄‖ = ‖x‖ and ‖x̄‖∞ = ‖x‖∞. (4)

Statistics. We denote by Pr[E] the probability of an event E. For a random variable x over KR,
we denote by E[x] the expectation of x, and by V[x] = E[xx̄] − E[x]E[x̄] its variance. It should be
noted that V[x] ∈ S+ for any random variable x over KR. A random variable x is said centered if
E[x] = 0, and isotropic if V[x] ∼ 1. We recall Hoe�ding's inequality.

Theorem 1 (Hoe�ding's inequality). Let Y1, · · · , Ym be independent random variables in R
with the same mean µ ∈ R and such that |Yi| ≤ B for all i's. Then for all t > 0,

Pr

[∣∣∣∣∣ 1

m

m∑
i=0

Yi − µ

∣∣∣∣∣ ≥ t
]
< e−

2mt2

B2 .

7 In an algebraic context, this would be more naturally described as the norm of x relative to the maximal
real sub�eld of K, yet for our purposes it is more adequate to use the vocabulary of statistics.
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Hoe�ding's inequality, as given above, applies to random variables in R. In this article, we will be
interested in random variables in R. We will then see our elements in R as vectors in Rn and apply
Hoe�ding's inequality coe�cient-wise.

Corollary 1 (Hoe�ding's inequality in R). Let Y1, · · · , Ym be independent random variables
in R with the same mean µ ∈ KR and such that ‖Yi‖∞ ≤ B for all i's. Let ε > 0, then

Pr

[∥∥∥∥∥ 1

m

m∑
i=0

Yi − µ

∥∥∥∥∥
∞

≥ B
√

lnn− ln ε

2m

]
< ε.

Proof. For 1 ≤ i ≤ m and 0 ≤ j ≤ n− 1, de�ne Yi,j to be the j-th coe�cient of the variable Yi ∈ R
and µj to be the j-th coe�cient of µ. For a �xed j, the variables Yi,j (where only i varies) are
independent random variables in R of mean µj . Moreover, as ‖Yi‖∞ ≤ B for all i's, the coe�cients
Yi,j are also bounded by B. We can then apply Hoe�ding's inequality (Theorem 1) to them. We
obtain

Pr

[∥∥∥∥∥ 1

m

m∑
i=0

Yi − µ

∥∥∥∥∥
∞

≥ B
√

lnn− ln ε

2m

]

= Pr

[
∃j :

∣∣∣∣∣ 1

m

m∑
i=0

Yi,j − µj

∣∣∣∣∣
∞

≥ B
√

lnn− ln ε

2m

]

≤
n−1∑
j=0

Pr

[∣∣∣∣∣ 1

m

m∑
i=0

Yi,j − µj

∣∣∣∣∣
∞

≥ B
√

lnn− ln ε

2m

]

<

n−1∑
j=0

e−
2mB2(lnn−ln ε)

2B2m =

n−1∑
j=0

ε

n
= ε.

We used the union bound and Hoe�ding's inequality with t = B
√

lnn−ln ε
2m . ut

Discrete Gaussians. For Σ ∈ S+ and x0 ∈ KR, we de�ne the Gaussian weight function on KR as

ρ√Σ,x0
: x 7→ exp

(
−1

2

∥∥∥∥x− x0√
Σ

∥∥∥∥2
)
.

For any shifted ideal I + c, I ⊂ K, c ∈ KR, we de�ne the discrete Gaussian distribution over I + c
of parameter

√
Σ, centered in x0 by:

∀x ∈ I + c, DI+c,
√
Σ,x0

(x) =
ρ√Σ,x0

(x)

ρ√Σ,x0
(I + c)

.

For concision, we write DI+c,
√
Σ instead of DI+c,

√
Σ,0 and ρ√Σ instead of ρ√Σ,0.

Theorem 2 (Reformulation of [GPV08, Thm 4.1.]). There exists a PPT algorithm that given
g ∈ R and a parameter Σ such that ‖g/

√
Σ‖ ≤ o(1/

√
log n), outputs x from a distribution negligibly

close to DgR+c,
√
Σ.
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This reformulation simply relies on the identity DgR+c,
√
Σ =

√
Σ
σ ·D(gR+c)/

√
Σ,σ. We also recall that,

above the smoothing parameter [MR04], a discrete Gaussian resembles the continuous Gaussian, in
particular it is almost centered at 0, and of variance almost Σ.

Lemma 1. For any g ∈ K, Σ ∈ S+, c ∈ KR such that ‖g/
√
Σ‖ ≤ o(1/

√
log n), if x← DgR+c,

√
Σ,

then ‖E[x]‖ ≤ ε · ‖
√
Σ‖ and ‖V[x]−Σ‖ ≤ ε · ‖Σ‖ for some negligible function ε(n).

The proof of this result, using [MR04, Lemma 4.2], can be found in Appendix A.

2.2 The GGH13 multilinear map

We describe in this section the GGH13 multilinear map [GGH13], in its asymmetric setting. The
GGH13 multilinear map encodes elements of a ring of integers R, modulo a secret small element
g ∈ R. More concretely, an authority generates the following parameters:

• an integer n which is a power of 2 (serving as the security parameter).

• a (small) element g in R. We note I = gR the ideal generated by g in R.

• a (large) positive integer q such that q ≡ 1 mod 2n. Originally, q was chosen exponentially
large in n [GGH13], but variants were proposed for polynomially sized q [LSS14,DGG+16].

• ` invertible elements [zi] ∈ R×q , for 1 ≤ i ≤ `, chosen uniformly at random in R×q .

• a zero-testing parameter [pzt] = [hz∗g−1] where [z∗] = [
∏

1≤i≤` zi] and h is a random element
in R, generated according to a Gaussian distribution of standard deviation approximately

√
q.

We detail in Section 2.2 the size of the parameters described above (we will chose them to ensure
the correctness of the scheme). The elements n, q and pzt are public while the parameters h, g and
the zi's are kept secret.

Encoding of an element. The GGH13 multilinear map allows to encode cosets of the form a+ I
for some element a in R. Let v ∈ {0, 1}` be a vector of size `. An encoding of the coset a + I at
level v is an element of Rq of the form

u =
[
(a+ rg) · z−1v

]
where [zv] = [

∏
i,v[i]=1 zi] and a + rg is a small element in the coset a + I. We call v the level of

the encoding. We abuse notation by saying that u is an encoding of a (instead of an encoding of
the coset a+ I).

An encoding generated by the authority is called a fresh encoding, by opposition to encodings
that are obtained by adding or multiplying other encodings. The precise distribution of a+ rg for
a fresh encoding will be a discrete Gaussian distribution over the coset a+ I, but not necessarily a
spherical one: a+ rg ← Da+I,

√
Σv

. The shape Σv of this Gaussian is essentially what distinguishes
the variants that we will discuss in Section 3.

Adding and multiplying encodings. If u1 and u2 are two encodings of elements a1 and a2 at
the same level v then u1 + u2 is an encoding of a1 + a2 at level v.

If u1 and u2 are two encodings of elements a1 and a2 at levels v and w with v[i] ·w[i] = 0 for
all 1 ≤ i ≤ `, then u1 · u2 is an encoding of a1 · a2 at level v + w (where the addition is the usual
addition on vectors of size `).
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Zero-testing. We denote by v∗ = (1, . . . , 1) the maximum level of an encoding. The zero testing
parameter allows us to test if an encoding u at level v∗ is an encoding of zero, by computing

[w] = [u · pzt].

If w is small compared to q (the literature usually requires its coe�cients to be less than q3/4), then
u is an encoding of zero. Otherwise, it is not.

Size of the parameters and correctness. We de�ne Q such that q = nQ and L such that ` = nL

(the elements Q and L are not necessarily integers). The bounds below on the size of g and h come
from [GGH13]. The secret generator g is sampled so that:

‖g‖ = O(n), ‖1/g‖ = O(n2). (5)

Remark. There seems to be some inconsistencies in [GGH13] about the size of g, which is on
page 10 sampled with width σ = Õ(

√
n), while on page 13 the width σ is set to

√
nλ to ensure the

smoothing condition σ ≥ η2−λ(Zn) (where λ = O(n) denote the security parameter). Yet, according
to [MR04, Lemma 3.3], it holds that η2−λ(Zn) ≤ O(

√
λ+ log n), so σ = O(

√
n) is su�cient, and we

do have ‖g‖ ≤ O(n) with overwhelming probability by [MR04, Lemma 4.4].

The numerator c = a+ rg of a fresh encoding of a+ I at level v is sampled such that

‖c‖ = Θ(nγ+η·‖v‖1+νL), (6)

where γ, η and ν are positive reals, and depend on the sampling method, such as the ones proposed
in [DGG+16] (depending on the method, η and ν may be zero). We describe later the di�erent
sampling methods and the values of γ, η and ν associated to each method. When we do not need
to focus on the dependence on ‖v‖1 and L, we just call E := Θ(nγ+η·‖v‖1+νL) the bound above.
For each sampling method described below, we choose this bound to be as small as possible under
the speci�c constraints that will arise with the sampling method.

The mildly large element h is sampled so that

‖h‖ = Θ(
√
nq). (7)

Remark. In the second variant proposed in [GGH13, Section 6.4] to try to prevent averaging attacks,
the authors generate h according to a non spherical Gaussian distribution. However, as h is sampled
only once, its distribution does not matter for the attack we analyze in this article. This is why we
only specify here the size of h, and not its distribution.

In the following, we will be interested in the case where we are provided with fresh encodings at a
somewhat high level, and we can create encodings at maximum level v∗ by multiplying just a small
number of fresh encodings (namely κ). This is what motivates the condition given here to ensure
correctness of the zero-testing procedure. Correctness of zero-testing a homogeneous polynomial of
degree κ, whose absolute sum of the coe�cients is bounded by nB and evaluated in fresh encodings,
is guaranteed if nB · ‖hg

∏κ
i=1 ci‖ ≤ q3/4. It is then su�cient to have

B +
κ+ 1

2
+
Q+ 1

2
+ 2 + κ(γ + νL) + η` ≤ 3

4
Q. (8)
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The term κ+1
2 appears from applying inequality (1) κ + 1 times. One should also note that∑κ

i=1 ‖vi‖1 = ‖v∗‖1 = `, because we can only zero test at level v∗ (where vi is the level of
encoding ci). More compactly, correctness holds if:

B + 3 + κ(1/2 + γ + νL) + η` ≤ Q/4. (9)

In our simple setting of the GGH multilinear map de�ned in Section 4.1, we will only query
the zero-testing procedure on encodings of this form, with κ = 2 and B = log(m)/ log(n), for some
constant m we will de�ne later. Hence, taking 4 + 2γ + 2νL + η` + log(m)/ log(n) ≤ Q/4 will be
su�cient in our setting to ensure correctness of the zero-testing procedure.

Remark. We note that the bound q3/4 for positive zero-tests is somewhat arbitrary and could very
well be replaced by q/4, allowing to square-root the parameter q. Indeed, the probability of a false
positive during zero-testing would remain as small as 2−n. This would have a serious impact on
concrete e�ciency and security.

3 Sampling methods

We describe in this section di�erent sampling methods that can be used to generate the fresh
encodings of the GGH multilinear map and we give the values of γ, η and ν that correspond to
these methods. As said above, we will be interested in cases where (at least some of) the fresh
encodings have a somewhat high degree and we just have to multiply a constant number of them
(say 2) to obtain an encoding at maximal level v∗. We denote by A the set of �atoms�, that is the
set of levels v ∈ {0, 1}` at which we want to encode fresh encodings. In our simple setting of the
GGH multilinear map (see Section 4.1 for a full description of our setting), we will chose A to be
the set of levels v ∈ {0, 1}` that have weight exactly 1 or `−1, where the weight of v is the number
of its non-zero coe�cients. For all v ∈ A, we denote by ṽ = v∗ − v the complement of v. We note
that A is closed by complement.

In all the following sampling methods except the �rst one, one chooses a representative zv ∈ R of
[zv] ∈ Rq for all v ∈ A. This representative will not necessarily be the canonical one, with coe�cients
in [−q/2, q/2]. Then, we will take Σv = σ2

vzv z̄v, with σv = Θ(n2‖1/zv‖). Using Inequalities (3)
and (4), we can see that ‖1/

√
Σv‖ ≤ 1/σv ·n1/4 · ‖1/zv‖. Hence, with our choice of σv and the fact

that ‖g‖ = O(n), we obtain∥∥∥∥ g√
Σv

∥∥∥∥ ≤ √n · ‖g‖ · ∥∥∥∥ 1√
Σv

∥∥∥∥ = O

(
1

n1/4

)
= o

(
1√

log n

)
.

We can therefore apply Theorem 2 to sample the numerators of fresh encodings at level v,
according to a Gaussian distribution of parameter Σv. Using tail-cut of Gaussian distributions,
we have that if c is the numerator of a fresh encoding, then ‖c‖ ≤ n‖

√
Σv‖ ≤ n1.5σv‖zv‖ with

overwhelming probability. This means that we can take

E ≤ Θ(n3.5 · ‖1/zv‖ · ‖zv‖). (10)

Hence, in the following methods (except the simplistic one), we will focus on the size of ‖1/zv‖ ·
‖zv‖ to get a bound on the value of E.

Remark. Inequality (10) above is not tight. We could at least improve it to E ≤ Θ(n3+ε · ‖1/zv‖ ·
‖zv‖) for any ε > 0, with the same reasoning. This ensures statistical closeness to the desired dis-
tribution up to exp(−n2ε). Considering that there are already classical attacks in time exp(Õ(

√
n))

(namely, using [CDPR16,BEF+17] to recover h from the ideal hR), one may just choose ε = 1/4.
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3.1 The simplistic method

The simplistic method consists in always choosing Σv ∼ 1, independently of v and zv. This is done
by applying Klein's algorithm [Kle00], and requires for correctness [GPV08, Thm 4.1] that Σv = σ2

for a positive scalar σ ∈ R, where σ ≥ ‖g‖ · ω(
√

log n). So by taking σ = Θ(n1+ε) with ε > 0, one
may have E = Θ(

√
nσ) = Θ(n1.5+ε), that is γ = 1.5 + ε and η = ν = 0.

This method was deemed subject to averaging attacks and hence less secure than the following
one in [GGH13], but the authors claim that their attack attempts failed because all recovered
elements were larger that

√
q, and that averaging attacks would need super-polynomially many

elements.8 We explicit an attack, and will show that this attack is possible even for exponential q,
as long as Eκ remains polynomial: in other words, the presence of the mildly large factor h (of size√
q) can be circumvented.

3.2 The exponential method

We present here the countermeasure of [GGH13, Sec. 6.4], generalized to multi-dimensional universe,
as done in [DGG+16, Sec. 2.1]. For 1 ≤ i ≤ `, set zi to be the canonical representative of [zi] in R
(with coe�cients in the range [−q/2, q/2]). Using rejection sampling when choosing zi, assume that
‖zi‖ · ‖1/zi‖ ≤ Z; this is e�cient for Z as small as n5/2 using [DGG+16], and can even be improved
to Z = n3/2 using Lemma 3 below and its corollary.

For v in A, set zv =
∏
zvii over R. Recall that Inequality (10) gives us: E ≤ Θ(n3.5‖1/zv‖·‖zv‖).

But we have ‖zv‖ ≤ n(‖v‖1−1)/2
∏
i∈v ‖zi‖ and ‖1/zv‖ ≤ n(‖v‖1−1)/2

∏
i∈v ‖1/zi‖. Hence we can take

E = Θ(n2.5+‖v‖1 · Z‖v‖1) = Θ(n2.5+2.5‖v‖1).

This means that we have γ = 2.5, η = 2.5 and ν = 0.
Correctness is guaranteed for q ≥ nΩ(`) (because η 6= 0), and because ` is much larger than

the constant degree κ in [DGG+16], this is not a satisfying solution, as we aim at decreasing q to
polynomial. Two alternatives (conservative and aggressive) are therefore developed in [DGG+16].

3.3 The conservative method [DGG+16]

The �rst alternative suggested is to do as above, but reducing the zv modulo q, that is, set zv to
be the representative of [

∏
zvii ] with coe�cients in [−q/2, q/2]. One then ensures, by rejection of all

the zi's together, that ‖zv‖ · ‖1/zv‖ ≤ n2.5 for all v ∈ A. This leads to E = Θ(n3.5 · n2.5) = Θ(n6)
(i.e. γ = 6, η = ν = 0) and therefore allows correctness for q as small as nO(κ), which is polynomial
for constant degree κ.

Using [DGG+16, Lemma 8] restated below, the authors conclude that this method is quite
ine�cient because for the above bound to hold simultaneously for all v ∈ A with good probability
requires increasing n together with `. Indeed, using Lemma 2, we can bound the probability that
one of the zv does not satisfy ‖zv‖ · ‖1/zv‖ ≤ n2.5 by 2|A|/n = 4`/n. So if we want this probability
to be small (say less than 1/2) in order for the sampling procedure to be e�cient, we should increase
n with `.
8 Recall that the original proposal was setting E and therefore q to be super-polynomial even for bounded
degree ` because of the drowning technique for publicly sampling encodings. Since then, attacks using
encodings of zero [HJ16,CGH+15,MSZ16] have restricted encodings to be private, allowing polynomially
large E.
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Lemma 2 (Lemma 8 from [DGG+16]). Let [z] be chosen uniformly at random in Rq and z
be its canonical representative in R (i.e. with coe�cients in [−q/2, q/2]). Then it holds that

Pr
[
‖1/z‖ ≥ n2/q

]
≤ 2/n.

In the following section, we revisit the conservative method by generalizing this lemma.

3.4 The conservative method revisited

In the following lemma, we introduce an extra degree of freedom c compared to the lemma of [DGG+16],
but also improve the upper bound from O(n1−c) to O(n1−2c).

Lemma 3. Let [z] be chosen uniformly at random in Rq and z be its representative with coe�cients
between −q/2 and q/2. Then, for any c ≥ 1, it holds that

Pr [z = 0 ∨ ‖1/z‖ ≥ nc/q] ≤ 4/n2c−1.

Corollary 2. Let [z] be chosen uniformly at random in R×q and z be its representative with coe�-
cients between −q/2 and q/2. Then, for any c ≥ 1, it holds that

Pr [‖1/z‖ ≥ nc/q] ≤ 8/n2c−1.

We can use this corollary to compute the probability that one of the zv does not satisfy ‖1/zv‖ ≤
nc/q when the [zi]'s are independent and chosen uniformly at random in R×q . Indeed, the [zv]'s are
uniform in R×q because they are product of uniform invertible elements, and, by union bound, we
have

Pr [∃v ∈ A s.t. ‖1/zv‖ > nc/q] ≤
∑
v∈A

Pr [‖1/zv‖ > nc/q]

≤ 8|A|
n2c−1

.

If we want this probability to be less than 1/2, in order to re-sample all the zi's only twice on
average, we should take

|A| ≤ n2c−1

16
. (11)

But we also have ‖zv‖ ≤
√
n‖zv‖∞ ≤

√
nq, hence ‖1/zv‖ · ‖zv‖ ≤ nc+0.5. In order to minimize

E, we wish to minimize c, under (11). By taking the minimal value of c that satis�es this constraint,
and recalling that |A| = 2`, we obtain

E = Θ(n4.5+L/2).

This means that γ = 4.5, ν = 0.5 and η = 0. This conservative method revisited is the same as
the original one, except that we improve on the encodings size bound E.9 In the following, we will
then only focus on the conservative method revisited and not on the original one.

9 We also change a bit the point of view by �xing n �rst and then obtaining an upper bound on ` (which will
appear because ν 6= 0 in E), while the authors of [DGG+16] �rst �x ` and then increase n consequently.
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Proof (Proof of Lemma 3). The proof of this lemma uses the same ideas as the one of [SS13, Lemma
4.1], but here, the element z is sampled uniformly modulo q instead of according to a Gaussian
distribution. Let [z] be chosen uniformly at random in Rq and z be its representative with coe�cients
between −q/2 and q/2. Recall that we denote σj : K → C the complex embeddings of K in C, with
1 ≤ j ≤ n. We know that the size of z is related to the size of its embeddings. Hence, if we have
an upper bound on the |σj(1/z)|, we also have an upper bound on ‖1/z‖. Moreover, the σj 's are
morphisms, so σj(1/z) = 1/σj(z), and it su�ces to have a lower bound on |σj(z)|.

Let j ∈ {1, · · · , n}, there exists a primitive 2n-th root of unity ζ such that

σj(z) =

n−1∑
i=0

aiζ
i,

where the ai's are the coe�cients of z, and so are sampled uniformly and independently between
−q/2 and q/2. As ζ is a primitive 2k-th root of unity for some k, there exists i0 such that ζi0 = I,
where I is a complex square root of −1. So we can write

σj(z) = a0 + Iai0 + z̃,

for some z̃ ∈ C that is independent of a0 and ai0 . Now, we have that

Pr
[
|σj(z)| <

q

nc

]
= Pr

[
a0 + Iai0 ∈ B(−z̃, q

nc
)
]

≤
Vol(B(−z̃, qnc ))

q2

≤ 4

n2c
,

where B(−z̃, q/nc) is the ball centered in −z̃ of radius q/nc. A union bound yields that

Pr
[
∃j, |σj(z)| <

q

nc

]
≤ n · 4

n2c
=

4

n2c−1
.

Which in turns implies

Pr

[
∀j,

∣∣∣∣σj (1

z

)∣∣∣∣ ≤ nc

q

]
≥ 1− 4

n2c−1
.

To complete the proof, we use the fact that for cyclotomic �elds of power-of-two order, we have
‖1/z‖ ≤ maxj(|σj(1/z)|). This gives the desired result. ut

Proof (Proof of Corollary 2). First, note that sampling [z] uniformly in R×q is the same as sampling
[z] uniformly in Rq and re-sampling it until [z] is invertible. We denote by U(Rq) (resp. U(R×q ))
the uniform distribution in Rq (resp. R

×
q ). We then have that

Pr
[z]←U(R×q )

[‖1/z‖ ≥ nc/q] = Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×q ].

But using the de�nition of conditional probabilities, we can rewrite

Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×q ] =
Pr[z]←U(Rq)[[z] ∈ R×q and ‖1/z‖ ≥ nc/q]

Pr[z]←U(Rq)[[z] ∈ R
×
q ]

.
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The numerator of this fraction is less than Pr[z]←U(Rq)[‖1/z‖ ≥ nc/q], which is less than 4
n2c−1

using Lemma 3. And at least half of the elements of Rq are invertible (if q is prime, we can even
say that the proportion of non invertible elements is at most n/q, because q ≡ 1 mod 2n). Hence,
Pr[z]←U(Rq)[[z] ∈ R×q ] ≥ 1/2 and we obtain the desired result

Pr
[z]←U(R×q )

[‖1/z‖ ≥ nc/q] ≤ 8

n2c−1
.

ut

3.5 The aggressive method

This aggressive method was proposed by Döttling et al. in [DGG+16] in order to instantiate the
GGH multilinear map for their obfuscator. This method cannot be used for any set of atoms A, as
it relies on the fact that the levels at which we encode fresh encodings have a speci�c structure.
Indeed, for each v ∈ A, we have either [zv] = [zi] for some i ∈ {1, · · · , `} or [zv] = [z∗ · z−1i ]. Using
this remark, the secret [zi]'s are generated in the following way.

For i from 1 to ` do:

� sample a uniformly random invertible element [zi] in Rq. Let zi be the representative of [zi]
in R with coe�cients between −q/2 and q/2, and z̃i be the representative of [z−1i ] in R with
coe�cients between −q/2 and q/2.

� until both following conditions are satis�ed, re-sample [zi]:

‖1/zi‖ ≤ n3/q (12)

‖1/z̃i‖ ≤ n/q. (13)

� if i = `, we also re-sample [zi] until this third condition is met

‖1/z∗‖ ≤ n/q, (14)

where z∗ is the representative of [
∏

1≤i≤` zi] with its coe�cients between −q/2 and q/2.

Remark. As we sample the [zi]'s from i = 1 to `, when we generate [z`] all other [zi]'s are already
�xed, so we can de�ne [z∗].

Note that with this method, we re-sample each zi an expected constant number of times, inde-
pendently of `. Indeed, all [zi]'s for i ≤ ` − 1 are sampled independently. And the two conditions
we want are satis�ed except with probability at most 8

n for each condition (using Corollary 2 with

[zi] and [z−1i ] that are uniform in R×q and with c = 3 or c = 1). So, applying a union bound, the

probability that we have to re-sample [zi] is at most 16
n , which is less than 1/2 if n ≥ 32. The idea

is the same for [z`] except that we also want ‖1/z∗‖ to be small. But all [zi] for i < ` are already
�xed, so [z∗] only depends on [z`] and is uniform in R×q . Hence this last condition is also satis�ed

except with probability 8
n from Corollary 2. And the probability that the three conditions are met

for [z`] is at least 1/2 as long as n ≥ 48.
To conclude, if n ≥ 48, the procedure described above will sample each [zi] at most twice in

average, independently of the choice of `. So we can choose ` arbitrarily large and the sampling
procedure will take time O(`) · poly(n).
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It remains to choose our representative zv ∈ R of [zv] ∈ Rq and to get a bound on ‖1/zv‖ · ‖zv‖
for all v ∈ A, in order to get the value of E. We will show that ‖zv‖ · ‖1/zv‖ ≤ n4 for some choice
of the representative zv we detail below.

First case. If v has weight 1, that is [zv] = [zi] for some i, then we take zv = zi. With our choice of
[zi], we have that ‖1/zv‖ ≤ n3/q. And as ‖zv‖ has its coe�cients between −q/2 and q/2 we have
that ‖zv‖ ≤

√
nq and hence ‖zv‖ · ‖1/zv‖ ≤ n3.5 ≤ n4.

Second case. If v has weight ` − 1, then there exists i ∈ {1, · · · , `} such that [zv] = [z∗ · z−1i ]. We
choose as a representative of [zv] the element zv = z∗ · z̃i ∈ R, with z∗ and z̃i as above (with
coe�cients between −q/2 and q/2). We then have

‖1/zv‖ = ‖1/z∗ · 1/z̃i‖ ≤
√
n · ‖1/z∗‖ · ‖1/z̃i‖ ≤ n2.5/q2.

Further, we have that ‖zv‖ = ‖z∗ · z̃i‖ ≤
√
n ·
√
nq ·
√
nq = n1.5q2. This �nally gives us

‖zv‖ · ‖1/zv‖ ≤ n4.

To conclude, this method gives us
E = Θ(n7.5).

This means that γ = 7.5 and both η and ν are zero.

Remark. For all methods with Σv ∼ zv z̄v (i.e. all methods except the simplistic one), if c ←
DI+a,

√
Σv

is sampled using a Gaussian distribution of standard deviation
√
Σv, we can rewrite

c = c∗zv with c∗ ← D I+a
zv

,σv
for some σv ∈ R. Note that c∗ is now a following a spherical Gaussian

distribution but its support depends on zv. In addition to this remark, one can observe that in all
the methods described above, there exists a real σ such that σvσṽ = σ for all v ∈ A (in fact, σv only
depends on the weight of v in all the methods above). This means that for every fresh encodings
[cvz

−1
v ] and [cṽz

−1
ṽ ] at level v and ṽ generated independently, we have an element c∗ ∈ K, following

an isotropic distribution10 of variance σ2 such that cvcṽ = c∗zvzṽ in R. Again, we note that the
support of c∗ depends on zv and zṽ, but as σ is larger than the smoothing parameter, this has no
in�uence on the variance of c∗ (by Lemma 1).

A summary of the di�erent values of γ, η and ν for the di�erent sampling methods can be found
in Table 1 (Section 4.3).

4 Averaging attack

4.1 Our simple setting of the GGH multilinear map

To study the leakage of the GGH multilinear map, we need to make reasonable assumptions on
what is given to the adversary. It has been shown in [HJ16] that knowing low level encodings of
zero for the GGH13 multilinear map leads to zeroizing attacks that completely break the scheme.
So our setting should not provide any, yet we will provide enough information for some zero-tests
to pass. To this end, we will prove our setting to be secure in the weak multilinear map model,
which supposedly prevents zeroizing attacks.

10 c∗ is isotropic as it is the product of two independent isotropic Gaussian variables.
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This setting is inspired by the use of multilinear maps in current candidate obfuscator construc-
tions, and more precisely the low noise candidate obfuscator of [DGG+16]. Yet, for easier analysis,
we tailored this setting to the bare minimum. We will assume the degree of the multilinear map to
be exactly κ = 2, and will provide the attacker with elements that pass zero-test under a known
polynomial. The restriction κ = 2 can easily be lifted but it would make the exposition of the model
and the analysis of the leak less readable.

More precisely, we �x a number m > 1 of monomials, and consider the homogeneous degree-2
polynomial:

H(x1, y1, . . . , xm, ym) =
∑

xiyi.

Recall that we chose the set of �atoms� A to be the set of levels v ∈ {0, 1}` that have weight exactly
1 or ` − 1, where the weight of v is the number of its non-zero coe�cients. For all v ∈ A, we let
ṽ = v∗ − v (we say that ṽ is the complement of v). We assume that for each v ∈ A of weight 1,
the authority reveals encodings uv,1, . . . , uv,m at level v of random values av,1, . . . , av,m modulo I,
and encodings uṽ,1, . . . , uṽ,m at level ṽ of random values aṽ,1, . . . , aṽ,m modulo I, under the only
constraint that

H(av,1, aṽ,1, . . . , av,m, aṽ,m) = 0 mod I.

We remark that generating almost uniform values a·,· under the constraint above is easily done, by
choosing all but one of them at random, and setting the last one to

aṽ,m = −a−1v,m

m−1∑
i=1

av,iaṽ,i mod I.

In the weak multilinear map model [MSZ16,GMM+16,DGG+16], we can prove that an attacker
that has access to this simple setting of the GGH multilinear map cannot recover a multiple of
the secret element g, except with negligible probability. The de�nition of the weak multilinear map
model and the proof that an attacker cannot recover a multiple of g can be found in Appendix B.11

This weak multilinear-map model was used to prove security of candidate obfuscators in [GMM+16,
DGG+16], as it is supposed to capture zeroizing attacks, like the ones of [MSZ16,CGH17]. In the
weak multilinear map model, recovering a multiple of g is considered to be a successful attack. This
is what motivates our proof that no polynomial time adversary can recover a multiple of g in our
simple setting, under this model.

4.2 Analysis of the leaked value

We describe in this section the information we can recover using averaging attacks, depending on
the sampling method. We will see that depending on the sampling method, we can recover an
approximation of A(z∗h/g), or an approximation of A(h/g) or even the exact value of A(h/g). In
order to unify notation, we introduce the leak L, which will refer to A(z∗h/g) or A(h/g) depending
the method. We explain below what is the value of L for the di�erent methods, and how we can
recover an approximation of it. In the case of the simplistic method, we also explain how we can
recover the exact value of L from its approximation and how to use it to create a zero-testing
parameter at level 2v∗.

11 We postpone the proof in appendix as the idea is the same as in [GMM+16,DGG+16], in a much simpler
context (this is based on a generalized version of the Schwartz-Zippel lemma from [MSZ16]).
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Statistical leakage. Let v ∈ A be of weight 1. We denote by [uv] the encoding [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)].
Recall that we have [ui,v] = [ci,vz

−1
v ], where ci,v = ai,v + ri,vg for some ri,v ∈ R. So using the

de�nition of H and the fact that [uv] passes the zero test, we can rewrite

[uvpzt] = [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m)(zvzṽ)−1 · z∗hg−1]

= [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · hg−1]

= H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · h/g.

Note that the product of the last line is in R, as it is a product of small elements compared to
q. Also, the �rst term is a small multiple of g so we can divide by g. We denote by wv ∈ R the
value above (i.e., the representative of [uvpzt] with coe�cients in [−q/2, q/2]). The term h/g of the
product is �xed, but the �rst factor H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) depends on v: we can average over
it. We now analyze this �rst factor, depending on the method we choose for generating the fresh
encodings of the GGH map. We will denote by Yv the random variable H(cv,1, cṽ,1, . . . , cv,m, cṽ,m).

By de�nition of the polynomial H, we know that Yv =
∑
ci,vci,ṽ. Moreover, all the ci,v are

independent when i or v vary. So the ci,vci,ṽ are centered random variables of variance ΣvΣṽ

(observe that the variance of a product of independent centered variables is the product of their
variances) and Yv is a centered random variable of variance mΣvΣṽ (recall that H is a sum of m
monomials). We now consider several cases, depending on the choice of Σv.

Case 1 (the simplistic method). In this case, we have Σv = σ2 for all v ∈ A, for some σ ∈ R.
This means that the Yv are centered isotropic random variables with the same variance. Let us call
µ := E[A(Yv)] = mσ2 ∈ R+ this variance. If we compute the empirical mean of the A(Yv), this will
converge to µ and we can bound the speed of convergence using Hoe�ding's inequality. Going back
to the variables wv = Yv ·h/g, we have that E [A(wv)] = µ ·A(h/g) for some µ in R+. Furthermore,
all the A(wv), with v of weight 1, are independent variables with the same mean, so we can apply
Hoe�ding's inequality.

Case 2 (the conservative method). In this case, we chose Σv ∼ zvzṽ. We do not know the variance
of the Yv (because the zv are secret) but we will be able to circumvent this di�culty, by averaging
over the zv's.

First, using the remark we made at the end of Section 3, we have that Yv =
∑
ci,vci,ṽ =∑

c∗i,vzvzṽ, with the c∗i,v being independent centered isotropic random variables with the same

variance σ2 ∈ R+. Hence, we can rewrite Yv = Xvzvzṽ with Xv a centered isotropic variable
of variance mσ2 (which is independent of v). Unlike the previous case, we now have some zvzṽ
that contribute in Yv. However, we will be able to remove them again by averaging. Indeed, even
if all the zv satisfy [zvzṽ] = [z∗] in Rq, this is not the case in R. For our analysis, let us treat
the zvzṽ as random variables in R, that are isotropic and independent when v varies. We will
call µz := E [A(zvzṽ)] their variance. Recall that as the zvzṽ are isotropic, µz is in R+. While
the independence assumption may be technically incorrect, experiments con�rm that the empirical
mean E [A(zvzṽ)] does indeed converge to some µz ∈ R+ as the number of sample grows, and more
precisely it seems to converge as µz · (1+ε) where ε ∈ KR satis�es ‖ε‖∞ = Õ(

√
1/|A|), as predicted

by the Hoe�ding bound (results of the experiments are plotted in Appendix C).
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Assuming that the Xv are independent of the zvzṽ,
12 we �nally obtain

E[A(Yv)] = E[A(Xv)]E[A(zvzṽ)] = mσ2µz.

We denote by µ = mσ2µz this value. As in the previous case, the variables A(wv) are independent
(when v has weight 1) and have the same mean

E [A(wv)] = µ ·A(h/g),

with µ ∈ R+.

Case 3 (the exponential and aggressive methods). In these methods, we can again write Yv = Xvzvzṽ
with Xv a centered isotropic variable of variance mσ2 for some σ ∈ R+, independent of v. However,
unlike the previous case, the zvzṽ are not isotropic variables anymore and therefore the z's do not
�average-out�.

In the exponential method, the identity zvzṽ = z∗ holds over R (where z∗ =
∏
i zi ∈ R is a

representative of [z∗]), hence, zvzṽ is constant when v varies, and we have

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.
In the aggressive method, we have zvzṽ = z∗ · z̃i ·zi for some 1 ≤ i ≤ `, with z∗ the representative

of [z∗], zi the representative of [zi] and z̃i the representative of [z−1i ] with coe�cients in [−q/2, q/2].
The element z∗ is �xed, but, as in the conservative case, we can see the z̃i · zi as isotropic variables.
Assuming they are independent, we then have E [A(zvzṽ)] = µzA(z∗) for some scalar µz ∈ R+. And
we again have

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.

Conclusion on the average. To conclude, we have argued that in all methods,

E [A(wv)] = µ · L

for some scalar µ ∈ R+, where the leaked variable L depends on the sampling method in the
following way:

• L = A(h/g) for the simplistic and the conservative methods.
• L = A(hz∗/g) for the exponential and the aggressive methods.

Now, using the fact that the random variables A(wv) are independent for di�erent v ∈ A of
weight 1, we can compute their empirical mean and Hoe�ding's inequality will allow us to bound
the distance to the theoretical mean. In the following we assume that we know µ. 13

12 We can view the variables c∗i,v as being independent of the variables zv because the standard deviation
of the Gaussian distribution is larger than the smoothing parameter (see Lemma 1).

13 The value of the scalar µ can be obtained from the parameters of the multilinear maps. If we do not want
to analyze the multilinear map, we can guess an approximation of µ with a su�ciently small relative
error, by an exhaustive search.
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Relative error of the leakage. Compute

W =
2

|A|
∑
v∈A

v of weight 1

A(wv)

the empirical mean of the random variables A(wv). This is an approximation of µ · L. We know that
the coe�cients of the random variable wv are less than q, so the coe�cients of A(wv) are less that
nq2. By applying Hoe�ding's inequality in R (Corollary 1) with ε = 1/n, B = nq2 and m = |A|/2,
we have that ‖W − µ · L‖∞ < nq2

√
2 lnn√
|A|

(except with probability at most 1/n). As the coe�cients

of µL are of the order of nq2, we have a relative error δ <
√

2 lnn/|A| for each coe�cient of µL.

As µ is known, this means that we know L with a relative error at most
√

2 lnn/|A|. 14
Unfortunately, we cannot directly recover the exact value of L because its coe�cients are not

integers. When L = A(hz∗/g), i.e. for the exponential and aggressive methods, we do not know how
to use this approximation of L to recover the exact value of L.15 When L = A(h/g), i.e. for the
simplistic and conservatives methods, we can circumvent this di�culty. The idea is to transform our
approximation of L into an approximation of an element r ∈ R, with coe�cients that are integers of
logarithmic bit-size. Indeed, if we have an approximation of r with error less that 1/2 we can round
its coe�cients and recover the exact value of r. And we can get such an approximation using a
polynomial number of samples because the coe�cients we want to recover have logarithmic bit-size.
This is what we explain in next subsection. Unfortunately, we will see that for the conservative
method, the number of samples we need to be able to round r to its exact value is not compatible
with the constraint we had on |A| for being able to generate the zv.

From the leakage to a complete attack against the GGH map. In this section, we explain
how we can recover the exact value of A(h/g), when L = A(h/g) and we have enough samples. We
then show how we can use this exact value to construct a zero-testing parameter at level 2v∗.

Recovering L exactly when L = A(h/g). In the following, we assume that we have an approximation
of A(h/g) with relative error δ <

√
2 lnn/|A| and we want to recover the exact value of A(h/g).

Let u be any encoding at level v∗ that passes the zero test (we can take u to be one of the
[uv] = [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)]). We have that [u·pzt] = c·h/g ∈ R for some small multiple c of
g. In particular, the coe�cients of c are somehow small16 and are integers. Using our approximation
W of µ · A(h/g) with relative error δ plus the fact that we know µ and c · h/g, we can recover an
approximation of A(c) with relative error at most δ · n2 by computing A(c · h/g) · µ ·W−1.

The coe�cients ofA(c) are integers and are less thanm2n2E4. Indeed, c = H(cv,1, cṽ,1, . . . , cv,m, cṽ,m)
for some v and we have ‖cv,i‖ ≤ E for all v's and i's. So we know that ‖c‖ ≤ mn1/2E2 and we get
the desired bound on ‖A(c)‖∞. Hence, if we have an approximation of the coe�cients of A(c) with
relative error at most 1

2m2n2E4 , the absolute error is less that 1/2 and we can round the coe�cients
to recover A(c) exactly. We can then recover A(h/g) exactly by computing A(c · h/g)/A(c).

14 Again, if we do not know µ, we can guess an approximation of µ with relative error at most
√

2 lnn/|A|
(so that it has no in�uence on our approximation of L), with an exhaustive search.

15 Note that if we recover the exact value of A(hz∗/g), then its denominator is a multiple of g and this is
considered as a success of the attacker in the weak multilinear map model.

16 Recall that q may be exponentially large but we assumed that the numerator of a top level encoding
remains polynomial in n.

18



Putting together the conditions we got on the parameters, we have δ <
√

2 lnn
|A| and we want

δ · n2 < 1
2m2n2E4 to be able to recover A(c). This is satis�ed if

√
2 lnn
|A| < 1

2m2n4E4 , i.e., |A| >
8E8m4n8 lnn.

To conclude, if |A| > 8E8m4n8 lnn, we can recover A(g/h) ∈ K exactly.17 In Section 4.3, we
compare this constraint to the ones we had for the samplings methods. We will see that for the
simplistic method, our constraints are compatible, so we can perform the attack. But this is not
the case with the conservative method.

Using A(h/g) to create a zero testing parameter at a forbidden level. We present here a possible
way of using the recovered value A(h/g). Note that in current obfuscation model (for instance the
weak multilinear map model of [GMM+16] or [DGG+16]), recovering A(h/g) is already considered
as a success for the attacker. Indeed, its denominator is a multiple of A(g) = gḡ so in particular we
have recovered a multiple of g, which is considered as a success of the attacker in these models.18

Moreover, even if we do not consider that recovering a multiple of g is bad news, we present here a
way of using A(h/g) to create a zero-testing parameter at a higher level than v∗ (here we create a
zero-testing parameter at level 2v∗).

First, note that the complex conjugation ·̄ in R is compatible with Rq. Indeed, let c, r ∈ R, we
have c+ qr = c + qr = c + qr (because ·̄ is R-linear). So c+ qr ≡ c mod q and we can de�ne the
operation ·̄ in Rq by [r] = [r]. We will use this to construct our zero-testing parameter. Let again
[u] be an encoding of zero at level v∗ and write [u] = [c · (z∗)−1] where c is a small multiple of g.
Compute

p′zt = [u · p2zt · pzt ·A(h/g)−1]

=

[
c

z̄∗
· (z∗)2h2

g2
· z̄
∗h

g
· gg
hh

]
=

[
(z∗)2 · (hc̄)

g

]
.

As hc̄ is small compared to q, this gives us a zero-testing parameter at level 2v∗.

4.3 Noise analysis of the leakage

We sum up in this section the leakage that we can obtain and with which precision, depending on
the sampling methods presented in Section 3.

The simplistic method. In this method, we have L = A(h/g). Recall that in this case, we can
recover the exact value of L if ` > 4E8m4n8 lnn (using the fact that |A| = 2`). But in this method,
we had E = O(n1.5+ε), for any ε > 0. Hence, taking ` = Θ(n20+8εm4 lnn) satis�es the conditions
for generating the parameters plus our condition ` > 4E8m4n8 lnn. To conclude, when using the
simplistic method with some choice of the parameters, we can recover the exact value A(h/g) and

17 Note that this bound does not depends on q but only on E. This is why our attack still works even if q
is exponential in n, as long as E remains polynomial in n.

18 For this to be true, we need h and g to be co-prime. But as the ideal 〈g〉 is prime, this will be true unless
h is a multiple of g. And the case where h is a multiple of g is not a problem, as we can easily recover
multiples of h (and so multiples of g).
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use it to construct a forbidden zero-testing parameter at level 2v∗. Note that recovering A(h/g)
also means that we recovered a multiple of g. However, we proved that in the weak multilinear map
model, no polynomial time attacker could recover a multiple of g. This proves that the averaging
attack described above is not captured by the weak multilinear map model.

Remark. For this sampling method, as Σv ∼ 1, we do not need to average over the v, so we could
also have ` = 2 as long as we have enough samples for each v.

The exponential method. In this method, we have L = A(z∗h/g). We can recover an approximation

of µL with relative error at most
√

2 lnn
|A| . We do not know if it is possible to recover L exactly.

The conservative method revisited. In this method, we have L = A(h/g), we can recover an ap-

proximation of µL with relative error at most
√

2 lnn
|A| according to our heuristic analysis. While the

independence condition between the A(zvzṽ) for applying Hoe�ding's bound may not be satis�ed,
we show that this rate of convergence seems correct in practice in Appendix C.

Recall that if ` > 4E8m4n8 lnn, then we can recover A(h/g) exactly. But for the sampling
method to work, we need to take E = Θ(n4.5

√
`). Hence, the condition ` > 4E8m4n8 lnn can be

rewritten
` > Θ(n44`4m4 lnn).

This condition cannot be satis�ed, so we cannot have enough samples for our attack when using
this sampling method. And all we get is an approximation of µA(h/g). Nevertheless, the only thing
that prevents the full attack is the size of the parameters we have to chose in order to be able to
generate the fresh encodings. This is far from the kind of protection that was intended.

The aggressive method. In this method, we have L = A(z∗h/g). We can recover an approximation

of µL with relative error at most
√

2 lnn
|A| . We do not know if it is possible to recover L exactly.

4.4 Concusion

We give in Table 1 a summary of the parameters used for the di�erent sampling methods, and of
the resulting leakage. The column 'constraints' speci�es possible constraints on the parameters or
on the atoms set A, that arise when using this sampling method. Recall that due to the correctness
bound (9), there is always a constraint on the modulus q, so we do not mention it in the column
'constraints'. This constraint on q can be obtained from the columns γ, η and ν, using the formula
log q ≥ 4 log(n)(3 + κ/2 + κγ + κνL+ η`) + 4 log(m).

We have seen that the leak obtained in the conservative method is the same as the one of
the unprotected scheme (the simplistic method). However, in the case of the conservative method,
the number of available samples is not su�cient to complete the attack, as it is the case in the
simplistic method. This limitation on the number of samples comes from some constraints in the
sampling procedure and seems a bit accidental, we do not �nd this version of the countermeasure
fully satisfactory.

We can also question the security of the other methods (exponential and aggressive), which leak
an approximation of A(hz∗/g), related to secret values. More precisely, one could wonder whether
this noisy leak could be combined with the knowledge of pzt = [hz∗g−1] to mount an attack. As
this problem does not look like any traditional (ideal) lattice problem, we fail to conclude beyond
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Sampling method γ η ν leak L full attack? constraints

Simplistic [GGH13] 1.5 + ε 0 0 A(h/g) yes none
Exponential [GGH13] 2.5 2.5 0 A(z∗h/g) no none
Conservative [DGG+16] 6 0 0 A(h/g) no n ≥ 4`
Conservative (revisited) 4.5 0 0.5 A(h/g) no none
Aggressive [DGG+16] 7.5 0 0 A(z∗h/g) no structure of A
Compensation (Sec. 5) 1.5 + 1/κ+ ε 0 0 1 no none

Table 1. Summary of the leak analysis, depending on the sampling method. This includes our new method,
sketched in Section 5. We recall that, according to correctness bound (9), the modulus q must satisfy
log q ≥ 4 log(n)(cste+ κ/2 + κγ + κνL+ η`) + 4 log(m).

reasonable doubt that it should be intractable. We would �nd more rational to make the leak
unrelated to secret parameters. In the following section, we propose such a design, which is simple,
and leads to better parameters.

5 The compensation method

In this section, we propose a new sampling method which is designed so that the leak L that
an attacker can recover by using the averaging attack described above, reveals no information
about secret parameters of the GGH map. Nevertheless, we note that even if the attack described
above does not apply directly to this method, other averaging attacks may be able to leak secret
information. An idea could be to �x some encodings and average over the others.

Discussion on design. We have seen that choosing di�erent covariance parameters Σv at di�erent
levels v can in fact make the leak worse, as the attacker can choose to average them out. We
also remark that the parameters [zv] can be publicly re-randomized without a�ecting anything else,
in particular without a�ecting the covariance Σv of the numerator of the encodings. Indeed, we
can choose random invertible elements [ẑi] ∈ R×q , and apply the following transformation to all
encodings ev at level v, as well as to the zero-testing parameter [pzt]:

[ev] 7→

[∏
i∈v

ẑ−1i

]
· [ev], [pzt] 7→

[∏
i∈v?

ẑi

]
[pzt].

This means that the relation between the covariance Σv and the denominators zv can be publicly
undone while maintaining functionality.

The compensation method. We therefore proceed to set Σv = Σ for all levels v, and to choose Σ
independently of the zv. Doing so, we observe that the leak L will generically be:

L ∼ Σκ ·A(h/g). (15)

We then choose Σ ∼ A(g/h)
1/κ

, ensuring L ∼ 1: the leak is made constant, unrelated to any secret.
We insist nevertheless that, as the previous methods, this method comes with no formal security
argument. We also warned that we have not thoroughly explored more general leakage attacks,
varying the zero-tested polynomials or keeping some encodings �xed.
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It remains to see how short one can e�ciently sample encodings following this choice. To get

tighter bounds, we look at the conditioning number (or distortion) δ(
√
Σ) = max(σi(

√
Σ))

min(σi(
√
Σ))

, where σi

runs over all embeddings. One easily veri�es the following properties:

δ(A(x)) = δ(x)2 (16)

δ(xk) = δ(x)|k| for any k ∈ R, (17)

δ(xy) ≤ δ(x)δ(y). (18)

If a variable x ∈ KR has independent continuous Gaussian coe�cients of parameter 1, then
its embeddings are (complex) Gaussian variables of parameter Θ(

√
n), and it holds with constant

probability that
∀i, Ω(1) ≤ |σi(x)| ≤ O(

√
n log n). (19)

Indeed, the right inequality follows from classic tail bounds on Gaussian. For the left inequality,
consider that |σi(x)| ≥ max(|<(σi(x))|, |=(σi(x))|), where both the real and imaginary parts are
independent Gaussian of parameter Θ(

√
n): each part will be smaller than Θ(1) with probability

at most 1/
√

2n. By independence, |σi(x)| ≤ Θ(1) holds with probability at most 1/2n for each i,
and one may conclude by the union bound.

By scaling (and plausibly ignoring discreteness issues since g and h are sampled above the
smoothing parameter of Zn) we can therefore assume, using rejection sampling over h and g, that
δ(g), δ(h) ≤ O(

√
n log n) , and therefore

δ(
√
Σ) = δ(A(g/h))1/2κ ≤ (δ(g)δ(h))1/κ ≤ O(n log n)1/κ.

This allows to scale Σ so that:

• ‖g/
√
Σ‖ ≤ o(1/

√
log n), so that we can sample e�ciently via Theorem 2.

• E =
√
n ·‖g‖·δ(

√
Σ) ·ω(

√
log n) = O(n1.5+1/κ+ε): the size of the numerators of the encodings is

barely worse than in the simplistic method, and signi�cantly better than in all other methods.
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A Proof of Lemma 1

We recall here Lemma 1 and provide a proof of it, using a result of [MR04].

Lemma 1. For any g ∈ K, Σ ∈ S+, c ∈ KR such that ‖g/
√
Σ‖ ≤ o(1/

√
log n), if x← DgR+c,

√
Σ,

then ‖E[x]‖ ≤ ε · ‖
√
Σ‖ and ‖V[x]−Σ‖ ≤ ε · ‖Σ‖ for some negligible function ε(n).

Proof. This result follows from [MR04, Lemma 4.2], that we recall here:

Lemma 4 (Lemma 4.2 from [MR04]). For any n-dimensional lattice Λ, point c ∈ Rn, unit
vector u, and reals 0 < ε < 1, s ≥ 2ηε(Λ),∣∣Ex←DΛ,s,c [〈x− c, u〉]∣∣ ≤ √2π

εs

1− ε∣∣Ex←DΛ,s,c [〈x− c, u〉2]− s2
∣∣ ≤ 2π

εs2

1− ε

where ηε(Λ) is the smoothing parameter of the lattice Λ.19

We cannot use this lemma directly to prove our Lemma 1, as we have a standard deviation
Σ ∈ S+ that might not be a real and we are sampling in gR + c which is not a lattice. But we
can easily see that DgR+c,

√
Σ = c+

√
Σ ·DΛ,1,− c√

Σ
, where Λ is the lattice gR√

Σ
. We can then apply

Lemma 4 to DΛ,1,− c√
Σ

(this is a Gaussian distribution over a lattice, with standard deviation a

scalar). If we prove that

‖E[DΛ,1,− c√
Σ

] +
c√
Σ
‖ ≤ negl(n) (20)

‖V[DΛ,1,− c√
Σ

]− 1‖ ≤ negl(n) (21)

then, using the properties of the mean and the variance, we will obtain the desired result of Lemma 1.
Let's apply Lemma 4 to the distribution DΛ,1,−c/

√
Σ . We have s = 1 in the lemma, which

gives us the constraint ηε(Λ) ≤ 1/2. So to get the best possible bound in the lemma, we want
to minimize ε under this constraint. We will use the following upper-bound on ηε(Λ) (see for
instance [MR04, Lemma 3.3]).

ηε(Λ) ≤
√

log(2n(1 + 1/ε))

π
λn(Λ).

Recall that our lattice Λ is the ideal g√
Σ
R ⊂ KR, hence we have λn(Λ) = ‖g/

√
Σ‖ = o(1/

√
log n)

by hypothesis. In order to get the best possible bound, we take ε such that√
log(2n(1 + 1/ε))

π
λn(Λ) = 1/2.

Using the fact that λn(Λ) = o(1/
√

log n), we obtain that ε ≤ 1
nc for any constant c, i.e. ε = negl(n).

We can then apply Lemma 4 to obtain Inequalities (20) and (21) (using the fact that ε = negl(n)
and s = 1 in the lemma). This achieves the proof of Lemma 1. ut
19 Note that we do not use the same de�nition for ρΣ,x0 as the authors of [MR04], this is why we have some

2π that appears in the bound.
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B Security proof of our setting of the GGH map in the weak multilinear

map model

In this section, we �rst recall what is the weak multilinear map model (mentioned �rst in [MSZ16]
and then used in [GMM+16] and in [DGG+16]). Then we prove that the setting we de�ned in
Section 4.1 is secure in the weak multilinear map model, for some notion of security we de�ne here.

B.1 The weak multilinear map model

The idea of the weak multilinear map model ( [MSZ16], [GMM+16], [DGG+16]) is to limit the power
of the attacker by not giving it the encoded values directly. Instead, an oracleM keeps a table with
the encoded values and allows the attacker to perform only some operations on these encoded
values. More formally, an encoded element is a couple (a,v), with a ∈ R/gR and v ∈ {0, 1}`. Recall
that we denote by v∗ the vector (1, 1, · · · , 1).We can perform the following arithmetic operations
on the encoded elements:

� Addition/subtraction. For any v, we have (a,v)± (b,v) = (a± b,v).

� Multiplication. If v andw are such that v[i]w[i] = 0 for all i ∈ [`], then we have (a,v)·(b,w) =
(a · b,v + w).

� Scalar multiplication. For any v ∈ {0, 1}`, a ∈ R/gR and α ∈ R, we have α·(a,v) = (α·a,v).

The oracleM implements the following interfaces.

Initialization. The oracle �rst initializes the parameters. It sets n to be a power of 2, de�nes
R = Z[X]/(Xn + 1) and samples g an element of R. The size of the parameters is the same as the
one we described in Section 2.2. The oracle M then receives a set of r couples (a,v) to encode.
It creates a table T in which it stores the couples (a,v) together with a handle hi it generates,
which is independent of the encoded value a but reveals the level of the encoding v. Finally, the
oracle outputs the handles hi, for 1 ≤ i ≤ r. The oracleM also creates a table T ′ for post-zero-test
values, that is empty for the moment. This interface has to be called before the other ones, and any
attempt to call this procedure more than once will fail.

Operations on encodings. Given two handles h1, h2 and an operation ◦ ∈ {+,−, ·}, the oracle �rst
checks whether the handles h1 and h2 are in its table. If one of them is not in the table, then in
returns ⊥. Otherwise, let (a1,v1) and (a2,v2) be the encoded elements associated to these handles.
If ◦ ∈ {+,−}, M checks whether v1 = v2. If this is not the case, M outputs ⊥. Otherwise, it
creates a new entry in its table, with the encoded value (a1 ◦ a2,v1) and a new handle h and it
outputs h. If ◦ = ·, then M checks whether v1[i]v2[i] = 0 for all i ∈ [`]. If this is not the case, it
outputs ⊥, otherwise it creates a new entry in its table with the encoded value (a1 ·ab,v1 +v2) and
a new handle h and it outputs h.

Multiplication by an element of R. Given a handle h and an element α ∈ R, the oracleM �rst checks
whether h is in its table T . If it is not, M outputs ⊥. Otherwise, let (a,v) be the corresponding
encoded value. The oracle creates a new entry in its table, with encoded value (αa,v) and a new
handle h′. Then it outputs h′.
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Zero-test query. Given a handle h, the oracleM checks whether h is in its table. If notM outputs
⊥. Otherwise let (a,v) be the associated encoded value. If v 6= v∗, thenM outputs ⊥. Otherwise,
the oracle checks whether a is a multiple of g. If it is, thenM creates a new entry in its post-zero-
test table T ′, with value a/g ∈ R and with a new handle h′, then it outputs h′. If a is not a multiple
of g, thenM outputs ⊥.

Post-zero-test query. Given a polynomial p of degree polynomial in n,20 and a bunch of handles
h1, · · · , ht, the oracle checks whether all handles hi are in its post-zero-test table T ′. If it is not
the case, or if p is the identically zero polynomial, it outputs ⊥. Otherwise, let ri be the value
corresponding to the handle hi in T ′. The oracle computes p(r1, · · · , rt). If this is a non zero
multiple of g, then the adversary outputs �WIN�, otherwise it outputs ⊥.

The adversary wins the game if it manages to have the oracle output �WIN� after a post-zero-test
query.

De�nition 1 (Security of our setting). We say that our setting of the GGH multilinear map is
secure in the weak multilinear map model if any polynomial time adversary has negligible probability
to make the oracle output �WIN�, when the oracle is initialized with the elements av,i de�ned in
Section 4.1.

We will now prove that our simple setting de�ned in Section 4.1 is secure in the weak multilinear
map model, for the de�nition of security given above. This proof does not depend on the sampling
method chosen, as long as it has enough min-entropy. As all the sampling methods described in
this article have enough min-entropy, our setting will be secure in the weak multilinear map model,
independently of the sampling method chosen.

B.2 Mathematical tools

De�nition 2. Let Y be a random variable with values in a set S, the guessing probability of the
variable Y is

max
s∈S

Pr(Y = s)

and the min-entropy of Y is de�ned by

H∞(Y ) = − log(max
s∈S

Pr(Y = s)).

For multiple random variables Y1, · · · , Yk, we let pi(s1, · · · , si−1) be the guessing probability of Yi
conditioned on Yj = sj for j < i. Then, de�ne pi = EX1,··· ,Xi−1

[pi(X1, · · · , Xi−1)] to be the expec-
tation of the pi(s1, · · · , si−1). Finally, we denote by pmax(Y1, · · · , Yk) = maxi pi the maximum of
the pi's.

For the proof of our theorem, we will use the improved Schwartz-Zippel lemma of [MSZ16,
Section 5.1]. The classical Schwartz-Zippel lemma needs independent and uniform random variables,
while this version allows us to use random variables that might be correlated and non uniform, as
long as they have enough min-entropy. The statement of the lemma is the following:

20 This restriction on the degree of p may seem a bit unnatural, but this is needed for the proof, and it was
already used (and discussed) in [MSZ16].
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Lemma 5 (Improved Schwartz-Zippel lemma from [MSZ16]). Let F be a �eld, k > 0 be
an integer and P ∈ F[X1, · · · , Xk] be a polynomial of degree at most d. Let Y1, · · · , Yk be random
variables in F (that might be correlated and non uniform). Then we have

Pr
Y1,··· ,Yk

[P (Y1, · · · , Yk) = 0] ≤ d · pmax(Y1, · · · , Yk).

B.3 Security proof

The main idea of the security proof is to use Schwartz-Zippel lemma to show that, except with
negligible probability, the adversary will never be able to create encodings that passes the zero-
test, except for linear combinations of the ones that are made public in the setting. Then, it is
easy to show that the adversary cannot use these encodings to create a multiple of g. This kind
of proof was already used to prove security of obfuscators in the weak multilinear map model
[GMM+16,DGG+16]. But as our setting is simpler than a candidate obfuscator, the proof will also
be easier.

First, we recall and precise how we generate the encodings in our simple setting of the GGH map.
Let Da be a distribution over the elements of R that are invertible modulo g, with min-entropy at
least n when reduced modulo g (i.e., for all x ∈ (R/gR)×, we have Pry←Da(y = x mod g) ≤ 2−n).
And let Dr be a distribution over R with min-entropy at least n.21

For all v ∈ A of weight 1, sample m elements av,i ← Da independently (with 1 ≤ i ≤ m) and
m− 1 elements aṽ,1, · · · , aṽ,m−1 ← Da independently. Then, sample rv ← Dr and let

aṽ,m = −âv,m
m−1∑
i=1

av,iaṽ,i + rvg

where âv,m is an element in R such that âv,mav,m = 1 mod g, i.e. âv,m is a representative of the
inverse of av,m modulo g (chosen arbitrarily). We will initialize the oracleM with these elements
(av,i,v), for v ∈ A.

With the notations above, we have that for all v ∈ A of weight 1,

H(av,1, aṽ,1, . . . , av,m, aṽ,m) =

m∑
i=0

av,iaṽ,i = (r′v + av,mrv)g

for some r′v that depends on the av,i's and aṽ,j 's (with i ≤ m and j ≤ m− 1) but not on rv. Hence,
as rv has min-entropy at least n and R is an integral domain, we have

H(av,1, aṽ,1, . . . , av,m, aṽ,m) = r̃vg (22)

for some r̃v with min-entropy at least n. Moreover, knowing the r̃w for w 6= v (w of weight 1) does
not decrease this min-entropy (because rv is independent of the r̃w). Hence, we have that

pmax({r̃v}v∈A of weight 1) ≤ 2−n. (23)

21 In the GGH multilinear map, the distributionDa should be a Gaussian distribution (whose shape depends
on the sampling method). This has no importance for our proof, so we make no assumption about it
here.
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Theorem 3. Assume we initialize the oracleM with the couples (av,i,v) de�ned above, for v ∈ A
and 1 ≤ i ≤ m. Then, for any PPT adversary A interacting with the oracleM, the probability that
A manages to make M output �WIN� is negligible in n. In other words, our simple setting of the
GGH multilinear map is secure in the weak multilinear map model (see De�nition 1).

Remark. The conditions on the distributions Da and Dr are satis�ed by all the sampling methods
described in this article. Hence, the theorem prove that our simple setting of the GGH multilinear
map is secure in the weak multilinear map model, independently of the sampling method chosen
(among the ones describes in this article).

Proof. For simplicity of notation, we will sometime index the elements of A by v1, · · · ,v2`.
In this proof, we will merge the arithmetic queries on the encodings and the zero-testing queries

by saying that the adversary A directly sends a polynomial p to the oracle. ThenM performs the
arithmetic operations on the encodings that correspond to the polynomial p (if they are relevant)
and apply the zero-testing procedure on the result.

The idea of the proof is to show that the only encodings that A can query that will pass the
zero-testing procedure are linear combinations of elements of the form H(av,1, aṽ,1, . . . , av,m, aṽ,m)
(all other polynomials in the av,i's will fail to pass the zero test with high probability). Then, each
zero-test on a H(av,1, aṽ,1, . . . , av,m, aṽ,m) will result in a handle of a random element (because of
the randomness contained in rv), and all these elements will be independent. Hence the adversary
has negligible probability of �nding a polynomial that annihilate them.

Lemma 6. Let P be a polynomial in the variables (Xv,i){v∈A,1≤i≤m} generated by the attacker A
such that P (av1,1, · · · , av1,m, av2,1, · · · , aa2`,m) = 0 mod g. Then, with overwhelming probability,
we have

P (Xv1,1, · · · , Xv1,m, Xv2,1, · · · , Xv2`,m) =
∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m)

for some scalars αv ∈ R.

This lemma means that the only encodings that will pass the zero test that the attacker can
create are the H(uv,1, uṽ,1, · · · , uv,m, uṽ,m) and linear combination of them. As zero-testing linear
combinations of encodings that pass the zero test does not provide more information that what was
revealed by zero-testing the original encodings, we will assume in the following that the adversary
makes zero testing queries for H(uv,1, uṽ,1, · · · , uv,m, uṽ,m) for all v ∈ A of weight 1, and that they
are the only queries that pass the zero test.

Recall that the numerator ofH(uv,1, uṽ,1, · · · , uv,m, uṽ,m) is of the formH(av,1, aṽ,1, · · · , av,m, aṽ,m) =
r̃vg (see Equality 22). Hence, after all its zero-test queries, the attacker A gets handles to the values
r̃v for all v ∈ A of weight 1. These are the only post-zero-test handles the attacker obtains. These
handles map to random elements r̃v that may not be independent, but that have a lot of (con-
ditioned) min-entropy. Hence, it is very unlikely that the attacker creates a non zero polynomial
that annihilates these random values. More formally, let P be a polynomial of degree d = poly(n)
queried by the attacker in the post-zero-test phase. Then, using using the improved Schwartz-Zippel
lemma of [MSZ16] (Lemma 5) in K, we have that

Pr[P ({r̃v}v∈A of weight 1) = 0] ≤ d · 2−n = negl(n)
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using the fact that pmax({r̃v}v∈A of weight 1) ≤ 2−n (see Inequality (23).

Hence, the attacker has negligible probability of creating a non zero polynomial P , of degree
polynomial in n, that annihilates the post-zero-test handles. This concludes the proof of our theorem.

ut

Proof (Proof of Lemma 6).

Step 1. First, let v ∈ A be of weight 1 and let P be a polynomial in the variables {Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m}
(and not in all Xw,i for w ∈ A and i ≤ m) such that P (av,1, aṽ,1, · · · , av,m, aṽ,m) = 0 mod g. We
will show that P = αH mod g for some α ∈ R/gR. Note that as we are only interested (for the
moment) in equalities modulo g, we will assume that our polynomial P has coe�cients in R/gR
(which is a �eld as gR is a prime ideal). We will also see the av,i as elements of R/gR.

Using the fact that the polynomial P (uv,1, uṽ,1, · · · , uv,m, uṽ,m) is a valid encoding at level v∗,
we know that

P = P1(Xv,1, Xṽ,1, · · · , Xv,m) +Xṽ,mP2(Xv,1, Xv,2, · · · , Xv,m)

for some polynomials P1 of degree 2 and P2 of degree 1. We cannot apply the Schwartz-Zippel
lemma to P because the variable aṽ,m mod g is completely determined by the other variables that
appears in the polynomial. So we �rst introduce a new polynomial that does not depend on Xṽ,m

before applying the Schwartz-Zippel lemma.

We de�ne the polynomial Q ∈ (R/gR)[Xv,1, Xṽ,1, · · · , Xv,m] (note that Xṽ,m does not appear
in Q) by

Q(Xv,1, Xṽ,1, · · · , Xv,m) =Xv,mP1(Xv,1, Xṽ,1, · · · , Xv,m)

−

(
m−1∑
i=1

Xv,iXṽ,i

)
P2(Xv,1, Xv,2, · · · , Xv,m).

Using the fact that aṽ,m = −a−1v,m

∑m−1
i=1 av,iaṽ,i mod g, we have that

Q(av,1, aṽ,1, · · · , av,m) = av,mP (av,1, aṽ,1, · · · , av,m, aṽ,m) = 0 mod g.

But the variables av,1, aṽ,1, · · · , av,m are drown from Da independently with guessing probability
at most 2−n (even when reduced modulo g), and the degree of Q is at most 3. So using Schwartz-
Zippel lemma (Lemma 5) in R/gR, we have that Q should be the zero polynomial, except with
negligible probability. In the following, we will then assume that Q = 0. This means that we have

the equality between polynomials P1 = X−1v,m

(∑m−1
i=1 Xv,iXṽ,i

)
P2. Hence, we can re-write

P = P2

(
X−1v,m

(
m−1∑
i=1

Xv,iXṽ,i

)
+Xṽ,m

)
= P2X

−1
v,m ·H(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m).

As we know that P is a polynomial and Xv,m does not divide H, this means that it divides P2.
But P2 is of degree 1, hence we conclude that P = αH mod g for some scalar α ∈ R.
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Step 2 . Now, let P be a polynomial in all the variables Xv,i for v ∈ A and i ≤ m such that
P ((av,i)v∈A,i≤m) = 0 mod g. We will prove by induction on ` (recall that ` is the number of v ∈ A
of weight 1) that P (Xv1,1, · · · , Xv1,m, Xv2,1, · · · , Xv2`,m) =

∑
v∈A of weight 1 αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m)

mod g.

The case ` = 1 was already done above (this is exactly step 1). Assume then that ` > 1. Let
v1 ∈ A be of weight 1 and assume without loss of generality that v2 = ṽ1. We de�ne the polynomial
P̃ in the variables {Xv1,i, Xv2,j}i,j≤m to be the polynomial P where Xvj ,i is evaluated at avj ,i for
all j ≥ 3 and i ≤ m, i.e.,

P̃ (Xv1,1, Xv1,2, · · · , Xv2,m) = P (Xv1,1, · · · , Xv2,m, av3,1, · · · , av2`,m).

By hypothesis, we have that P̃ (av1,1, av1,1, · · · , av2,m) = 0 mod g. But by step 1, this means

that P̃ = αH mod g for some α ∈ R. Using the structure of the levels of the encodings, we then
know that

P (Xv1,1, · · · , Xv2`,m
) =αH(Xv1,1, · · · , Xv2,m) +

m∑
i=1

Pi(Xv3,1, · · · , Xv2`,m)Xv1,i

+T (Xv3,1, · · · , Xv2`,m)

for some polynomials Pi and T inR/gR such that Pi(av3,1, · · · , av2`,m) = 0 and T (av3,1, · · · , av2`,m) =
0. By induction hypothesis, we then know that the polynomials Pi ans T are linear combination of
the polynomial H evaluated at di�erent Xv,i. But then, if Pi is non zero, Pi(uv3,1, · · · , uv2`,m)uv1,i

is an encoding at level v∗ + v1 which is not an admissible level. Hence, we have that Pi = 0 for all
i and, by induction hypothesis on T , we obtain the desired result.

Step 3. We have proven that for all polynomial P that the adversary can query, which passes the
zero test, then with overwhelming probability we have

P (Xv1,1, · · · , Xv2`,m) =
∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) + gT

for some polynomial T in R. It remains to show that T = 0, except with
negligible probability. Observe that given a polynomial of the form∑

v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m)+gT with T 6= 0, one can recover a multiple of g. Indeed,

in
∑

v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m), all monomials Xv,iXṽ,i have the same coe�cient αv

when i varies and v is �xed. This means that we can recover a multiple of g by computing the dif-
ference of two such coe�cient in our polynomial

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) + gT

(at least one should be non zero if T 6= 0). Hence, if the adversary queries such a polynomials, it
knows a multiple of g. But the handles output by the oracle reveal nothing about g and g is chosen
with su�ciently many min-entropy, hence we will show that the adversary cannot create a multiple
of g except with negligible probability.

The idea is that while the attacker performs zero-test queries for polynomials of the form∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) (without the term gT ) and queries that do not pass the
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zero-test, it does not learn enough information to obtain a multiple of g with non negligible probabil-
ity. Hence, it cannot ask for a polynomial of the form

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) +

gT with T 6= 0. Assume then that the attacker only queries polynomials of the form∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) and polynomials that do not pass the zero test. We

prove that all other possible choices of g, except a negligible fraction of them, would have led to
the same answers of the oracle. And hence, the adversary cannot guess the value of g except with
negligible probability.

The queries on polynomials of the form
∑

v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xṽ,m) do not leak any

information because for all values of g, we know that they should pass the zero test (and the handle
that is generated when a query passes the zero test is independent of the choice of g). The queries
on polynomials that do not pass the zero test may leak some information, but this leak will be
negligible compared to the entropy of g. Let c1, · · · , ck be the numerators of all encodings that
the adversary queried and that did not pass the zero test. Then, any g that is not a divisor of
c1c2 · · · ck would have given the same answers. So the number of �bad� choices of g is at most the
number of divisors of c1c2 · · · ck. But, denoting by N the algebraically norm of elements in K, we
have that N (x) > 2 if x ∈ R is non invertible, and if x|y, then N (x)|N (y). Hence, the number of
non invertible divisors of c1c2 · · · ck is at most log2(N (c1c2 · · · ck)). This is polynomial in n. Indeed,
the element c1c2 · · · ck was computed by a polynomial-time attacker, so its coe�cients are bounded
by 2n

c

for some constant c (the attacker has to write this element with a polynomial number of
bits). To conclude, there are only a polynomial number of �bad� g (i.e., a polynomial number of
non invertible elements that divide c1c2 · · · ck). But there is an exponential number of possible g
when we generate the parameters of our multilinear map. Hence, the attacker has negligible chance
to be able to guess a multiple of g if it knows nothing about it. This achieves the proof of our
Lemma 6. ut

C Experiments

In this section we provide experimental data con�rming the heuristic analysis of our attack against
the conservative method. More precisely, following this sampling method, we study the empirical
mean of A(zvzṽ), and the rate of convergence. We computed 1

|A|
∑

v∈AA(zvzṽ) for several values

of n, q and |A| and wrote it as µz(1 + ε), with ε ∈ KR. We plotted ‖ε‖∞ as a function of |A| in
log-log scale, see Figure 1.

We observe that 1
|A|
∑

v∈AA(zvzṽ) indeed converges to a constant µz in R+. Furthermore,

we observe a slope of about −1/2 in log-log scale, con�rming that the convergence is as fast as
what would be given by the Hoe�ding bound if the variables were indeed independent: ‖ε‖∞ =
f(n)/

√
|A|. In fact, it even seems that the function f is decreasing rather than slowly increasing

(Hoe�ding bound gives f(n) ≤ O(
√

log n)). The modulus q seems to have no e�ect on the relative
precision.
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n = 64, q = 12289 n = 64, q = 1437697

n = 256, q = 12289 n = 256, q = 1437697

n = 1024, q = 12289 n = 1024, q = 1437697

Fig. 1. Relative precision ‖ε‖∞ of the empirical mean 1
|A|

∑
v∈AA(zvzṽ) = µz(1 + ε) (vertical axis) as a

function of |A| (horizontal axis).
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