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An Adaptive Cascaded ILA- and DLA-Based
Digital Predistorter for Linearizing
an RF Power Amplifier

Han Le Duc

Abstract—This paper presents a novel adaptive digital pre-
distortion (DPD) technique based on a cascade of an adaptive
indirect learning architecture (ILA) and a static direct learning
architecture (DLA) using a linear interpolation look-up-table
(LILUT). The static LILUT-DLA-based DPD is designed to
identify the inverse of a radio-frequency power amplifier (PA)
model. The cascaded system of the DLLA-based predistorter (PD)
and PA is theoretically linear. However, in real-time applications,
the PA characteristics change with time due to process, supply
voltage, and temperature variations, making this cascaded system
not strictly linear, which results in some residual nonlinear
distortion at the PA output. This residual distortion is effectively
compensated by an additional adaptive ILLA-based PD using
least mean squares or recursive least squares. Thanks to the
incorporation of the static DLA, the proposed DPD approach is
less sensitive to the PA output noise, ensuring a better preinverse
of the PA and also requiring a smaller number of adaptive coef-
ficients than either the adaptive stand-alone DLA- or ILA-based
DPDs. The experimental results show that the proposed DPD
technique effectively linearizes the PA, even if its characteristics
change, and obtains better linearization performance than either
the classical stand-alone DLA- or stand-alone ILA-based DPDs.

Index Terms—Nonlinear systems, power amplifier, adaptive
digital predistortion (DPD), indirect learning architecture (ILA),
direct learning architecture (DLA), adaptive algorithm.

I. INTRODUCTION

ODERN communication systems are continuously

evolving to satisfy the requirement of high data rate
for multimedia communications. The signals of these systems
have high peak-to-average power ratio (PAPR) and wide band-
width, leading to stringent linearity requirements for signal
amplification.
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Fig. 1. DPD concept. (a) Block diagram. (b) Transfer functions of DPD unit,
PA, and DPD+PA system.

Two key quality factors of radio frequency (RF) power
amplifiers (PAs) in modern wireless communication systems
are efficiency and linearity. Unfortunately, it is hard to simulta-
neously obtain the above two requirements due to the inherent
characteristics of PAs. In order to maximize the efficiency,
PAs should operate close to saturation, producing strong
nonlinear distortion in the amplified signal. This distortion
increases the error vector magnitude (EVM) and also results
in spectral regrowth, causing interference to neighboring chan-
nels and increasing the adjacent channel power ratio (ACPR).
By operating the PA far below saturation, its nonlinear behav-
ior can be reduced. However, this leads to low power efficiency
because of the high PAPR of modern communication signals.
As a result, the PA design has to make a tradeoff between
efficiency and linearity. In order to fulfill the efficiency require-
ment without sacrificing linearity, PA linearization techniques
are required [1]. Thanks to its highly cost-effective and
easy implementation, baseband digital predistortion (DPD)
is a popular and widely used linearizion technique [2]-[11].
Its principle is shown in Fig. 1. The DPD concept places a
predistorter (PD) block in front of the PA. Ideally, the nonlin-
ear transfer function of the PD is the inverse of that of the PA.
Consequently, the cascaded PD and PA system becomes linear
and the original input is amplified by a constant gain. The
PD is added in the baseband, working entirely in the digital
domain. The performance of the DPD is controlled by a set of
complex coefficients wg,, that can be estimated either offline,
based on a block of measured input and output samples of
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Fig. 2.

the PA, or online in an adaptive way based on real-time mea-
surements of the PA input and output signals [9], [12]. Since
the characteristics of the PA are usually unknown, learning
architectures and adaptive algorithms are employed to estimate
its inverse function. There are two commonly used learning
architectures for identifying the parameters of a PD: indi-
rect learning architecture (ILA) [12]—-[17] and direct learning
architecture (DLA) [8]-[11], [18]-[20]. The ILA-based DPD
computes an inverse model of the PA via the post-distorter
(or training) block, whose input is the output of the PA as
illustrated in Fig. 2, where Gy is the gain of the linearized PA.
The PD transfer function is an exact duplicate of that of the
training block. At convergence, the identified coefficients of
the post-distorter are copied to the PD, making the cascaded
PD and PA system behave linearly. The ILA-based DPD archi-
tecture can be performed either in an offline manner using least
squares (LS) [3] or in an adaptive manner using an adaptive
algorithm such as least mean squares (LMS) or recursive
least squares (RLS) [4], [21]. The key advantage of the ILA-
based DPD is its implementation simplicity [15]. However,
it suffers from two typical drawbacks [12], [16], [17]. Firstly,
the adaptive algorithm may converge to a biased solution due
to the presence of noise in the measured PA output. Secondly,
the efficiency of the ILA-based PD performance is poor when
the PA works near its saturation region [4], [17]. To cope with
the ILA-based PD noise-induced bias problem, the output of
a forward model of the PA can be used instead of using the
real noisy PA output to identify the inverse model [14], [16].
Although these approaches yield better linearity performance
than the original ILA-based PD, their performance depends on
the accuracy of the PA forward model [4].

The above mentioned drawbacks are not present in
DLA-based DPD techniques, which can be performed either
online [9]-[11], as shown in Fig. 3(a), or offline [8], [22], as
illustrated in Fig. 3(b). In the adaptive case, the PD parame-
ters are identified by comparing the wanted signal Gy u(n)
with the PA output y(n). The error produced at the PA
output is minimized by using an adaptive algorithm such as
LMS or RLS [10], [12], [14], [17], [21]. For these approaches,
the computation of an instantaneous estimate of the gradient
of mean square error with respect to the PD coefficients
is complex and computationally expensive. Thus, most of
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Fig. 3. Block diagram of DLA-based DPD. (a) Online. (b) Offline.

these are complex in structure, and also suffer from slow
convergence [4]. In the offline case, the coefficients of the PA
model are extracted using the LS method after gathering a set
of input and output samples of the PA. The PD identification
techniques proposed in [8], [22], and [23] use a look-up-
table (LUT) to significantly reduce the computational time
required in a conventional memory-polynomial-based DPD.
However, the crucial drawback of these DLA-based DPD
techniques is to require a sufficiently large LUT in order to
obtain good linearization performance. To cope with this draw-
back, the DLA-based linearization technique in [8] proposes
a linearly interpolated LUT (LILUT) algorithm, increasing
the indexing efficiency of the LUT, and hence reducing
the LUT size. This is actually an improved solution of the
LUT-DLA-based DPD proposed in [22]. Although the LILUT-
DLA-based DPD proposed in [8] shows good performance
with low complexity and fast convergence, it is limited to
applications where the PAs are operating under relatively
stable conditions, e.g., the PA characteristics remain almost
constant over time. However, in practice, the PA characteristics
may change rapidly with time due to process, supply voltage,
and temperature (PVT) variations. If the static DPD in [8] is
employed, the different DPD functions or coefficients must be
readapted to changes in the PA characteristics, which is more
difficult than an ILA-based DPD.

Considering the aforementioned pros and cons of conven-
tional learning architectures (DLA and ILA) and the offline
LILUT-DLA-based DPD proposed in [8], we propose in
this paper, a novel adaptive DPD architecture cascading the
adaptive ILA-based PD and offline (or static) LILUT-DLA-
based PD. The static LILUT-DLA-based PD is designed to
linearize the PA for a specific condition such that the cascaded
system of the DLA-based PD and PA, named as CDPA
in the rest of the paper, is theoretically linear. As the PA
characteristics change with time due to PVT variations, the
CDPA is no longer linear, causing some residual nonlinear



distortion at the PA output. Since the most significant part
of the PA nonlinear memory effects is compensated by the
static DLA-based PD, this residual distortion can be effectively
mitigated by the proposed adaptive ILA-based PD placed in
front of the CDPA. Thanks to the incorporation of the static
DLA-based PD with the PA, the CDPA is much less nonlinear
than the PA and the proposed additional adaptive ILA-based
PD will be less complex and easier to design than either the
adaptive stand-alone DLA- or ILA-based PDs. As a result,
the proposed DPD solves several problems that arise when
using either the stand-alone DLA- or ILA-based DPDs to
linearize a PA whose characteristics change due to PVT drifts.

The rest of the paper is organized as follows. Section II
reviews the offline (or static) stand-alone LILUT-DLA-based
DPD. Section III describes the proposed adaptive linearization
technique. Experimental validation results are presented in
Section IV. Conclusions are drawn in Section V.

II. REVIEW OF THE OFFLINE STAND-ALONE
LILUT-DLA-BASED DPD

This section reviews the offline (or static) stand-alone
DLA-based DPD using the LILUT proposed in [8]. A simple
block diagram is shown in Fig. 3(b). Due to its simple
implementation, the MP-based model is widely applied for
behavioral modeling and predistortion of PAs and transmitters
exhibiting nonlinear memory effects [1], [2].

Let ¢y, denote the coefficients of the MP-based model of
a PA. These coefficients can be identified by the LS technique
using the input and output data measured from the PA as
in [24]. The input and output of the PA model can be expressed
as [3]

N M

y) =D D cumx(n—m)lx(n —m)[ 1, (1

k=1 m=0

where N and M are, respectively, the nonlinear order and
memory depth of the MP-based model of the PA, and y(n)
and x(n) denote, respectively, the output and input samples of
the PA. Ideally, the output of the CDPA system is

y(n) = Gou(n), )

where u(n) denotes the input of the CDPA system. The
output y(n) can be decomposed into two parts: the static
part s(n) depending only on the current input sample (m = 0)
and the dynamic part d(n) formed by only the previous input
samples (m =1,--- ,M ) as

y(n) = s(n) +d(n) = Gou(n), 3)
where
N
s(n) = crox(m)lx ()1, )
k=1
and
N M
d(n) =D > cimx(n—m)lx(n —m)[*1, (5)
k=1 m=1

TABLE I
INPUT AND OUTPUT OF LILUT

LILUT Input | — e R(k)L}Lglszlllcf)pru;mplitude SalR)
E(0) R(0) Sr(0)

E(k) R(k) Sgr(k)

E(K — 1) R(K — 1) Sn(K — 1)
E(K) R(K) X

where |x(n)| denotes the amplitude of the predistorted sig-
nal x(n). Given linear gain Go and the baseband input
u(n), the goal of identification is to determine the predistorted
signal x(n) at the PD output such that the CDPA system
behaves linearly. To solve this optimization problem, (4) is
rewritten as

N
st) = /> crolx M = Gouln) —d(m),  (6)
k=1

where o is the phase of the predistorted signal x(n). The
rightmost side of (6) can be computed at time instant n.
Taking absolute value of both sides of (6), the amplitude of
the predistorted signal is then the real positive root (which
always exists [25]) of the following polynomial:

N
cho|x(n>|’<‘ — |Gou(n) — d(n)| = 0. @
k=1

The roots of the polynomial of the left-hand side of (7) can
be determined by a classical root-finding process [25].
Although the root-finding process shows good lineariza-
tion performance, it is very time-consuming. Thus, it is not
applicable in a real-time application. Therefore, in [8], the
root-finding process is substituted by a LILUT algorithm,
which estimates the amplitude |x(n)| and phase a of x(n)
based on (6). Firstly, the dynamic range of |x(n)]| is estimated
according to the characteristics of the PA [26]. Secondly,
the determined dynamic range of |x(n)] is divided into K inter-
vals with equal length |Ax|. The LILUT is then constructed
and shown in Table I, where its input E (k) is computed as

N
> ciolkAx|'
i=1

and its two outputs, corresponding to the amplitude R (k) and
amplitude slope Sg(k), are calculated as

E(k) = , ®)

R(k) = kAx, ©)
Se(k) = R(k +1) — R(k) (10)

e 0<k<K—1.
Ek+1) — E(k)

Finally, the amplitude and phase of the predistorted signal
x(n) are determined by Algorithm 1, where L is the number
of training samples.
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Fig. 4. Proposed adaptive DPD using a combined learning architecture.

Algorithm 1 Offline Stand-Alone LILUT-DLA-Based DPD
1: Initialize: n = 0,d(0) =0

2:forn=1 to L—1do

3: Compute the static part:

s(n) = Gou(n) — d(n)

4: Find the index m of LUT such that two
adjacent values E(m) and E(m + 1)
in Table I, are the closest to [s(n)]
5: Compute the corresponding amplitude

lx(n)| by
lx(m)| = R(m) + [|s(n)| — E(m)] Sg(m)
6: Calculate the corresponding phase by
. s(n)
o = arg Nik
> crolx(n)]
k=1
7: Calculate the predistorted signal
x(n) = |x(n)] e/
8: end for

III. PROPOSED ONLINE DPD ARCHITECTURE

The offline LILUT-DLA-based DPD presented in Section II
is limited to applications where the PA characteristics do not
change with time. However, this scenario is not the case
in practice, especially in reconfigurable systems where the
signal type, modulation, power, etc., can change completely.
Furthermore, the adaptive stand-alone ILA-based DPD has a
noise problem.

When the PA works close to its saturation region, the cor-
relation matrix used to determine the inverse model of the
PA is badly conditioned. As a result, the identified model
parameters are very sensitive to noise at the PA output. Thus,
we propose a novel adaptive DPD technique shown in Fig. 4,
where a combined DLA and ILA architecture is designed.
The proposed architecture consists of an adaptive ILA-based
PD followed by a static LILUT-DLA-based PD. The static
LILUT-DLA-based PD uses the LILUT algorithm presented in
Algorithm 1, where a static LILUT in Table I is first computed

for the PA working under a specific condition (temperature).
The static CDPA system shown in Fig. 4 is theoretically linear
if the PA characteristics do not change. However, if the PA
characteristics change, the CDPA is no longer linear, resulting
in some residual nonlinear distortion at the PA output. The
proposed additional ILA-based PD using LMS or RLS can
effectively mitigate this residual nonlinear distortion. Thanks
to the incorporation of the static DLA-based PD with the
PA, the correlation matrix of the CDPA output samples is
better conditioned than that of the uncompensated PA output
samples. Thus, the proposed DPD is more robust to noise at
the PA output than the stand-alone ILA-based DPD, and can
efficiently track coefficient fluctuations of the PA due to PVT
drift.

A. Cascaded Architecture of the LMS-ILA-Based PD and
Static LILUT-DLA-Based PD

The standard ILA-based DPD proposed in [3], [12], [13],
[21], and [27] is applied in our solution, shown in Fig. 4. The
postinverse of the CDPA is identified using a post-distorter (or
training) block, where z(n) and zj,(n) are the input and output
of the post-distorter, respectively. The PD transfer function is
an exact duplicate of that of the training block. The ILA-based
PD has input u(n) and output xya (1).

We assume that both the ILA-based PD and post-distorter
are modeled by a MP. The MP-based model of the ILA-based
PD is expressed as [3], [23]

[
xia®) = D" opu(n — m)lu(n —m)1,

k=1 m=0

Y

where Q and P are the nonlinear order and memory depth of
the MP-based model, respectively, and wy,, are the coefficients
of the model. The input and output of the post-distorter are
expressed as

o P
M) =D D" oemz(n —m)lz(n —m)|F 7,

(12)
k=1 m=0
with
y(n)

=7, 13
z(n) Go (13)

Let us define a new sequence as
2k () = 2(n = m)|z(n — m)|*", (14)

In matrix form, the output of the post-distorter (12), can be
expressed as

zp(n) = zT(n)w, (15)
where symbol T indicates matrix transpose and
z(n) = [z10(n), ..., z00(n), ..., z1p(n), .. .,ZQP]T. (16)
The coefficient vector @ is denoted by
C():[6010,...,COQ(),...,a)lp,...,a)Qp]T. (17)
The error signal is defined by
e(n) = xiLa(n) — zp(n) = xia(n) — z' (n)o. (18)



The LMS algorithm minimizes the mean square error
E {le()*} to identify the coefficients wy,. The updating
equation is expressed as [28], [29]

1 o 2
on) =aomn —1) — Tl (LZ)}?;)'

= a(n—1) + pe(n)z(n),

19)

where u is the step-size parameter of the LMS technique.
Finally, the proposed adaptive DPD technique is described
in Algorithm 2 where Fpa {---} is the PA transfer function,
modeled by a MP function.

Algorithm 2 Proposed Adaptive DPD by Cascading the
LMS-ILA-Based PD and Static LILUT-DLA-Based PD

1: Initialize: n = 0, @(0), u.

2:2forn=1to L—1do

3: compute xya(n) expressed in (11).
Execute Algorithm 1 = xpra(n)

y(n) = Fpa {xpLA(n)}.

z(n) = &2

Zp(n) = z%(n)c?)(n - 1.

Compute the error signal:

AN AN

e(n) = xiLa(n) — zp(n).
9: Update the coefficients:
o) =wn — 1)+ ue(n)z(n).
10: End For

The key advantage of the LMS algorithm is its low compu-
tational complexity. The price paid for this simplicity is slow
convergence since LMS uses only the step-size to govern its
convergence speed and steady-state misadjustment. Thus, it is
hard to make an optimal trade-off between them [29].

B. Cascaded Architecture of the RLS-ILA-Based PD and
Static LILUT-DLA-Based PD

In order to obtain faster convergence, the RLS algorithm
[28], [29] is applied in our framework, to minimize the
following weighted sum of magnitude-squared errors:

c=> e, (20)
=0

where 0 < 1 < 1 is the “forgetting factor”. An adaptive

cascaded architecture of ILA and DLA using RLS is shown
in Algorithm 3, where ¢ is a positive scalar determined by
experimentation in order to balance the stability with the
convergence rate. Typically, 6 > 1000x2, where axz is the
variance of the input. The value of A is commonly chosen
in the range 0.95 < 4 < 1 [28], [29].

To simplify the notation, the proposed adaptive DPD archi-
tecture of the cascaded ILA- and DLA-based PDs using
LMS is denoted as Design+LMS, and likewise using RLS
as Design+RLS.

Algorithm 3 Proposed Adaptive DPD by Cascading the
RLS-ILA-Based PD and Static LILUT-DLA-Based PD

1: Initialize: n = 0, @(0), Py = JI

2:2forn=1 to L—1do

3: compute xa(n) expressed in (11).
Execute Algorithm 1 = xpra(n)

y(n) = Fpa {xpLA(n)}.

z(n) = )

Zp(n) = z%(n)c?)(n —1).

Compute the error signal:

® X s

e(n) = xiLa(n) — zp(n).
9: Compute the Kalman gain vector:

P(n — 1)z(n)
k(n) =
A+2Tm)P(n — 1)z(n)
10: Update the inverse of the correlation
matrix:

P(n) = % [P(n —1) = k()" n)P(n — 1)]

Update the coefficients of the
post-distorter:

() = wn — 1)+ k(n)e(n)

11: 5.

12: End For

i

_
SR
(TS

Fig. 5. Setup of measurement testbench.

IV. EXPERIMENTAL RESULTS

A. Description of Setup and Measurements

To evaluate the efficiency of the proposed adaptive DPD
technique, some measurements are made on the testbench
shown in Fig. 5. High power amplifiers AMPV fabricated by
Telerad, are used for our targeted applications, such as the
airborne VHF Digital Link (VDL) Model-2 system. On the
transmit side, the baseband signal is generated by a PC and
sent to a field-programmable gate array (FPGA) Zedboard for
digital signal processing (DSP) and frequency up-conversion.
An RF board (FMC150) converts the signal after FPGA
into the analog domain. The signal is then sent to a low
noise amplifier (LNA) and finally fed into the main PA.
On the receive side, the feedback loop, consisting of an
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attenuator (Att), the FMC150, and FPGA Zedboard, is used
to capture the PA output signal, down-convert it to baseband
signal, which is then sent to a PC from FPGA Zedboard for
model extraction and DPD design.

The measured input signal is a quadrature phase shift
keying (QPSK) modulated signal with 16.8 kHz bandwidth
at carrier frequency of 118 MHz. The measured output
power is 75 W. Let us denote ACPRy; and ACPRy; as the
ACPR values measured at the first and second upper adja-
cent channels, corresponding to frequency offsets of 25 kHz
and 50 kHz, respectively. Our targeted applications impose
strong constraints on ACPRs (ACPRy; < —65 dB and
ACPRy; < —75 dB) and EVM < 6%. Accurate time-
delay alignment between the input and output samples is
executed using the cross-correlation technique [30]. After a
time-alignment process, the obtained data are used to compute
the instantaneous complex gain of the PA. The measured
AM/AM characteristics and gain of the PA are shown in
Figs. 6 and 7, respectively, for various temperatures. From
these figures, one can observe that the AM/AM characteristics
and gain curve are altered as the measured temperature
is varied. The gain of the PA decreases as the temperature
increases. Thus, a new model of the PA should be re-extracted
and used for the corresponding PD identification for each
different temperature. This process makes the DPD system
too cumbersome and complex. In order to linearize the PA

Fig. 8. NMSE performance vs. nonlinear order (N) and memory depth (M)
measured at 50°C. (a) NMSE vs. M. (b) NMSE vs. N.

more efficiently, the adaptive DPD is instead required to track
the coefficient fluctuation of the PA.

B. MP-Based Model Optimization

Due to its low computational cost, satisfactory accuracy, and
easy hardware implementation [1], [2], [14], [24], MP-based
models have been widely applied for behavioral modeling
and predistortion of PAs exhibiting nonlinear memory effects.
Since the PA output in a real measurement is limited to
the frequency band of interest, most published DPD tech-
niques [2]-[4], [8], [14], [21] consider only odd-order terms of
the polynomial. However, it is worth noting that all the terms in
the polynomial, including both odd- and even-order terms for
the models, should be used to achieve the best representation
of the PA magnitude and phase responses [31]. Moreover,
if taking only odd-order terms for the models, the required
nonlinear order may be higher in order to better model the
nonlinear behavior of the PA.

In this framework, we thus use the MP-based model
including both odd- and even-order terms. After capturing a
particular set of input and output samples measured at different
temperatures, each MP-based model of the PA is determined
using the LS method [3]. In order to reduce the computational
complexity, the orders (N and M) of the MP-based models
are determined using a performance-based sweeping method.
Obviously, the nonlinear order and memory depth parameters
affect the normalized mean square error (NMSE) and ACPR
performance [32]. We additionally define ACPR deviation,
based on which, the optimal orders of the models are deter-
mined. The ACPR deviation ¢ is the normalized difference
between ACPRs of the MP-based model output and PA output,
expressed as

ACPRmodel - ACPRDUT
X
ACPRput

where ACPR0qe1 and ACPRpyt are the ACPRs of the
model output and the device under test (DUT) PA output,
respectively. Designations oy and oy will be used to denote
the measured ¢ in the first and second upper adjacent channels,
respectively. The NMSE and ACPR deviation of each model
are evaluated as a function of the nonlinear order and memory
depth over a wide range of nonlinear orders from 1 to 7
and memory depths from 0 to 6. The results reported in
Figs. 8 and 9 show that the optimal values of M and N,

100

o (%) = (21)
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TABLE II

PERFORMANCE OF THE OPTIMAL MP-BASED
MODELS AT DIFFERENT TEMPERATURES

Temperature | 25°C | 31°C | 36°C | 41°C | 46°C | 50°C

ot | ACPRUL [ —70.37 | 7024 | ~70.14 | 7035 | ~70.13 | —70.54
- PUC | ACPR-U2 | —84.22 | —84.17 | —8438 | —84.11 | —8422 | —84.25
Output | ACPRUI | =36.78 | —36.46 | —36.48 | ~36.28 | ~36.25 | ~36.53
MU | ACPR-U2 | —45.76 | —45.35 | —45.50 | —45.21 | —45.28 | —45.62
ACPRUT | —36.99 | —36.68 | —36.72 | —36.51 | —36.48 | —36.77
MP-based model | Output | s cppyp | —45.50 | —45.11 | —45.30 | —45.00 | —45.00 | —45.40
~ 5 5 5 5 5 5
M 1 1 1 1 1 1
No. Coefs 10 10 10 10 10 10
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Fig. 10. Power spectral density (PSD) at 50°C: a) PA input, b) PA output,
¢) MP-based model output.

to achieve the best NMSE and ACPR deviation, are 1 and 5,
respectively. Analogously, the above mentioned performance-
based sweeping method is applied to determine optimal mod-
els for different temperatures. As can be seen from Table II
(bottom three rows), the optimal values of the nonlinear order
and memory depth remain constant for all models when the
temperature changes. The MP-based models exactly describe
the nonlinear behavior of the PA, i.e., the ACPR values of the
MP model output are identical to those of the PA output. As a
result, the output spectrum of the model coincides with that
of the PA, as shown in Fig. 10.

Fig. 11 shows the coefficient variation of the optimal MP-
based models, which all have the same optimal nonlinear order
and memory depth. It is clear that the values of their coeffi-
cients change in a relatively smooth way over temperature.
Therefore, the proposed additional ILA-based DPD can easily
follow these variations.
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Fig. 11. Coefficient variation of the optimal MP-based models. (a) Real part.
(b) Imaginary part.

C. Validation of Proposed Digital Predistortion

Without loss of generality, the offline LILUT-DLA-based
PD designed for the PA model at 25°C can be used to compen-
sate the nonlinear behavior of the PA at various temperatures.
The coefficients of the optimal PA models are first extracted
using the LS technique with data measured from the input
and output of the PA at multiple temperatures. We test vari-
ous DPDs, including offline LILUT-DLA-based DPD, offline
LS-ILA-based DPD, adaptive LMS- or RLS-ILA-based DPD,
and our proposed DPD, when the temperature changes.

As presented in Table II, the optimal values of the nonlinear
order and memory depth of the PA model are selected as
5 and 1, respectively. In the stand-alone DLA-based DPD,
we also select N = 5 and M = 1. The LUT size is chosen
by simulation to be 32 in order to achieve a good trade-off
between performance and complexity [32].

In our approach (Design+LMS and Design4+RLS), the
initial weight vector is chosen such that the first element
is 1 and the others are zero, i.e., @(0) = [1,0,--- ,01T.
In Design+LMS, the step-size u is chosen to be 0.001 in order
to obtain a good compromise between convergence speed
and parameter estimation precision [29]. In Design+RLS,
the initial inverse correlation matrix is a diagonal matrix
whose diagonal elements are set at 10°. The forgetting factor
A is selected as 0.995. After the orders of the PA model
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and DLA-based PD model have been optimized, the orders
(Q, P) of the proposed ILA-based PD model are analogously
optimized based on the ACPR performance. ACPR values
versus O are shown in Fig. 12 for P = 1. Obviously,
the optimal value of Q is 3, at which ACPRy; and ACPRy»
are equal to —70 dB and —82 dB, respectively. These ACPR
values are almost equal to those of the PA input.

In the adaptive stand-alone ILA-based DPD, the initial
weight vector, step-size, and initial inverse correlation
matrix are chosen to be the same as those in our approach.
The nonlinear order Njpa and memory depth My of the
MP-based models of both PD and training block are optimally
selected as 6 and 1, respectively, in order to achieve the
minimum ACPR, as shown in Fig. 13.

We first investigate the performance of the offline
LILUT-DLA-based DPD presented in Section II and the offline
LS-ILA-based DPD proposed in [3], using a model of a
PA operating at 25°C. We observe a significant reduction in
spectral regrowth for both linearizion techniques, as shown
in Fig. 14. However, the offline DLA-based PD suppresses
most of the spectral regrowth and shows better performance
than the offline ILA-based PD. This is due to the fact that
the measurement noise appears at the PA output and the ILA-
based DPD is more sensitive to noise than the DLA-based
DPD [12].

We next investigate the performance of various DPDs,
including the offline LILUT-DLA-based DPD and the
proposed adaptive DPD, when the temperature changes.

-100 -50 0 50 100
Frequency (kHz)

Fig. 14. Effectiveness of offline DPDs in suppressing spectral regrowth for

the PA model at 25°C: a) output, b) offline stand-alone LS-ILA-based DPD,

c) offline stand-alone LILUT-DLA-based DPD, d) input.
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Fig. 15.  Effectiveness of various DPDs in suppressing spectral regrowth
for the PA at 50°C: a) PA Output, b) PA Input, ¢) Offline LILUT-DLA-based
DPD, d) Design+LMS, e) Design+RLS.

Fig. 15 shows the obtained results, for instance, at 50°C.
Obviously, the offline LILUT-DLA-based DPD does not
completely suppress the spectral regrowth because the PA
characteristics change with temperature drift. A further reduc-
tion in the residual spectral regrowth can be achieved by
Design+LMS because the adaptation loop updates the coeffi-
cients of the ILA-based PD to compensate the residual spectral
regrowth. Design+RLS outperforms the others. It can fully
mitigate the spectral regrowth due to the major advantages
of the RLS algorithm in obtaining faster convergence and
lower mean-square error, as clearly shown in Fig. 16. The RLS
algorithm converges in about 1700 samples, while the LMS
algorithm has not fully converged after about 5000 samples.

As presented above, some residual nonlinear distortion will
appear after executing the offline LILUT-DLA-based PD when
the PA characteristics change due to the temperature drift. As
a result, the static DLA-based DPD obtains around —60 dB
and —70 dB of ACPRy; and ACPRya, respectively over
temperature variation, as shown in Fig. 17, which does not
satisfy the ACPR requirements. In other words, it can not
effectively follow changes in the PA characteristics. In con-
trast, by employing the proposed approach, the distortion
of the PA at each temperature can be effectively corrected.
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Fig. 16. Learning curves for Design+LMS and Design+RLS.
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TABLE III
EVM PERFORMANCE OF OUR PROPOSED DESIGN+RLS

Temperature (°C) | 31 | 36 | 41 | 46 | 50
EVM (%) | 0.49 | 0.52 | 0.54 | 0.40 | 0.44

The proposed Design+RLS achieves —70 dB and —83 dB of
ACPRy; and ACPRy», respectively, which are almost equal
to the ACPR values of the input signal. Therefore, the ACPR
requirements are fully satisfied. Moreover, the obtained EVM
values are always less than 1%, as presented in Table III. This
shows that the proposed solution is able to accurately follow
changes in the PA characteristics due to temperature shift.

In order to show that the proposed DPD is more robust than
the stand-alone ILA-based DPD with respect to the noise at the
PA output, we analyze the condition number of the correlation
matrix of the output samples of both the CDPA in the proposed
DPD and the tested PA in the stand-alone LS-ILA-based DPD.
Fig. 18 shows the condition number of these two approaches.
Thanks to the incorporation of DLA, the CDPA is much more
linear than the tested PA, leading to a lower condition number
of its correlation matrix than that of the PA in the stand-alone
ILA-based DPD. This indicates that the proposed architecture
is more robust than the ILA-based DPD with respect to the
measurement noise.
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Fig. 18. Condition number at various temperatures.
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Fig. 19. Effectiveness of adaptive DPDs in suppressing spectral regrowth:
a) PA output, b) stand-alone LMS-ILA-based DPD, c) stand-alone RLS-ILA-
based DPD, d) Design+LMS, e) Design+RLS, f) PA input.

D. Comparison of Proposed Adaptive DPD With the
Stand-Alone LMS-1LA- and RLS-ILA-Based DPDs

This section makes a comparison of the effectiveness of
predistortion in suppressing spectral regrowth between the
proposed adaptive DPD and adaptive stand-alone ILA-based
DPD. Fig. 19 shows an efficiency comparison in canceling the
spectral regrowth at 50°C. Obviously, the stand-alone RLS-
ILA-based DPD shows better spectral regrowth suppressing
than the LMS-ILA-based DPD. Neither of the stand-alone
ILA-based DPDs is able to completely suppress the spectral
regrowth due to measurement noise at the PA output. Noisy
measurements seriously influence the efficiency of the ILA-
based DPD [12], [17], [33]. The stand-alone RLS-ILA-based
DPD has performance in reducing the spectral regrowth
as good as the proposed Design+LMS. As previously
presented, the proposed DPD architecture is more robust
than the stand-alone ILA-based DPD with respect to the PA
output noise. Moreover, thanks to the smaller mean-square
error of RLS, the proposed Design+RLS almost fully
reduces the out-of-band distortion to the noise floor. As a
result, it effectively compensates the PA distortion at each
temperature, obtaining —70 dB and —83 dB of ACPRy; and
ACPRy, respectively, which are almost equal to the ACPRs
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Fig. 20.  ACPR performance of various adaptive DPDs: a) PA output,
b) stand-alone LMS-ILA-based DPD, c) stand-alone RLS-ILA-based DPD,
d) Design+LMS, e) Design+RLS, and f) PA input. (a) ACPRyj.
(b) ACPRy.

of the input signal and better than the ACPRs obtained
by the stand-alone ILA-based DPD, as shown in Fig. 20.
It also uses a smaller number of adaptive coefficients than
the adaptive stand-alone ILA-based DPD, which makes the
proposed approach converge more quickly. In other words,
the proposed Design+RLS significantly outperforms the other
compared techniques. It is worth pointing out that although
the experimental results for narrowband signals are presented,
we have checked the applicability of the proposed method to
wideband signals/PAs by simulation using a Wiener model for
the PA. The obtained results show that the proposed method
has excellent performance in linearizing wideband PAs with
significant nonlinear memory effects. As a result, the proposed
approach should be applicable for wideband PA linearization.

V. CONCLUSION

In this paper, a novel adaptive DPD architecture has been
proposed in order to track nonlinear behavior changes in
PA characteristics. The proposed architecture is constructed
by cascading the adaptive ILA-based PD and the static
LILUT-DLA-based PD. The static LILUT-DLA-based PD is
designed to linearize the PA for a specific condition such that
the cascaded system of the DLA-based PD and PA, named
CDPA, is theoretically linear. In real-time applications, when
PA characteristics change due to PVT drifts, the CDPA is no
longer linear, which causes some residual nonlinear distortion
at the PA output. The proposed additional adaptive ILA-based
PD placed in front of the CDPA can effectively compensate
this residual nonlinear distortion. Thanks to the static DLA-
based PD, most of the nonlinear memory effects of the PA are
mitigated, making the CDPA much more linear than the PA.
As a result, the correlation matrix of the PA output samples
is better conditioned. The proposed solution is more robust to
measurement noise and guarantees a better preinverse model
for nonlinear PAs than the classical stand-alone ILA-based
DPD. Moreover, the combined adaptive ILA-based PD in our
DPD design is simpler and requires a smaller number of
adaptive coefficients than the adaptive stand-alone ILA-based
DPD, which makes the proposed approach converge more
quickly. The measurement results confirm that the proposed
Design+RLS fully compensates the spectral regrowth of the
PA output even if the PA characteristics change, and obtains
—70 dB and —83 dB of ACPRy; and ACPRy», respectively,

which are almost equal to the ACPRs of the input signals.
Consequently, It shows better linearization performance than
both the stand-alone DLA- and stand-alone ILA-based DPDs.
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