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Abstract. In this paper, we aim at proving the effectiveness of dic-
tionary learning techniques on the task of retinal blood vessel segmen-
tation. We present three different methods based on dictionary learn-
ing and sparse coding that reach state-of-the-art results. Our methods
are tested on two, well-known, publicly available datasets: DRIVE and
STARE. The methods are compared to many state-of-the-art approaches
and turn out to be very promising.
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1 Introduction

Retinal fundus images are now widely used for the diagnosis of various patholo-
gies, including age-related macular degeneration, diabetic retinopathy and glau-
coma. As a part of the central nervous system, the retina, and in particular its
vasculature, is also used as a biomarker for early detection of neurodegenerative
diseases.

Manual analysis of retinal images by ophthalmologists is a tedious task and,
as for other manual delineation tasks, is subject to inter- and intra-operator
variability. Thus, automatic and semi-automatic tools have been proposed, in
particular, for retinal blood vessel segmentation (RBVS). While these tools are
now starting to pervade clinical practice, the low image quality and the scale
variation of the vessels still represent major challenges to most recent methods.

We examine in this paper a family of supervised RBVS methods based on
sparse representations in learned dictionaries. These methods make use of the
sparse representation of a patch around a pixel to determine its label. The differ-
ences between the proposed methods depend mainly on the number of learned
dictionaries and the way the classifier is trained.

The general framework is composed of three stages: data preparation, seg-
mentation, and post-processing. Data preparation consists in patches extraction
and normalization. Then, in the segmentation phase, a patch around each pixel
is used by a dictionary learning method to assign its label. The output of the



previous step leads to impulsive segmentation errors and we propose a robust
regularization approach to tackle this problem. The remainder of this paper is
outlined as follows. We review in Section 2 some recent state-of-the-art methods
for RBVS. Section 3 reviews the supervised and unsupervised dictionary learn-
ing approaches and explains how both paradigms yield three different methods
for RBVS. In Section 4, the experimental setup and the results are exposed. We
conclude the paper in Section 5, pointing to possible directions for future work.

2 Related Work

RBVS has attracted a number of researchers for over two decades. Fraz et al. [1]
presented a global review of the proposed methods in the field, up to 2012. They
divided the methods into 6 classes: machine learning methods, matched filter-
ing methods, morphological processing methods, vessel tracing/tracking meth-
ods, multi-scale methods, and model-based methods. It turns out that machine
learning methods, especially the supervised ones, are in general the best. A more
specific review focusing on computer-aided diagnosis for diabetic retinopathy is
presented in [2].

In recent machine learning based approaches, a Lattice Neural Network with
Dendritic Processing (LNNDP) framework is presented in [3]. Each pixel is clas-
sified using a 5−dimensional feature vector extracted from an enhanced version
of the green channel of the original RGB images. In [4], a discriminative dictio-
nary learning technique is used. Image patches are extracted from an enhanced
version of the green channel image to learn a specific dictionary per class. Two
classes of patches are considered: patches containing a blood vessel and the oth-
ers. Given a test image, overlapping patches are first extracted. The class of each
patch is attributed according to the dictionary that best represents it. Then a
segmentation map of each patch is obtained by thresholding the blood vessel
patches and setting to zero the non-vessel ones.

The numerical results reported in [5] and [6] indicate that these works con-
stitute the current state-of-the-art in RBVS. Wang et al. [5] proposed to follow
two steps: a hierarchical feature extraction followed by an ensemble classification.
The hierarchical features are obtained from different layers of a Convolutional
Neural Network (CNN). Then Random Forest classifiers are trained on some
levels of the CNN. The final class is obtained with a winner-take-all strategy.
Liskowski et al. [6] used a CNN both as a feature extractor and a classifier.

3 RBVS Using Dictionary Learning

In what follows, we write patches as vectors. Let X = [x1, ...,xn] ∈ Rm×n be the
input dataset consisting of n patches xi ∈ Rm. In the supervised setting, one has
also access to a vector of labels y ∈ Rn, with yi denoting the label associated
with the sample xi. This section first introduces a general view of dictionary
learning, then, presents the methods proposed for RBVS.



3.1 Sparse Coding and Dictionary Learning

By choosing an overcomplete family {dk}pk=1 of vectors in Rm one can decompose
an input patch x ∈ Rm as a linear combination x =

∑p
k=1 akdk = Da, where

D ∈ Rm×p is called a dictionary, and a ∈ Rp is the vector of coefficients. Due to
overcompleteness, the previous decomposition is not unique. In order to enforce
sparsity, the following formulation has been widely adopted:

a∗ ← min
a∈Rp

‖x−Da‖22 + λ‖a‖1, (1)

where λ balances the trade-off between sparsity and reconstruction error,
‖.‖q is the `q-norm1. The first term ensures a good reconstruction of the patch
x from the dictionary, and the last term encourages the vector to be sparse. In
general, increasing the value of λ yields sparser solutions.

The general idea of dictionary learning is to learn D from the dataset X
by ensuring that each patch xi is decomposed in a parsimonious manner (see
[7] and references therein for more details). The formulation we retain for our
present work is the following [8]

D∗,A∗ ← min
D∈Rm×p,A∈Rp×n

[
R(X,D,A) =

1

n

n∑
i=1

1

2
‖xi −Dai‖22 + λ‖ai‖1

]
, (2)

where A = [a1, ...,an] is the matrix of sparse coefficients. To resolve scale ambi-
guity, the columns of D are further constrained to be in the unit Euclidean ball.
This constraint is applied to all subsequent dictionary learning variants.

3.2 RBVS by Sparse Coding then Classifier (SCTC)

This method first learns a dictionary that best represents the entire training set
(without class discrimination). Then, a random forest (RF) classifier is trained
on the generated sparse codes. The method uses the dictionary learning phase as
a high dimensional feature extractor. The training is done in the two following
steps:
– Step 1: Solve a classical dictionary learning problem (Eq. (2)).
– Step 2: Train a random forest classifier of 50 trees using the matrix of sparse
coefficients produced in Step 1 as input.

Given a patch query z, its label l is computed by first solving a sparse cod-
ing problem using the learned dictionary. Then, the classifier is applied on the
produced vector of coefficients to predict the label.

3.3 RBVS by Joint Dictionary and Classifier Learning (JDCL)

This method consists in learning jointly a dictionary and a linear classifier instead
of separating them as done in SCTC. Introduced in [9], the method is formulated
as follows

D∗,A∗,W∗ ← min
D,A,W

α‖L−WA‖2F + β‖W‖2F +R(X,D,A), (3)

1 The `q-norm (q ≥ 1) of a vector x is: ‖x‖q = [
∑

i | x[i] |q]1/q



where R is as defined in Eq. (2), W ∈ RN×p contains the linear classifier’s
parameters, N is the number of classes, α and β are weight parameters, ‖.‖F
is the Frobenius norm2, and L = [l1, ..., ln] is the label matrix where the vector
li ∈ RN is 1 at the index corresponding to the class of the sample xi and 0
elsewhere. Eq. (3) can be solved efficiently using standard dictionary learning
techniques (see [9] for more optimization details).

The label l of a query patch z is obtained using the following equation:

l = arg max
i=1,...,N

[ei = W∗a∗], (4)

where W∗ is the previously learned classifier of Eq. (3) and a∗ is obtained by
applying Eq. (1) using the query patch z and the learned dictionary D∗.

3.4 RBVS by One Dictionary per Class (DPC)

Let X = [X1, ...,XN ] be the division of the dataset into sub-matrices, where
each sub-matrix Xi ∈ Rm×ni contains only the ni samples that belong to the
class i, and N is the number of classes (N = 2 in our setting).

In this method, we learn independently one dictionary on each sub-matrix.
A query patch is classified by selecting the associated class of the dictionary that
best reconstructs it, similarly to [10].

A dictionary D∗i associated with the class i is learned using the corresponding
sub-matrix by solving the problem in Eq. (2).

The label l of a query patch z is obtained by first computing the associ-
ated sparse coefficient a∗i (using Eq. (1)) on each learned dictionary. Then, the
following equation is used to predict the label:

l = arg min
i=1,...,N

[
ei = ‖z−D∗i a

∗
i ‖22 + λ‖a∗i ‖1

]
. (5)

3.5 Post-Processing: Total Variation with `1 Fidelity Norm
(TV−`1)

The three proposed methods produce systematic errors in the form of impulse
noise. This is a common issue encountered in most pixel classification methods.
The image c in Fig. 1 shows a typical example, here obtained after applying
the SCTC method. We formulate the post-processing as a denoising problem:
we seek to recover a clean, piecewise-constant classification image from a noisy
version. We adopt the TV-`1 model of [11] since it accounts both for our prior
(piecewise constant solution) and for the likelihood (impulse noise). This leads
to the following variational problem

I∗ ← min
I
‖∇I‖1 + κ‖I − I0‖1, (6)

where I0 is a noisy classification image. We note at this point that we do not
impose any binary constraints in (6) but we simply threshold I∗ after solving
(6).

2 The Frobenius-norm of a matrix A ∈ Rm×n is: ‖A‖F =
[∑m

i=1

∑n
j=1 A[i, j]2

]1/2



4 Experiments

The previously presented methods are tested on the following datasets:
– The DRIVE (Digital Retinal Images for Vessel Extraction) [12] dataset con-
tains 40 expert annotated color retinal images taken with a fundus camera. It
is divided into two sets of 20 images: the training and testing sets. Each image
comes with a ground-truth segmentation (two for the test images and one for
the training ones) and a mask image delineating the field of view (FOV). The
first observer’s ground-truth is considered in this paper.
– The STARE (STructured Analysis of the REtina) [13] is another well-known,
publicly available database. The dataset is composed of 20 color fundus pho-
tographs. Half of the images presents pathological cases and contains abnormal-
ities, which make the segmentation task even harder. Unlike the DRIVE dataset,
the mask images are not provided. We construct them with a threshold on the
grayscale images followed by a morphological filter with a structuring element
of size 10 pixels.

4.1 Data Preparation

Given the contrast variation from one image to another, data preparation aims at
normalizing the illumination beforehand. The grayscale versions of the original
RGB images are considered throughout this experiment.

Pre-Processing
– Image normalization and patch extraction: the first normalization consists

in applying the Contrast Limited Adaptive Histogram Equalization (CLAHE)
algorithm to the grayscale image. Then, all pixels outside the FOV are set to
zero. For a given pixel, we extract the centered squared neighborhood patches of
size 8×8. On both datasets, about 140 000 pixels are randomly selected to build
our training set (i.e. around 70 000 patches per class). Patches with standard
deviation less than 0.15 are not considered in the training set.

– Patch normalization: the squared neighborhood patches are then flattened
into 64-dimensional vectors. Additional contrast normalization consists in nor-
malizing each patch vector to have unit `2-norm.

Post-Processings
After classifying each pixel of an image, we first multiply the resulting image

with an eroded version of the mask image. This procedure aims at removing the
pixels on the edges of the FOV. Then, we apply a TV-`1 regularization.

4.2 Experimental Setup and Measurements

The number of atoms p in the dictionary depends on the method: for SCTC
p = 1000, for JDCL p = 1000 , and finally p = 500 for DPC for each sub-
dictionary. The online dictionary learning [14], available in the sparse modeling



software 3 (SPAMS), is used in all our experiments as a dictionary learning
algorithm. The primal-dual algorithm of Chambolle and Pock [15] is used for
solving the TV-`1 problem (6). The parameters λ (Eq. (2)) and κ (Eq. (6)) are
set, respectively, to 0.5 and 0.9. Note that, all these values are obtained using a
grid-search and cross-validating on the training sets.

Let TP , TN , FN , and FP respectively denote the number of true pos-
itive, true negative, false negative, and false positive. We use the sensitivity
Sens = TP

TP+FN , the specificity Spec = TN
TN+FP and the accuracy Acc =

TP+TN
TP+FN+TN+FP to quantify the performance of the RBVS methods.

Fig. 1. Segmentation example using SCTC

4.3 Results and Discussions

Our results are depicted on Table 1 along with state-of-the-art results. Fig. 1
illustrates a segmentation example.

3 http://spams-devel.gforge.inria.fr/



Among the proposed methods, the SCTC approach seems to be the best
only in terms of vessel detection (i.e. good sensitivity) while the DPC approach
outputs good results with respect to all the performance measures.

The SCTC and JDCL methods tend to classify each patch with some line
as vessel. This is due to the fact that these patches and the true vessel patches
activate the same atoms, thus their sparse vectors are quite close. This problem
is reduced when using the DPC model which uses the reconstruction error to
classify a patch. Still, all the proposed methods reach the state-of-the-art results
on the two datasets while being simple in terms of their architecture and number
of parameters.

Other experiments, not reported in this paper, have been carried out with
larger patches (e.g. 16 × 16). It turns out that the sensitivity can be improved
but we are loosing on the specificity. This is due to the fact that, when using
larger patches, more pixels near a blood vessel (but not belonging to it) tend to
be classified as vessels.

DRIVE STARE

Methods Spec Sens Acc Spec Sens Acc

This paper - SCTC 95.55 83.49 94.48 94.46 85.11 93.81

This paper - JDCL 96.32 80.60 94.93 95.78 77.24 94.45

This paper - DPC 97.05 77.88 95.36 96.75 75.58 95.23

Javidi et al.[4] 97.02 72.01 94.50 96.53 77.80 95.17

Singh et al.[16] - 75.94 95.22 - 79.39 92.70

Orlando et al.[17] 96.84 78.97 - 97.38 76.80 -

Vega et al.[3] 96.00 74.44 94.12 96.71 70.19 94.83

Liskowski et al.[6]* 96.73 84.60 95.07 97.10 92.89 96.67

Wang et al.[5]* 97.33 81.73 97.67 97.91 81.04 98.13

Dasgupta et al. [18]* 98.01 76.91 95.33 - - -

*deep learning methods

Table 1. Our results on DRIVE and STARE versus the state-of-the-art.

5 Summary & Perspectives

In this paper, we presented three RBVS methods based on sparse representations
in learned dictionaries. We showed that these methods can reach state-of-the-
art results on the DRIVE and STARE datasets while remaining conceptually
simple and computationally tractable. Future work will concentrate on taking
patch correlations into account when learning the dictionary and on using more
discriminative features.
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