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Abstract

This paper details the extension of a metric-based anisotropic mesh adaptation strategy to the boundary element
method for problems of 3D acoustic wave propagation. Traditional mesh adaptation strategies for boundary element
methods rely on Galerkin discretizations of the boundary integral equations, and the development of appropriate error
indicators. They often require the solution of further integral equations. These methods utilise the error indicators to
mark elements where the error is above a specified tolerance and then refine these elements. Such an approach cannot
lead to anisotropic adaptation regardless of how these elements are refined, since the orientation and shape of current
elements cannot be modified.

In contrast, the method proposed here is independent of the discretization technique (e.g., collocation, Galerkin).
Furthermore, it completely remeshes at each refinement step, altering the shape, size, and orientation of each element
according to an optimal metric based on a numerically recovered Hessian of the boundary solution. The resulting
adaptation procedure is truly anisotropic and independent of the complexity of the geometry. We show via a variety of
numerical examples that it recovers optimal convergence rates for domains with geometric singularities. In particular,
a faster convergence rate is recovered for scattering problems with complex geometries.

Keywords: Acoustic wave scattering, Boundary Element Method, fast BEMs, Mesh adaptation, Anisotropic meshes

1. Introduction

We consider the scattering of time-harmonic acoustic waves by three-dimensional obstacles embedded within an
unbounded, homogeneous domain. Various numerical methods can be used to solve such a problem, however a natural
and popular approach is to reformulate the problem as a boundary integral equation. The main advantage of such a
reformulation is to restrict the computational domain to the boundary of the obstacle and to exactly fulfill the outgoing
radiation condition. The numerical solution of boundary integral equations is known as the Boundary Element Method
(BEM) (often called the Method of Moments in the electromagnetic community). Despite the reduction in dimension
of the computational domain, the main drawback of the BEM is the fully-populated nature of the system matrix. The
cost of BEM simulations is thus prohibitively high when large-scale problems are concerned. Hence there has been a
great deal of work since the inception of the BEM to reduce its computational cost.

If no acceleration technique is used, the storage of such a system is O(N2), where N is the number of degrees of
freedom on the scatterer boundary (e.g., the number of nodes in the mesh of the discretized boundary). The cost of
solving the dense system using a direct method such as Gaussian elimination requires O(N3) flops, whereas solution
via an iterative method such as GMRES requires O(NiterN

2), where Niter is the number of iterations. In the last
decades, different approaches have been proposed to speed up the solution of dense systems. The best-known method
is probably the fast multipole method (FMM) originally proposed by Greengard and Rokhlin [35] which enables a fast
evaluation of the matrix-vector product required by the iterative solver. Initially developed for N-body simulations,
the FMM has since been extended to oscillatory kernels [25, 34]. Now it is widely used in many application fields
and has shown its capabilities in the context of mechanical engineering problems solved with the BEM [16, 45]. An
alternative approach designed for dense systems is based on the concept of hierarchical matrices (H-matrices) [9].
The principle of H-matrices is to partition the initial dense linear system, and then reduce it to a data-sparse one
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by finding sub-blocks in the matrix that can be accurately approximated by low-rank matrices. The efficiency of
hierarchical matrices relies on the possibility to approximate, under certain conditions, the underlying kernel function
by low-rank matrices. The approach has been shown to be very efficient for asymptotically smooth kernels (e.g., the
Laplace kernel) and efficient in a pre-asymptotic regime for oscillatory kernels such as Helmholtz or elastodynamic
kernels [19].

Mesh adaptation is an additional technique to reduce the computational cost of a numerical method. The principle
is to optimize (or at least improve) the positioning of a given number of degrees of freedom on the geometry of the
obstacle, in order to yield simulations with superior accuracy compared to those obtained via the use of uniform
meshes. Adaptation is particularly important for scattering obstacles that contain geometric singularities, i.e., corners
and ridges, which lead to a rapid variation of the surface solution near these singularities. For such problems, meshes
graded toward these singularities must be employed in order to yield accurate approximations. In addition, for wave
scattering problems, we may exploit the directionality of the waves in order to further reduce the number of degrees
of freedom. The best strategy to achieve these goals is via so-called “anisotropic” mesh adaptation for which an
extensive literature exists for volume-based methods such as the finite element method and the discontinuous Galerkin
method [1]. However, there is relatively little research attention being paid to mesh adaptation in a boundary element
context. One possible explanation is the large computational cost of standard BEMs. With the development of fast
BEMs such as the Fast Multipole accelerated BEM (FM-BEM) [22] or H-matrix accelerated BEM (H-BEM) [12], the
capabilities of the BEM are greatly improved such that efficient adaptive mesh strategies are needed not only to reduce
further the computational cost, but also to certify the numerical results by assessing that the theoretical convergence
order is observed during the computations.

In the BEM community, the majority of the research on mesh adaptation has been confined to isotropic techniques
with a focus on the Laplace equation (see, e.g., the exhaustive review [27]) and extensions to the Helmholtz equation
being made only fairly recently [5, 6, 7]. These isotropic techniques are usually based on a posteriori error analysis
from which error indicators are derived. An indicator is then used to steer the mesh refinement by systematically
marking and refining only elements where the error is above a specified threshold - a process known as Dörfler
marking [15]. The derivation of appropriate local error estimators [26] is a significant challenge owing to the non-
locality of boundary integral operators. This difficulty is the main reason why adaptivity for the BEM is a much less
well-explored research topic in comparison to adaptivity for the FEM where the relevant operators are local differential
operators. In many works convergence rates for error estimates are proven rigorously, e.g., [28, 14, 30]. However, it
is seen that Dörfler refinement techniques do not usually recover the optimal convergence rates for 3D problems with
anisotropic features [4]. Anisotropic variants of this strategy have been considered in [4, 28] however with rectangular
elements for cube or cube-like shapes (where all the ridges are right angles). For these shapes they obtain the optimal
convergence rate, however for general shapes (or complex geometries), their approach would not perform as well. The
additional drawback of previously published works is the problem-dependent or integral equation-dependent nature
of the error estimates. Also, the error analysis of these methods requires a Galerkin discretization and hence a higher
computational cost than, say, a collocation discretization.

The first novelty of the present work is the extension of metric-based anisotropic mesh adaptation (AMA) to the
BEM. The metric-based AMA proposed in [38, 39] does not employ a Dörfler marking strategy but rather generates a
sequence of non-nested meshes with a specified complexity (proportional to the number of vertices or elements). The
different meshes are defined according to a metric field derived from the evaluation of the linear interpolation error of
the (unknown) exact solution on the current mesh. From a theoretical point of view, a continuous metric is derived
from the Hessian of the exact solution. From a practical point of view, an approximate metric is derived from the
numerical solution only (obtained via the BEM on a mesh). This approximate Hessian is based on the extension of
typical (volumetric) derivative recovery operators [46] to the case of numerical boundary solutions. In AMA, the size,
shape, and orientation of elements are adjusted simultaneously. The advantages of this approach are that it is ideally
suited to solutions with anisotropic features, it is independent of the underlying PDE and discretization technique
(collocation, Galerkin, etc.), and it is inexpensive. The metric-based AMA approach, as outlined above, has never
been applied to the BEM. The purpose of this paper is to detail and report on the first application of metric-based
AMA within a boundary element setting. Furthermore, we address some issues encountered when using an iterative
solver for the FM-BEM on the resulting refined anisotropic meshes. In particular, we present two simple techniques
to reduce the number of GMRES iterations required to achieve convergence when anisotropic elements are contained
in the mesh.

The second novelty of this work is the combination of two acceleration techniques, namely metric-based anisotropic
mesh adaptivity (AMA) and Fast Multipole acceleration. If no fast BEM is used, the capabilities of anisotropic mesh
techniques cannot be fully demonstrated for realistic large scale scattering scenarios. This original combination permits
us to show the performance of AMA strategy for complex real-world scattering problems such as acoustic scattering
from an aircraft (see Section 5).
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The outline of the paper is as follows. In Section 2, we recall the boundary integral equation formulation for wave
scattering problems, the discretization of the resulting boundary integral equations (BIEs), and the acceleration of
the solution of the arising linear system via the FM-BEM. In Section 3, we outline the AMA approach and extend
the relevant results from [38, 39] for the case of a 3D volume solution to a 3D surface solution. In Section 4, we
demonstrate the capabilities of the FM-BEM solver and present results illustrating the utility of a sequence of meshes
to reduce the number of iterations required by the iterative BEM solver. Finally, in Section 5, an array of numerical
examples is presented demonstrating the effectiveness of the AMA approach for the boundary element method. We
show that optimal convergence rates are achieved with AMA for scatterers with geometric singularities, as opposed
to sub-optimal rates when employing uniform meshes. Further we see how the anisotropic meshing exploits the wave
directionality for higher frequency problems, thereby reducing the number of mesh elements required. For large-scale
real-world scattering scenarios, we observe enormous gains overs the employment of uniform meshes.

2. Standard and accelerated boundary element methods

2.1. Boundary integral equations for 3D Helmholtz equation

Consider a closed bounded domain Ω ⊂ R3 with boundary Γ and let Ω+ := R3\Ω denote the exterior scattering
domain. Suppose that we have an incident plane wave ui with wavenumber k := 2π/λ (where λ is the wavelength)
and direction d; this may be written as

ui(x) = eikd·x, x ∈ R3.

ui is scattered by Ω leading to a scattered field us which, when combined with ui, gives the total field u in Ω+. This
total field is such that

∇2u+ k2u = 0 in Ω+. (1)

In this work, we consider only sound-soft (Dirichlet) boundary conditions (BCs)

u = 0 on Γ. (2)

Furthermore, we require that us = u− ui satisfies the Sommerfeld radiation condition

lim
r→∞

(
∂us

∂r
− ikus

)
= 0, (3)

where r = |x|. We note that the adaptation method presented later is general in that it can be applied to problems with
sound-hard (Neumann), mixed, or transmission boundary conditions, in addition to the sound-soft case considered
here. The sound-soft BCs, when compared to the other kinds of BC, give rise to the most severe singularities in
the boundary solution when corners and ridges are present. Hence it is for this case that mesh adaptivity is most
imperative and therefore why it is our focus in this paper.

The first main difficulty arising in the numerical solution to this exterior boundary value problem is related to the
unboundedness of the computational domain Ω+. Integral equation based methods are one of the possible tools to
overcome this issue. The approach is based on the potential theory [23]. For any positive real number k, let

Φk(x,y) =
eik|x−y|

4π|x− y|

be the fundamental solution of the 3D Helmholtz equation. The single-layer potential operator is defined by

Sφ(x) :=

∫
Γ

Φk(x,y)φ(y)ds(y), x /∈ Γ.

The trace of the single-layer potential is given by applying the exterior Dirichlet trace to S such that we have

(Sφ)|Γ = Sφ

where the boundary integral operator S is defined by

Sφ(x) :=

∫
Γ

Φk(x,y)φ(y)ds(y), x ∈ Γ.
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There exist various possible integral equations to obtain the Cauchy data. For the numerical examples considered in
Section 5, we use the simplest choice for the sound-soft problems. We employ the Dirichlet formulation using only the
single-layer operator

Sq = −ui, (4)

which is usually called the electric field integral equation (EFIE ) since, in the electromagnetic setting, the unknown
represents the electric field. The solution of the integral equation (4) is the trace of q = − ∂u

∂n on the boundary of the
domain. The value in the domain is then obtained by using the following boundary integral representation

us(x) = Sq(x), x ∈ Ω+. (5)

When the problem at hand does not have a thickness, we require a slight modification of the BIE for these problems
since here the unknown is the jump in ∂u/∂n across the surface, rather than ∂u/∂n itself. We denote this jump by[
∂u
∂n

]
. So the BIE to solve is [44]:

−ui(x) =

∫
Γ

Φk(x,y)

[
∂u

∂n

]
(y)ds(y), x ∈ Γ. (6)

It is known [42] that the Integral Equation (4) is not uniquely solvable for all wavenumbers k. Hence, in practice,
it is often preferable to employ so-called “combined” formulations, such as the combined integral formulations [20],
which are uniquely solvable for all k but are more computationally expensive. However, for the purpose of the present
paper, the choice of integral equation is not particularly important since our focus is to demonstrate the application
of AMA to BEMs. Thus we choose to employ the simplest BIE formulation in order to keep the computational cost
at a minimum.

2.2. Boundary element discretization and Fast Multipole acceleration

The main ingredients of the BEM are a transposition of the concepts developed for the Finite Element Method [11].
First, the numerical solution of the boundary integral equation (4) is based on a discretization of the surface Γ into
NE isoparametric boundary elements of order one, i.e., three-node triangular elements. Each physical element Ee on
the approximate boundary is mapped onto a reference element ∆e via an affine mapping

ξ ∈ ∆e → y(ξ) ∈ Ee, 1 ≤ e ≤ Ne.

∆e is the reference triangle in the (ξ1, ξ2)-plane. The N interpolation points y1, . . . ,yN are chosen as the vertices of the
mesh. Each unknown field q is approximated with globally continuous, piecewise-linear shape functions (vi(y))1≤i≤N :
vi(yj) = δij for 1 ≤ i, j ≤ N . A boundary element Ee contains exactly 3 interpolation nodes (yek)1≤k≤3 associated
with 3 basis functions (vek)1≤k≤3. These basis functions are related to the canonical basis (v̂k)1≤k≤3 defined on the
reference element ∆e by vek(y(ξ)) = v̂k(ξ). Each unknown field is approximated on the element Ee by

q(y) ≈
3∑
k=1

qkvek(y),

where qk denotes the approximation of the nodal value of q(yk). To discretize the boundary integral equation (4), we
employ the collocation approach. It consists in enforcing the equation at a finite number of collocation points x. To
have a solvable discrete problem, one has to choose N collocation points. The N approximation nodes thus defined
also serve as collocation points, i.e., (xi)1≤i≤N = (yj)1≤j≤N . In addition, a standard Gaussian quadrature formula
is used to evaluate the integral in (4). This discretization process transforms (4) into a square complex-valued linear
system of size N of the form

Aq = b, (7)

where the (N)-vector q collects the degrees of freedom (DOFs) while the (N)-vector b arises from the imposed
incident wave field. Assembling the full dense matrix A [11] requires the computation of all element integrals for each
collocation point, thus requiring an O(N2) computational time and memory. In addition, BEM matrix equations
such as (7) are here solved iteratively using the GMRES algorithm. With reference to (7), each GMRES iteration
requires one evaluation of Aq for a given q, a task requiring a computing time of order O(N2). To lower this O(N2)
complexity, which is unacceptable for large BEM models, fast BEM solution techniques such as the Fast Multipole
Method (FMM) must be employed.

The goal of the FMM is to accelerate the evaluation of the matrix-vector product Aq for a given q, required at
each iteration of an iterative solver applied to the BEM-discretized equations. Moreover, the governing BEM matrix
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is never explicitly formed, which leads to a storage requirement well below the O(N2) memory required for holding
it. Substantial savings in both computational time and memory requirements are thus achieved. In general terms, the
FMM exploits a reformulation of the fundamental solution in terms of products of functions of x and of y, so that
(unlike in the traditional BEM) integrations with respect to y can be reused when the collocation point x is changed.
On decomposing the position vector r = y− x into r = (y − y0) + r0 − (x− x0), where x0 and y0 are two poles and
r0 = y0 − x0 (Figure 1a) and invoking a well-known plane wave decomposition, the Helmholtz fundamental solution
is written as [25]:

Φk(x,y) = lim
L→+∞

∫
ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0)dŝ, (8)

where S is the unit sphere of R3 and the transfer function GL(ŝ; r0; k) is defined in terms of Legendre polynomials Pp

and spherical Hankel functions of the first kind h
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑
0≤p≤L

(2p+ 1)iph(1)
p (k|r0|)Pp

(
cos(ŝ, r0)

)
. (9)

It can be shown that Expression (8) is valid only for well-separated sets of collocation and integration points clustered

x

x0 y0

y

r r0

d

∂Ω

(a) (b)

Figure 1: Fast Multipole Method: (a)Decomposition of the position vector and (b) 3D cubic grid embedding the boundary.

around poles x0 and y0.
In the single-level FMM, a 3D cubic grid of linear spacing d embedding the whole boundary Γ is then introduced

to drive the computation (see Figure 1b). The FMM basically consists in using decomposition (8), with the poles x0

and y0 being chosen as the cell centres of the cells Cx and Cy, whenever x and y belong to non-adjacent cubic cells
(i.e., cells that do not share a corner, Figure 2). The treatment of such Fast Multipole (FM) contributions exploits
the plane wave decomposition (8) of the fundamental solution, truncated at a finite L and in a manner suggested by
its multiplicative form. One notes that q→ Aq is a discretized version of of the single-layer integral operator q → Sq.
The FM-BEM essentially consists in an accelerated method for the evaluation of discretized integral operators on
given densities. The efficient evaluation of Sq needed in (4) is decomposed into three steps:

1. Evaluation of the multipole moments for each cell Cy

R(ŝ; Cy) =

∫
Γ

eikŝ.(y−y0)q(y)ds(y).

2. Application of the truncated transfer functions

L(ŝ; Cx) =
∑

Cy /∈A(Cx)

GL(ŝ; r0)R(ŝ; Cy).

3. Numerical evaluation of the integration over the unit sphere with a quadrature rule

(Sq)FM (x) ≈
∑
q

wq

[
e−ikŝq.(x−x0)L(ŝq; Cx)

]
.
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Cell Cx

Adjacent cells Cy ∈ A(Cx)
Far cells

Cy /∈ A(Cx)

Ω

boundary of the domain

d

Figure 2: FM-BEM: Definition of the adjacent cells.

Conversely, when x and y belong to adjacent cells, traditional BEM evaluation methods are used instead.
To improve further the computational efficiency of the FM-BEM, standard (i.e., non-FMM) calculations must be

confined to the smallest possible spatial regions while retaining the advantage of clustering the computation of influence
terms into non-adjacent large groups whenever possible. This is achieved by recursively subdividing cubic cells into
eight smaller cubic cells. New pairs of non-adjacent smaller cells, to which plane wave expansions are applicable, are
thus obtained from the subdivision of pairs of adjacent cells. The cell-subdivision approach is systematized by means
of an octree structure of cells. At each level `, the linear cell size is denoted d`. The level ` = 0, composed of only
one cubic cell containing the whole surface Γ, is the tree root. The subdivision process is further repeated until the

finest level ` = ¯̀, implicitly defined by a preset subdivision-stopping criterion (d
¯̀ ≥ dmin), is reached. Level-¯̀ cells

are usually termed leaf cells. This is the essence of the multi-level FMM, whose theoretical complexity is O(N logN)
per GMRES iteration both for computational time and memory requirements. More details on the implementation of
the FM-BEM for waves can be found in [17].

2.3. Regularity of the boundary data

A standard rule of thumb for wave approximation problems is that between 6 and 10 degrees of freedom per
wavelength are required to achieve “engineering accuracy” with numerical methods [41]. The most popular way to
distribute these degrees of freedom is over a uniform mesh of the surface. However, for calculations involving scatterers
with ridges, it is well known that this accuracy can be severely diminished if uniform meshes are employed [36].
Furthermore, the convergence of BEMs for these problems will be suboptimal. This is due to the low regularity of the
boundary data at ridges. In particular, at a ridge, we expect the acoustic pressure u to behave as [36]

u ∼ r πα as r → 0, (10)

where r is the distance from the ridge, and α is the exterior angle. Hence the flow velocity will behave as

∂u

∂n
∼ r πα−1 as r → 0. (11)

At corners where two or more ridges meet, the singularities in u and ∂u/∂n are even more severe and do not have
simple expressions such as (10) and (11) (see, e.g., [8]).

In order to accurately approximate the solutions of such scattering problems and recover the optimal convergence
order, the mesh must be appropriately refined towards the ridges. We note that the optimal order of convergence in the
L2-norm for P1 discretizations is O(N−1) where N is the number of DOFs. Optimal a priori refinement strategies can
be devised via a consideration of the polynomial interpolation of functions with the appropriate singularities [3, 33].
However, for complicated scattering geometries with vertices, designing an optimal mesh is challenging and often
infeasible. Hence adaptive meshing strategies have proven popular. In the next section we describe the adaptive
strategy employed here.

3. Metric-based anisotropic mesh adaptation

In this section, we derive new estimates for the metric-based anisotropic mesh adaptation procedure in the case of
3D surface solutions. Further details on the approach derivation for volume solutions and examples of application can
be found in [38, 39], or in the comprehensive review [2].
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The goal of mesh adaptation is to find the optimal mesh that permits the minimization of the approximation error
due to the discretization scheme, i.e., the BEM in our context. To date, most mesh adaptation approaches for the
BEM rely explicitly on the local error estimation of the boundary approximation to drive the adaptation procedure.
The derivation of appropriate local error estimators is a significant challenge owing to the non-locality of boundary
integral operators. This difficulty is the main reason why adaptivity for the BEM is a much less well-explored research
topic in comparison to adaptivity for the FEM where the relevant operators are local differential operators.

The metric-based mesh adaptation method employed in this paper is also linked to the error in the surface approx-
imation but in a much less explicit way. In addition, it is not linked to the underlying boundary integral operators.
Rather, our method is connected to the linear interpolation error of the (unknown) exact solution on the mesh (inter-
polation with higher order functions has not yet been considered) within a specified norm. Then, given a number of
degrees of freedom, meshes which minimize this interpolation error are designed in an anisotropic setting. Via argu-
ments relating the BEM approximation error to this interpolation error, such meshes are seen to be close to optimal
for BEM solutions. Many authors have considered such a technique, e.g., [21]. However this is the first time it is used
in the boundary element context. In what follows, we focus on the description of metric-based mesh adaptation in the
BEM setting, i.e., we assume that the solution is only provided on the boundary Γ.

3.1. Metric-based anisotropic mesh adaptation for a surface solution

A convenient framework to generate anisotropic meshes is that of Riemannian metric spaces. A Riemannian
metric space is defined by a metric tensorM(x) (whereM is a symmetric positive definite matrix), i.e., is a smoothly
varying function of the physical variable x. In the context of anisotropic mesh generation, each mesh vertex x has an
assigned value M(x) which dictates the size and orientation of adjacent elements. By generating a unit mesh in the
corresponding Riemannian metric space, we obtain an anisotropic mesh refined in Euclidean space according to the
metric M. This is the fundamental idea of metric-based mesh adaptation as introduced in [31].

A surface mesh, associated with a Riemannian metric space M = (M(x))x∈Γ is a triangulation of the surface Γ.
A triangle K, which is defined by its edges {ei}3i=1, is unit with respect toM if the length of each edge is unit in this
metric, i.e., if

||ei||M :=
√
teiMei = 1, for i = 1, 2, 3. (12)

At this point it is important to note that in the BEM context, the mesh is 3D but the elements are 2D. We need to
introduce the operator RK that restricts a 3D quantity to the 2D local element frame. RK can be deduced from the
edges of K, such that

RK(M−1/2) =

(
tt1M−1/2 t1

tt1M−1/2 t2
tt1M−1/2 t2

tt2M−1/2 t2

)
,

where

t1 =
e1

‖e1‖
and t2 =

[te1e1] e2 − [te1e2] e1

‖[te1e1] e2 − [te1e2] e1‖
.

If the three edges of K are of unit length with respect to the metric tensor M, then the area of K computed in the
Riemannian (|K|M) or Euclidean (|K|) space is, respectively,

p
3

2

1

|K|M =

√
3

4
, and |K| =

√
3

4
det(RK(M−1/2)).

The existence of a conforming unit mesh in which each triangle is perfectly unit with respect to a given Riemannian
metric space is not guaranteed in general. Hence the objective of seeking a unit mesh must be relaxed somewhat.
We seek a quasi-unit mesh with respect to M, which is a mesh composed of quasi-unit triangles. A triangle K is
quasi-unit with respect to M if

1√
2
≤ ||ei||M ≤

√
2, for i = 1, 2, 3, and |K|M =

√
3

4
. (13)

These values come from practical considerations, see discussions in [37]. Using the above notion of a quasi-unit mesh,
the generation of anisotropic meshes is simplified. The mesh generator is only required to generate a quasi-unit mesh
in the prescribed Riemannian metric space, and this is shown to be always possible in [37]. The generated adapted
mesh is anisotropic in Euclidean space.
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The principle of AMA theory is then to minimize the error coming from the linear interpolation of the (unknown)
exact solution. In the BEM context, we cannot directly apply the results proposed for 2D or 3D volume solutions
as even though we work in 3D, we only have the solution on a surface. In particular, we cannot recover the Hessian
of the numerical solution which is needed for the AMA procedure. One alternative would be to extend the theory
for 3D volume solutions by considering the covariant derivatives. This approach would involve complex developments
of differential geometry. In addition, we only focus on a linear approximation of the surface. These developments
are mainly relevant for higher order approximations. A more natural and simple approach in the BEM context is to
extend the surface solution in a tubular neighborhood, i.e., for a collection of points whose distance to the surface is
smaller than ε. More precisely, to any solution us defined on the surface Γ, we associate the lifting u defined on the
tubular neighborhood Γε by

u(x) = us(P(x))

where P(x) is the projection onto the surface Γ. The function u is now a 3D volume solution and we can define its
Hessian.

3.2. Controlling the linear interpolation error

We suppose that the solution u is sufficiently smooth to possess a second order Taylor approximation. For 3D
volume solutions, the quadratic approximation uq of u is given by its truncated Taylor expansion centered at point
a:

u(x) ≈ uq(x) := u(a) + t∇u(a)(x− a) +
1

2
t(x− a)H(a)(x− a),

where H is a symmetric matrix representing the Hessian of the extended solution u.
We now have all the tools to derive an estimation of the interpolation error. We follow the same ideas than in [38].

We note Πh the discrete linear interpolation operator, i.e., Πhu is the linear interpolant of u on the mesh HN (with
N nodes). The starting point is to show that the interpolation error in the L1 norm of the solution u on a triangular
element K is

||u−Πhu||L1(K) =
|K|
24
|

3∑
i=1

teiH ei| ≤
|K|
24

3∑
i=1

tei |H| ei, (14)

where the ei are the edges of the triangle K provided in the local element frame and for every symmetric matrix H,
|H| denotes the positive symmetric matrix deduced from H by taking the absolute values of its eigenvalues. The proof
is based on the evaluation of the pointwise interpolation error within the element, i.e., (u − Πhu)(x) for x ∈ K. It
only uses the mapping onto the reference element and the knowledge that the solution is a quadratic function. This
error is then integrated over the element.
Proof: The reference element Kref is defined by its three vertices:

x̂1 = t(0, 0), x̂2 = t(1, 0), x̂3 = t(0, 1).

The mapping onto the current element K is given by:

x = x1 +BK x̂ with BK = [x2 − x1,x3 − x1] = [e1, e2], x ∈ K, x̂ ∈ Kref ,

where we have introduced the edges: e1 = x2 − x1, e2 = x3 − x1, and e3 = x3 − x2. The quadratic function u
reads in the frame of Kref :

u(x(x̂)) =
1

2
tx1H x1 +

1

2
tx1H BK x̂ +

1

2
tx̂ tBK H x1 +

1

2
tx̂ tBK H BK x̂.

As we consider linear interpolation, the linear and constant terms of u(x(x̂)) are exactly interpolated such that only
quadratic terms are kept. We introduce ũ(x) = 1

2
tx̂ tBK H BK x̂, then it becomes

(u−Πhu)(x) = (ũ−Πhũ)(x).

We rewrite ũ in matrix form as

ũ(x(x̂)) =
1

2
t

(
x̂
ŷ

)[
te1He1

te1He2
te2He1

te2He2

](
x̂
ŷ

)
,

and then ũ in Kref reads:

ũ(x(x̂)) =
1

2

(
(te1He1) x̂2 + (te2He2) ŷ2 + 2(te1He2) x̂ŷ

)
.
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ũ is now linearly interpolated on Kref . Its linear interpolant Πhũ(x̂) writes ax̂ + bŷ + c, where the coefficients
(a, b, c) ∈ R3 satisfy the following linear system ensuring Πhu(vi) = u(vi) for all i ∈ [1, 3], with xi the vertex i:

Πhũ(x1) = ũ(x(0, 0)) = 0 = c,

Πhũ(x2) = ũ(x(1, 0)) = 1
2 (te1He1) = a,

Πhũ(x3) = ũ(x(0, 1)) = 1
2 (te2He2) = b.

The solution of the previous linear system gives the final expression of Πhũ:

Πhũ(x(x̂)) =
1

2

[
(te1He1) x̂+ (te2He2) ŷ

]
.

The exact pointwise interpolation error is then given by

(u−Πhu)(x(x̂)) =
1

2
[ (te1He1) (x̂2 − x̂) + (te2He2) (ŷ2 − ŷ) + 2 (te1He2) x̂ŷ ].

Classically, for every function F , its integration over K can be computed through its expression in Kref :∫
K

F (x) dxdy =

∫
Kref

F (x(x̂)) ||e1 ∧ e2|| dx̂dŷ = 2|K|
∫
Kref

F (x(x̂)) dx̂dŷ.

Consequently, the interpolation error in the L1 norm, evaluated by a direct integration of |(u−Πhu)(x)|, is given by

‖u−Πhu‖L1(K) =
2|K|
24

∣∣te1H e2 − te1H e1 − te2H e2

∣∣.
The cross term can be expressed only in terms of eiH ei for i = 1, .., 3 by remarking that e1 − e2 + e3 = 0. It follows

2te1H e2 = te1H e1 + te2H e2 − te3H e3,

and we deduce:

2
∣∣te1H e2 − (te1H e1 + te2H e2)

∣∣ =

∣∣∣∣∣
3∑
i=1

teiH ei

∣∣∣∣∣ .
When all the eigenvalues of H are greater than or equal to zero, we have∣∣∣∣∣

3∑
i=1

teiH ei

∣∣∣∣∣ =

3∑
i=1

teiH ei.

On the other hand, when H has positive and negative eigenvalues, we have only the following inequality∣∣∣∣∣
3∑
i=1

teiH ei

∣∣∣∣∣ ≤
3∑
i=1

tei |H| ei.

This property is used to conclude the proof in the general case. �
We consider now all elements K which are unit with respect to the metricM. The next step consists in introducing

the metric M, i.e, in showing that

3∑
i=1

teiH ei =
3

2
trace(RK(M− 1

2 HM− 1
2 )).

Proof: We consider first the simple case where RK(H) = I2 and RK(M) = I2 (where I2 is the 2× 2 identity matrix).
The regular triangle K0 = (x1,x2,x3) unit for I2 is defined by the vertices:

x1 = (0, 0) , x2 = (1, 0) , x3 =

(
1

2
,

√
3

2

)
.

We first show the following preliminary result: For every line (D) passing through one of the vertices of K0, the sum
of the square lengths of the edges projected on (D) is invariant.
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Without loss of generality, we assume that (D) passes through the vertex x1 of K0. If (D) is defined by the vector

n = (cos(v), sin(v)) ,

with v ∈ R, then the length of the three edges of K0 projected on (D) are given by:

a = e1 .n = cos(v), b = e2 .n =
1

2
cos(v) +

√
3

2
sin(v), c = e3 .n =

−1

2
cos(v) +

√
3

2
sin(v).

Such that a2 + b2 + c2 = 3/2. When RK(M) is different from I2, we use RK(M− 1
2 ) that maps the unit ball of I2

onto the unit ball of RK(M). (D) is now directed by one of the eigenvectors of RK(M), e.g., vj , and which is passing
through x1. The lengths a, b and c are thus multiplied by hj , i.e., the size prescribed by RK(M) in the direction vj .
Consequently, the square length of the edges projected on (D) are multiplied by h2

j . It comes using the preliminary
result:

3∑
i=1

(tei vj)
2 =

3

2
h2
j .

Considering this relation for the two principal directions of RK(M), we obtain:

3∑
i=1

‖ei‖22 =

2∑
j=1

3∑
i=1

(tei vj)
2 =

3

2

(
h2

1 + h2
2

)
=

3

2
trace(RK(M)−1). (15)

We now consider the general case where a symmetric matrix RK(H) is involved in the estimation instead of
RK(H) = I2. RK(H) being symmetric, it has two real eigenvalues (µi)i=1,2 along the principal directions (ui)i=1,2.
If K is a regular triangle with edges (ei)i=1,3, according to the preliminary result, the sum of the projected square
length of edges (ei)i=1,3 on each principal direction uj is equal to 3/2. We deduce:

µj

3∑
i=1

(tei uj)
2 =

3

2
µj , for j ∈ [1, 2] and

2∑
j=1

3∑
i=1

µj (tei uj)
2 =

3

2
(µ1 + µ2).

The previous equality reads:
3∑
i=1

teiHei =
3

2
trace(RK(H)).

We deduce the general case by taking RK(M− 1
2 HM− 1

2 ) as a symmetric matrix. In that case, each edge ei of the

regular triangle is mapped on ẽi = RK(M− 1
2 )ei. The new triangle defined by edges (ẽi)i=1,3 is unit with respect to

RK(M). This concludes the proof. �

Using that |K| =
√

3
4 det(RK(M−1/2)), the interpolation error (14) is finally expressed for a surface solution by:

||u−Πhu||L1(K) =

√
3

64
det(RK(M− 1

2 )) |trace(RK(M− 1
2 HM− 1

2 ))|. (16)

t2

t1
a

n

Figure 3: To extend the concept of metric-based error estimates, we introduce a surface restriction Rs on the local tangent plane.

Importantly, (16) implies that the interpolation error does not depend on the element shape, i.e., on the mesh
generator. The metric alone contains enough information to describe completely the linear interpolation error in the
L1 norm. In addition, this interpolation error can be expressed with continuous quantities only. IndeedM and H can
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be defined continuously anywhere. The restriction RK is replaced by its continuous counterpart Rs, i.e., the tangent
plane restriction. For a smooth surface, the operator Rs is defined by using the local Frenet frame [t1, t2, n] (see
Fig. 3). We thus define a continuous linear interpolation error, independent from the discrete mesh similarly to [38]
by removing the surface contribution of (16)

2
||u−Πhu||L1(K)

|K| =
1

8
|trace(Rs(M−

1
2 HM− 1

2 ))| ≤ 1

8
trace(Rs(M−

1
2 |H|M− 1

2 ))

Then, we define the upper bound of the continuous interpolation error by

eRs(M)(x) =
1

8
trace(Rs(M−

1
2 |H|M− 1

2 )). (17)

Finally, the continuous interpolation error calculated on the continuous mesh M is given by

Ep(M) =

∫
Γ

(
eRs(M)(x)

)p
dx, p ≥ 1. (18)

3.3. Numerical validation on an analytical example

In this section, we validate the previous continuous analysis and the assumption to work in the tangent plane. To
this end, we compare the continuous evaluation of the interpolation with the discrete evaluation in a simple analytic
case. For the surface, we consider a quarter of a cylinder (S) defined by the following parametric equations: x

y
z

 = σ(u, v) =

 cos(u)
sin(u)
v

 ,

with u ∈ [0, π/2] and v ∈ [0, 1]. The Frenet frame is then given by n = t(x, y, 0), t1 = t(0, 0, 1) and t2 = t(−y, x, 0),
so that the restriction Rs is defined everywhere. We also consider a continuous description of the mesh given by the
following metric:

M(x, y, x) = α

 h−2
x

h−2
y

h−2
z

 ,

with hx(x, y, z) = 0.2, hy(x, y, z) = 0.1(y+1)+0.05(x−1) and hz(x, y, z) = 0.2(z+2). In the continuous mesh setting,
we introduce the complexity N of a mesh. It is the continuous counterpart of the number of vertices and it governs
the size of the meshes, i.e.,

N :=

∫
Γ

d(x)dx =

∫
Γ

√
det(Rs(M)(x)) dx,

where d = (h1h2)−1 is the density and (hi)i=1,2 are the local sizes along the principal directions of Rs(M). In this
analytical example, α is a parameter that controls the complexity of the continuous mesh.

Given the quadratic function u(x, y, z) = x2 − y2 + xz, we can compute the right hand side of (18) using a formal
integration. We have : ∫

S

eRs(M)(a)dS =
0.01038536836π

8α
.

We then compare this continuous estimation with a discrete one based on a sequence of meshes generated with
α = [100, 500, 1000, 2000, 4000]. The interpolation error is computed with a numerical integration. Figure 4a represents
the mesh for α = 100. In Figure 4b, we plot the continuous and discrete errors. We also give an upper and lower
bound as the mesh generator is not able to generate a perfectly unit-mesh but only quasi-unit meshes. An edge is
considered to be quasi-unit when its length computed in the metric is in [1/

√
2,
√

2]. We observe that the discrete
interpolation error fits the continuous one, and that the deviation is always contained within the lower and upper
bounds (corresponding to the generation of a quasi-unit mesh instead of a perfectly unit one). This example confirms
the relevance of the use of the tangent plane restriction. We now have all the tools to derive the mesh minimising the
continuous interpolation error.
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(a) (b)

Figure 4: (a) Adapted mesh on the cylinder for α = 100 and (b) comparison between a continuous and discrete evaluation of the boundary
interpolation error.

3.4. Deriving the optimal continuous mesh

The introduction of the continuous interpolation is very important to find the optimal mesh, i.e., the mesh minimizing
the error introduced in the BEM solution. Indeed, the initial discrete optimization problem reads:

Find the surface mesh HoptN with N nodes, minimising the discrete interpolation error ||u−Πhu||Lp(Γh), (Pd)

where Γh is the discrete support representing Γ. This problem is generally intractable practically and would require
some simplifications. By replacing the discrete interpolation error with its continuous equivalent, we do not have
anymore to deal with discrete quantities. Using the mathematical tools defined on the continuous mesh space instead
of the discrete one, the optimization problem is simplified. It is the originality of this work (similarly to [38]), to solve
this problem in a continuous setting. We consider in the following the continuous interpolation error controlled in Lp

norm (with p ≥ 1). The global optimization problem becomes to find the optimal continuous mesh M∗ minimizing
the continuous interpolation error in the Lp norm:

Given a complexity N , find M∗ = argminM

(∫
Γ

(
eRs(M)(x)

)p
dx
)1/p

. (Pc)

The optimization problem (Pc) is well-posed and the interpolation error is expressed continuously without the need
to define a discrete support. In the following section, (Pc) is solved in two steps.

We need first to introduce some concepts of the continuous mesh framework (detailed in [38]). These meshes are
represented by a Riemannian metric space M = (Rs(M)(x))x∈Γ. Locally, the spectral decomposition of Rs(M)(x) is

Rs(M)(x) = R(x)Λ(x)tR(x),

where R(x) is an orthonormal matrix that provides the local orientation given by the eigenvectors (vi(x))i=1,2. The
(λi(x))i=1,2 are the corresponding eigenvalues. As a result, the diagonal matrix Λ is either[

λ1(x) 0
0 λ2(x)

]
or

[
h−2

1 (x) 0
0 h−2

2 (x)

]
.

Introducing the density d = (h1h2)−1 and the anisotropic quotients ri = h2
i (h1h2)−1, we can write

Rs(M)(x) = d(x)R(x)

[
r−1
1

r−1
2

]
tR(x).
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It follows from (17) that

eRs(M) =
1

8

(
d−1(a)

2∑
i=1

ri(a)tvi(a)|Rs(H)|vi(a)
)
,

where vi denote again the eigenvectors of the metric Rs(M).

Optimal density and anisotropic ratios for a fixed orientation. It is now possible to solve the continuous optimization
problem. We introduce γi = tvi(a)|Rs(H)|vi(a), i.e., the directions of the continuous mesh. The first step in the
solution of (Pc) is to fix γ1 and γ2. Since the density is constant, we can write r2 ∼ r−1

1 . The function eRs(M) locally
writes:

eRs(M) =
d−1

8

(
r1γ1 + r−1

1 γ2

)
,

such that, we have to solve:

min
(r1, d)

∫
Γ

d−p
(
r1γ1 + r−1

1 γ2

)p
, under the linear constraint:

∫
Γ

d = N ,

where d is now an unknown of the optimization problem and the constraint is linear. In addition, the problem is
uncoupled. It is thus natural to exhibit first the optimal anisotropic quotient r1 and the optimal density in a second
step.

To minimize Ep(M) defined in (18), we use the calculus of variations. The classical Euler-Lagrange necessary
condition states that for the variation δM = (δr1, δd), we have:

∀δr1, ∀δd with

∫
Γ

δd = 0, δEp(M; δr1) + δEp(M; δd) = 0. (19)

If we note β =
(
r1γ1 + r−1

1 γ2

)
, (19) for δd = 0 leads to

δEp(M; δr1) =

∫
Γ

pd−pβp−1
(
γ1 − r−2

1 γ2

)
δr1 = 0. (20)

It follows r1 =
√
γ2/γ1, r2 =

√
γ1/γ2 and eRs(M) becomes

eRs(M) =
d−1

8

(
r1γ1 + r−1

1 γ1

)
=

1

4
d−1 (γ1 γ2)

1
2 . (21)

Then (19) for δr1 = 0 leads to

δEp(M; δd) =

∫
Γ

p
1

4p
d−p−1 (γ1 γ2)

p
2 δd = 0 with the contraint

∫
Γ

δd = 0. (22)

A condition to ensure (22) is given by d−p−1 (γ1 γ2)
p
2 = C where C is a real constant. Using the constraint of the

constant complexity N , the final expression of d is

d = N
(∫

Γ

(γ1 γ2)
p

2(p+1)

)−1

(γ1 γ2)
p

2(p+1) . (23)

Finally, the optimal continuous mesh M∗ obtained by solving (Pc) is described by

λ∗i = (h∗i )
−2

= N
(∫

Γ

(γ1 γ2)
p

2(p+1)

)−1

(γ1 γ2)
− 1

2(p+1) γi , and r∗i =
(γ1 γ2)

1
2

γi
∀i = 1, 2 . (24)
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Uniqueness. It is then possible to prove that the optimal continuous mesh M∗ given by (24) is the unique solution
of (Pc) verifying Ep(M

∗)p < Ep(M)p for all M having the same fixed (γi)i=1,2.

Proof: Evaluating Ep to the power p at the optimal point M∗, it becomes

Ep(M
∗)p =

1

4p
N−p

(∫
Γ

(γ1 γ2)
p

2(p+1)

)p+1

. (25)

A generic M of complexity N is given by its two anisotropic quotients (ri)i=1,2 and its density d. To take into account
the constraint on the density, the density is rewritten as d = N (

∫
Γ
f)−1f , where f is a strictly positive function. The

error committed with a generic M is then

Ep(M)p =
N−p
8p

(∫
Γ

f

)p ∫
Γ

f−p (r1γ1 + r2γ2)
p
.

To prove Ep(M
∗)p < Ep(M)p, we use the generalized arithmetic-geometric inequality which comes from the strict

concavity of the logarithm function (since r1γ1 6= r2γ2, otherwise it would be the optimal continuous mesh):

ln

(
1

2
(r1γ1 + r2γ2)

)
>

1

2
(ln (r1γ1) + ln (r2γ2)) = ln

(
r

1
2
1 γ

1
2
1 r

1
2
2 γ

1
2
2

)
= ln

(
γ

1
2
1 γ

1
2
2

)
=⇒ (r1γ1 + r2γ2)

p
> 2p

(
γ

1
2
1 γ

1
2
2

)p
,

where we have used that r1 r2 = 1. Finally, if we denote g = (γ1 γ2 )
p

2(p+1) , we have
Ep(M

∗)
p
p+1 =

1

4
p
p+1

N− p
p+1

∫
Γ

g ,

Ep(M)
p
p+1 >

1

4
p
p+1

N− p
p+1

(∫
Γ

f

) p
p+1
(∫

Γ

f−pgp+1

) 1
p+1

.

Using the Hölder inequality, we have that

(∫
Γ

f

) p
p+1

(∫
Γ

f−pgp+1

) 1
p+1

=

(∫
Γ

f

) p
p+1

(∫
Γ

(
g

f
p
p+1

)p+1) 1
p+1

≥

(∫
Γ

f
p
p+1

(
g

f
p
p+1

))
=

∫
Γ

g , (26)

as
p + 1

p
≥ 1, p + 1 ≥ 1 and

p

p + 1
+

1

p + 1
= 1 . Relation (26) implies Ep(M

∗) < Ep(M) for all M having the same

fixed γ1, γ2. The optimal solution M∗ is thus unique. �

Optimal orientations. The last step consists in deriving the optimal directions of the continuous mesh M∗. We know
from (21) and (23) that for a given set of directions (vi)i=1,2, the optimal interpolation error reads:

Ep(M
∗) =

N−1

4

(∫
Γ

(det(G))
p

2(p+1)

) p+1
p

,

where G is the diagonal matrix composed of γ1 and γ2. It is then possible to minimize the optimal interpolation error

by seeking the directions vi minimizing det(G)
p

2(p+1) , or equivalently minimizing det(G). Geometrically, det(G) is the
area of the rectangle defined by (vi)i=1,2 and of length (tvi |Rs(H)|vi)i=1,2. We denote by (λi)i=1,2 the eigenvalues
of |Rs(H)| and (ui)i=1,2 its principal directions. The length of a side computed with respect to |Rs(H)| is:

tvi |Rs(H)|vi = λ1

(
tvi u1

)2
+ λ2

(
tvi u2

)2
.

We denote by θ the angle between u1 and v1 (see Fig. 5). The problem is now to minimize

(tv1 |Rs(H)|v1)(tv2 |Rs(H)|v2) = (λ1 cos2 θ + λ2 sin2 θ)(λ1 sin2 θ + λ2 cos2 θ) = (λ1 − λ2)2 sin2 θ cos2 θ.

It results that det(G) is minimal when the vectors (vi)i=1,2 are aligned with the principal directions of |Rs(H)|.
Using (24), we conclude that the optimal metric both in sizes and directions is given by the following theorem.
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Figure 5: Determination of the optimal orientations of the continuous mesh.

Theorem 1. Let u be a twice continuously differentiable function and H its Hessian, the optimal continuous mesh
M∗ minimizing Problem (Pc) reads locally:

Rs(M∗) = D∗ det(|Rs(H)|)
−1

2(p+1) |Rs(H)|, with D∗ = N
(∫

Γ

det(|Rs(H)|)
p

2(p+1)

)−1

. (27)

M∗ is unique, locally aligned with the eigenvectors basis of Rs(H) and has the same anisotropic quotients as Rs(H).
In addition, M∗ provides an optimal explicit bound of the interpolation error in the Lp norm (with p ≥ 1):

Ep(M
∗) =

N−1

4

(∫
Γ

det (|Rs(H)|)
p

2(p+1)

) p+1
p

. (28)

We now have all the tools to generate in practice a discrete mesh approximating the continuous optimal solution.
We can use any metric-based adaptive mesh generators as soon as the generated mesh is quasi-unit. In addition, we
provide bounds on the discrete interpolation error when the continuous mesh is projected into the space of discrete
meshes by means of an adaptive mesh generator. If the mesh generator achieves a quasi-unit mesh with respect to
M∗, the following bounds for the discrete interpolation error are obtained:

1

2
Ep(M

∗) ≤ ‖u−Πhu‖Lp(Γh) ≤ 2Ep(M
∗) ,

or equivalently,

1

8
N−1

(∫
Γ

det (|Rs(H)|)
p

2(p+1)

) p+1
p

≤ ‖u−Πhu‖Lp(Γh) ≤
1

2
N−1

(∫
Γ

det (|Rs(H)|)
p

2(p+1)

) p+1
p

. (29)

In other words, M∗ defined by (27) allows us to generate an optimal adapted mesh to control the interpolation
error in the Lp norm. One main advantage of this approach is to be completely generic, independent from the PDE
and the numerical scheme.

3.5. Application to solutions given by a BEM approximation

The above results are valid for the linear interpolant Πhu of the exact solution u. However, neither Πhu or u are
known. Only the approximation of u obtained by the BEM is at hand. In order to relate the interpolation error to
the approximation error, we consider a reconstruction operator Rh which is applied to the numerical approximation
uh. This operator can be a recovery process, a hierarchical basis, or an operator connected to an a posteriori estimate.
We make the assumption that the reconstruction Rhuh is better than uh for a given norm || · ||, i.e., that

||u−Rhuh|| ≤ α||u− uh||, where 0 ≤ α < 1.

Then, using the triangle inequality, we have

||u− uh|| ≤ 1

1− α ||u
h −Rhuh||.

If ΠhRhφh = φh for all φh ∈ P1, i.e., the reconstruction operator is exact at the nodes, then

||u− uh|| ≤ 1

1− α ||Rhu
h −ΠhRhuh||.
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Fictive points

Surface points

Figure 6: Fictive points created to ensure the tubular neighborhood of a. The solution at blue node is set to the surface solution.

Then we have from (29) that

||u− uh|| ≤ 1

2(1− α)
N−1

(∫
Γ

det(|Rs(HRhuh)|)
p

2(p+1)

) p+1
p

.

Consequently we apply Estimate (28) to Rhuh.
There are numerous techniques in the literature to approximate or “recover” the Hessian (see, e.g., [43, 46]). From

a practical point of view, we only need to recover a pointwise 3D Hessian at the nodes of the current surface mesh.
The method we employ here is based on a local quadratic recovery and uses the boundary solution only. The lifting
solution is deduced from us, following the assumption of Section 3.1. The starting point is the quadratic approximation
of the lifting function u at a point a = (xa, ya, za) located on the surface of the tubular neighborhood (such that we
have P(a) = a):

u(x) ≈ us(a) + t∇u(a)dx +
1

2
tdxH(a)dx,

where dx = x− a. The gradient of u being a 3D vector, it reads

t∇ u(a) = (a b c).

Similarly, the Hessian is a 3× 3 symmetric matrix:

H(a) =

 d e f
e g h
f h i

 .
At each surface mesh node, we thus have 9 unknowns to recover. The simple approach we use is a least square. We start
with the patch composed of the elements adjacent to the node a, see Figure 6. The set of points is then augmented
by creating points along the normal direction to the surface. This extruded geometry is depicted in Figure 6 and
uses standard boundary layer mesh generation procedures [40] (especially at complex corners or along ridges). The
normal spacing is set to the minimal edge length of the patch of the current point. If the number of unknowns of this
augmented system is not sufficient, an additional layer of neighbours is taken into account.

3.6. Refinement strategy

All the numerical examples shown in the following section use the same refinement strategy. Given a user-prescribed
sequence of complexity N = [N1, . . . ,Nk], we seek for the sequence of corresponding optimal meshes H = [H1, . . . ,Hk].
This process is non-linear, i.e., both the mesh and the solution have to be converged. The following iterative algorithm
is used to generate Hi:

Start from the mesh H0
i = Hi−1 (or from the initial uniform mesh H0 at iteration 0).

for all k=0 : niter do
Compute the approximation uh on the mesh Hki with the iterative FM-BEM solver (software COFFEE).
Compute the recovered Hessian from uh and deduce Metric (27) at the nodes of the mesh, with complexity Ni.
From (27), a new quasi-unit mesh Hk+1

i of complexity Ni is generated with FEFLO.A [37].
end for

For each case, the complexity sequence is always defined as Ni+1 = 2Ni with niter = 5.
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4. Validation and enhancements of the iterative FM-BEM solver

In this section we first validate the efficiency of the FM-BEM solver at hand, COFFEE. We also describe several
necessary enhancements to improve the efficiency of the FM-BEM solver when anisotropic elements are present in
the mesh. This concerns the change of the initial guess for the GMRES solver along with the design of a simple but
efficient preconditioner.

4.1. Validation of the fast BEM solver

The fast BEM solver for 3D Helmholtz problems, used in this article has been implemented in our in-house solver
COFFEE [17]. Since so far the code has only been validated for 3D elastodynamic problems, this section is devoted
to the verification of the accuracy and numerical efficiency of the solver for the scalar acoustic case of interest here.
To this end, we consider the simple case of the diffraction of an incident plane wave by a unit sphere for which an
analytical solution is known [13].

In this section, we consider a uniform triangulated mesh with a density of points per wavelength equal to 10. The
tolerance of the GMRES iterative solver is set to 10−4. In all the numerical examples presented, we use the CERFACS
GMRES package [29]. We report in this section only results for the EFIE with Dirichlet boundary conditions and
similar results are obtained for the MFIE with Neumann boundary conditions. In Table 1, we report the number of
degrees of freedom N together with the number of iterations required to achieve convergence in GMRES for both the
standard BEM and the FM-BEM solvers. The two solvers are seen to converge with the same rate. Importantly, we
were not able to solve problems larger than about 50 000 DOFs with the standard BEM due to time and memory
constraints. We also report the relative L2-norm of the discrepancy between the computed solution and the analytical
one, computed in the domain (on a circle of radius 2 enclosing the obstacle). Both solvers give the same accuracy.

N 2 562 10 242 40 962 328 606 626 333
k 8 16 33 92 128

# iter (BEM) 18 37 67 / /

L2 error (BEM) 3.66 10−3 2.01 10−3 1.12 10−3 / /

# iter FM-BEM 18 38 67 366 387
L2 error (FM-BEM) 3.66 10−3 2.01 10−3 1.12 10−3 8.09 10−4 7.65 10−4

Table 1: Validation of the FM-BEM solver for 3D Helmholtz equations: comparison of the accuracy and convergence of the iterative BEM
and FM-BEM solvers.

In addition, to check the numerical efficiency of the solver, we report in Figure 7 the theoretical and numerical com-
plexities in terms of computational time for one matrix-vector product. The black circles represent the computational
time for the standard BEM and the red squares represent the time for the FM-BEM. As expect, the standard BEM
is seen to be of the order of O(N2) operations per iteration and the FM-BEM of the order of O(N logN) operations
per iteration.

4.2. Enhancements of the FM-BEM for anisotropic meshes and adaptivity

One important point in the adaptive process is the ability of the iterative solver to converge to the solution within
the desired threshold. For small-scale examples, the FM-BEM is not necessary (only the standard BEM) and the
number of GMRES iterations required to solve the matrix system is not a pressing issue. However, as soon as large-
scale problems are considered, the use of the FM-BEM is mandatory to compute the solution on a given mesh. The
number of GMRES iterations is known to increase with the size of the problem [18]. The presence of anisotropic
elements in the mesh also increases the number of GMRES iterations. As a result, the number of iterations may be a
limiting factor when employing the FM-BEM on anisotropic meshes. Here we discuss two simple methods to reduce
the number of GMRES iterations in the context of a mesh adaptation strategy. The first one is a diagonal scaling
preconditioner and the second one is based on the use of an initial guess for the GMRES obtained from the previous
level of adaptation. To illustrate the efficiency of these preconditioners, we consider the spherical resonator test case: a
screen curved into a sphere with a circular aperture to create a resonator. The sphere has unit radius and the circular
opening of radius π/10 has its centre on the positive x-axis, see Figure 13a.
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Figure 7: Comparison of the theoretical and numerical complexities in terms of computational time for one matrix-vector product. The
black circles represent the computational time for the standard BEM and the red squares represent the time for the FM-BEM. In addition,
we report the two theoretical complexities.

Preconditioning with a diagonal scaling. When performing BEM calculations on adapted meshes containing elements
with drastically different sizes, the diagonal and off-diagonal entries will also vary drastically. A simple way to avoid
this issue is to introduce a preconditioner which scales all the diagonal entries of the system matrix to 1. We first
write the matrix system to be solved as

Ax = b.

We propose the following right-preconditioning strategy with the preconditioner M defined as

Mij =

{
Aij , if i = j,

0, if i 6= j.
(30)

Therefore the preconditioned system to be solved becomes:

AM−1y = b, x = M−1y. (31)

We report in Table 2 the number of GMRES iterations required to achieve convergence with a tolerance of 10−4 with
and without this preconditioner. We see that the gain in terms of number of iterations and computational times
increases with the sizes of the meshes, to reach a reduction by a factor 4.

#DOFs
# iter # iter

without Prec. with Prec.

152 43 30
323 57 37
898 77 50

2 051 124 61
4 031 180 74
8 163 257 90
16 932 412 104

Table 2: Spherical resonator: Number of GMRES iterations required to achieve convergence with a tolerance of 10−4 both without and
with the diagonal scaling preconditioner (30).

Using an appropriate initial guess for GMRES. A further advantage of an adaptive mesh refinement is the possibility
to use a computed approximation at a previous level of refinement as an initial guess for the GMRES solver. This

18



choice is expected to be more efficient than a guess chosen a priori, such as the zero vector or the incident wave
evaluated on the surface. The simple modification consists in interpolating the previous solution onto the newly
generated mesh (see the refinement strategy, Section 3.6). In our case, this is done as an additional post-processing
step in FEFLO.A. In Table 3, we illustrate the improvement obtained with such an initial guess. More precisely, we
consider the same resonator problem as above and solve the system at each step of refinement twice, once with the
zero vector as the initial guess and once with the linear interpolation of the previous step numerical solution onto the
current mesh as the initial guess. Again the tolerance for the GMRES solver is 10−4. The gain is less impressive than
the one obtained with the diagonal scaling preconditioner, but an additional gain of 10% is obtained.

#DOFs
# iter # iter

without Ini. Guess with Ini. Guess

152 30 30
323 37 38
898 50 45

2 051 61 52
4 031 74 63
8 163 90 77
16 932 104 90

Table 3: Spherical resonator: number of iterations (with the diagonal scaling preconditioner) with and without the use of an interpolated
initial guess.

To sum up, the preconditioning by scaling the diagonal entries of the matrix yields a large reduction in the number
of GMRES iterations. Furthermore, this reduction is greater for meshes with larger anisotropic ratios. Next we saw
that the initialization of GMRES using the previous solution also serves to save a number of iterations, a saving which
increases with the size and degree of anisotropy of the mesh.

5. Validation of the adaptive mesh strategy for the FM-BEM

We illustrate in this section the capabilities of the adaptive mesh strategies for different 3D configurations: scat-
tering of plane waves by open surfaces (a planar screen and a sphere with aperture), by a closed simple shape (a cube
with cavity [24]), and by a large complex structure (an aircraft).

5.1. Planar screen

We consider the scattering of plane waves (with unit amplitude and direction d = (−1, 0, 0)) by a sound-soft unit
screen centered at the origin, i.e., the screen occupies the region

[
− 1

2 ,
1
2

]
×
[
− 1

2 ,
1
2

]
. Such configurations lead to surface

solutions with the most severe singular behavior, and are a good illustration of the capabilities of an adaptive mesh
strategy.

It is well known (see, e.g., [36]) that at the edge of a screen, we have[
∂u

∂n

]
∼ (kr)−0.5 as kr → 0, (32)

where r is the distance from the edge. At the corner of the screen, this singularity is more severe, and was shown in
[8] to take the form [

∂u

∂n

]
∼ (kr)−0.704 as kr → 0.

The optimal convergence rate here (for our P1 discretization) is O(N−1). Owing to the singular behavior, the approx-
imated solution on a sequence of uniformly refined meshes should yield a sub-optimal convergence rate.

We employ the adaptive strategy proposed in Section 3.6 for three wavenumbers (k = 5, 20, 80) and compare the
results to those obtained with a sequence of uniformly refined meshes. In figures 8b-d, we present the relative L2

errors in the scattered field evaluated on a circle in the (x, y)-plane of radius 2 (Figure 8a).
We observe that the use of the anisotropic adaptive strategy improves the computational efficiency for this scattering

problem by almost an order of magnitude. For example, for k = 5, to achieve an accuracy of 1.37 10−2 with a uniform
refinement 3 622 DOFs are required while the anisotropic refinement produced an approximation with an accuracy of
1.78 10−2 with only N = 271 DOFs. For k = 20, to achieve an accuracy of 1.12 10−2 with a uniform refinement 13 929
DOFs are required while the anisotropic refinement produced an approximation with an accuracy of 1.06 10−2 with
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Figure 8: Scattering by a screen: Relative L2 errors in the scattered field computed on the circle (a) for uniform and adapted meshes for
three wavenumbers: (b)k = 5, (c) k = 20 and (d) k=80.

only 801 DOFs. Finally, for k = 80, to achieve an accuracy of 1.12 10−2 with a uniform refinement 55 224 DOFs are
required while the anisotropic refinement produced an approximation with an accuracy of 7.9 10−3 with only 4 672
DOFs. In addition, for all three wavenumbers the uniform refinement yields a convergence rate of approximately
O(N−0.5) in the relative L2 error. This sub-optimality is related to the prominent edge singularities of the form (32).
While, with the adaptive mesh strategy, the optimal convergence rate of O(N−1) is recovered. In fact, it appears that
we even improve slightly on this rate, especially at the higher wavenumbers. This improvement can be attributed to
the exploitation of the directionality of the wave propagation.

In Figure 9, we depict the final surface mesh for k = 5 and k = 20. For k = 5 (resp. k = 20), the mean anisotropic
ratio is around 30 (resp. 60). If an isotropic error estimate was used, the obtained mesh would contained 55 608 DOFs,
i.e., 15 times more DOFs than the anisotropic mesh for k = 20 at 5th iteration. This also emphasizes the advantage
of using anisotropic estimates over isotropic estimates.

Finally, the level of anisotropy on the sides of the screen increases with the complexity, see Figure 10, showing the
strong directionality of the error.

5.2. Cube with cavity

We next consider the scattering by a cube with cavity [24] which is the 3D analogue of the 2D trapping domain [10].
We use the adaptive strategy for the sound-soft problem and the incident direction is di = (−2,−1,−1) throughout.
The singularities in the boundary solution for this problem should be less severe than for the screen. At an edge, the
unknown should behave as

∂u

∂n
∼ r−1/3.

The general rule is that we expect the acoustic pressure u, to behave near an edge as

u ∼ rπ/α as r → 0,
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Figure 9: Screen case: final adapted meshes for k = 5 (left) and k = 20 (right).

2nd iteration 3rd iteration 4th iteration 5th iteration

Figure 10: Screen case: evolution of the anisotropic ratio from 2nd to 5th iteration for k = 20 at side x = 0.5.

where r is the distance from the edge and α is the exterior angle subtended at the edge. Hence the flow velocity will
behave as

∂u

∂n
∼ rπ/α−1 as r → 0.

Again, the errors for the adapted and uniform meshes are computed on a circle of radius 2 and are shown in
Figure 11b-d for the wavenumbers k = 5, 10, 20. Similar to the screen problem, the uniform refinement yields a
suboptimal convergence rate. However, this time the rate is closer to O(N−2/3), i.e., superior to that for the screen
due to a less severe singularity.

In Figure 12 we display the mesh at the fourth step of the adaptive process and the real part of the corresponding
BEM approximation of the boundary solution. We note, on the top of the cube, the refinement towards the ridges as
well as the exploitation of the directionality. To estimate the gain due to the level of anisotropy, we have generated
the equivalent isotropic mesh having the minimal sizes of the anisotropic mesh. The isotropic mesh is composed of
19 409 DOFs, i.e., 4 times the number of DOFs in the equivalent anisotropic mesh.
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Figure 11: Scattering by a sound-soft cube with cavity: Relative L2 errors for uniform and adapted meshes for (b) k = 5, (c) k = 10 and
k = 20.

(a) Adapted mesh (b) Real part of the Boundary solution

Figure 12: Cube with cavity: Adapted mesh and real part of the boundary solution at fourth step of the adaptation for the sound-soft
cube with cavity. The incident wave has direction di = (−2,−1,−1) and k = 5.

22



5.3. Spherical resonator

We consider again the case of a spherical resonator (Figure 13a). Such objects are of interest in the context of
anisotropic mesh adaptation because they require the retention of some level of isotropy in the refinement in order
to maintain a good approximation of the surface by planar triangles. The incident wave is a plane wave travelling
in the negative x-direction with a wavenumber of k = 10. In Figure 13b, we represent the modulus of the solution
computed in a 2D planar slice of the domain (the screen in the (x, y) plane with z = 0) using the boundary integral
representation (5).

(a) Uniform mesh with 9 120 vertices (b) Volume solution

Figure 13: Spherical resonator: (a)Uniform mesh of the spherical resonator and screen where the volume solution is computed; (b)
corresponding modulus of total field in the (x, y)-plane.

Since this example is an isotropic example, we perform an experiment demonstrating the capabilities of our mesh
adaptation technique with three configurations: with full anisotropy (similarly to what is presented in previous ex-
amples), and two additional ones with different levels of isotropy enforced. The first level is called “semi-isotropy”
and the second one is a fully isotropic case. For the semi-isotropy approach, the maximum dimension of the adapted
triangles is limited accordingly to the complexity. Precisely, we enforce

max(h) =
C√
N
,

where h is the maximum dimension of each triangle. This restricts the elongation of the elements but still permits
some elongation controlled by the parameter C. In this work, C is set to 3.5 after some numerical experimentation.

In Figure 14, we give some meshes and corresponding solutions obtained during the adaptation process for the
three strategies.

In Figure 15, we report the relative L2 errors for uniform and (anisotropic, isotropic and semi-isotropic) adapted
meshes with k = 5. Similarly to the case of the planar screen, a uniform refinement yields a convergence rate of
O(N−

1
2 ). The anisotropic and semi-isotropic adaptive strategies initially achieve a rate of O(N−

3
2 ) which is super

optimal, however this rate begins to slow as higher accuracies are reached. The reason is that the shape to which the
refinement is leading is not the correct one due to the elongated elements, see Figure 14. By enforcing some isotropy
the convergence rate of O(N−

3
2 ) is maintained up to a larger mesh. However, it still slows once the relative error falls

below approximately 10−3. On the other hand, for the fully isotropic refinement, which restricts the height to width
ratio of the triangles, at first the convergence rate is similar to the one obtained by a uniform refinement then for
accuracies smaller than 10−2, the convergence rate is O(N−

3
2 ). Furthermore, it appears that the isotropic refinement

maintains this rate asymptotically since it is also refining towards the spherical shape accurately as well as resolving
the edge singularity. Nevertheless, it appears that if one is interested in achieving accuracies of the order of 10−2 or
10−3, the anisotropic adaptive strategy is superior.

This spherical example illustrates the limitations of the current fully anisotropic mesh strategy. The potential
anisotropy, provided by the error estimate, has to comply with the surface principal curvatures. In this example, the
full anisotropic error estimate implies a deformed sphere that the solver is not able to recover. The semi-anisotropic
approach reduces the anisotropy to limit this artifact. For more complex geometries, it is then necessary to intersect

23



(a) Mesh and solution for semi-isotropic adaptation (b) Mesh and solution for fully anisotropic adaptation

(c) Mesh and solution at 3rd level of fully isotropic adaptation (d) Mesh at 6th level of fully isotropic adaptation

Figure 14: Spherical resonator: Adapted meshes with real part of the surface solution for (a) semi-isotropic, (b) fully anisotropic (c) fully
isotropic adaptation strategies, and (d) mesh at 6th level of fully isotropic adaptation.

the metric provided by the error estimate with a geometric metric representing the surface curvatures, see [37]. We
use such a metric for the following example. It is clear from this example that defining a high-order adaptive mesh
strategy, for instance for P2 interpolation, is necessary to recover anisotropy while preserving the geometry.

5.4. F15 aircraft

In this test case, we illustrate the robustness of the technique with respect to the complexity of the input geometry.
We consider the geometry of an unarmed F15 aircraft, depicted in Figure 16a. The computation is started with the
uniform mesh of Figure 16b composed of almost 80 000 vertices and 163 000 triangles. The incident plane wave has
direction di = (1/2, 1, 0) and wavenumber k = 6. In this numerical experiment, 15 adapted meshes are generated.
The imposed complexity is kept constant for 3 iterations, and then it is multiplied by a factor 2. The prescribed
complexities are {

10 000, 20 000, 40 000, 80 000, 160 000
}
.
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Figure 15: Scattering by a spherical resonator: Relative L2 errors for uniform and (anisotropic, isotropic and semi-isotropic) adapted
meshes with k = 5.

Iteration # vertices # triangles # Solver iterations Meshing CPU Time Solver CPU time

3 10 562 21 120 392 42 s 19 mn 47 s
6 15 687 31 370 521 57 s 30 mn 36 s
9 25 428 50 852 707 1 mn 34 s 52 mn 25 s
12 43 217 86 430 593 2 mn 44 s 65 mn 38 s
15 80 611 161 218 364 5 mn 13 s 70 mn 53 s

Table 4: F15 aircraft statistics of the adapted meshes, solver iteration and CPU times.

The real part of the boundary solution is represented in Figure 17. We see the high directionality of the diffracted
waves with different patterns for the front and back part of the aircraft. In Table 4, we report the sizes of the generated
meshes. We observe that the size is almost doubled at each sequence of fixed complexity. Note that in this case, a
surface metric is intersected with Metric (27) with p = 2 to guarantee a good surface resolution. The expression of the
surface metric is described in [37]. The meshing CPU time is the combined time taken to evaluate the error estimate,
generate the adapted mesh, and interpolate the solution from the previous mesh to the current mesh. This interpolated
solution is used as a restart for the acoustic solver. The number of solver iterations ranges from 300 to more than 700.
The maximal number of iterations is obtained at the 9th iteration, where new wave reflections are captured in the
mesh. For the subsequent iterations, the number of solver iterations is almost constant, showing that than no more
new scales in the solution appear with smaller meshes. In term of sizes, we report in Table 5 the minimal size of the
anisotropic mesh. To evaluate the gain of using an anisotropic approach, an isotropic and uniform mesh have been
generated with the same level of discretization as its anisotropic counterpart. The factors provided in Table 5 are the
multiplication factors needed to obtain the sizes of the isotropic and uniform meshes, respectively. We observe that if
an isotropic approach was used, the size of the meshes would be approximately 3 times greater. And if uniform meshes
were employed, the size of the meshes to achieve the same accuracy would be between 300 and 6 million times greater!
For instance, the uniform mesh having the same accuracy than the 15th mesh is composed of more than 500 million
vertices. This illustrates the optimality of the anisotropic approach in term of ratio accuracy/CPU time. Figure 18
shows closer views of the mesh (at the last iteration of the adaptive process) near the singularities of the geometry of
the aircraft. Most of the anisotropy is reached in these areas when the diffracted waves have low regularity. Finally
in Figure 19, we display the total field in the planes y = 0 and z = 0.

6. Conclusion

This paper details the first extension of a metric-based anisotropic mesh adaptation strategy to the boundary
element method for 3D acoustic wave propagation problems. Following the works of [38, 39] for 3D volume solutions,
we have derived the optimal continuous mesh minimizing the P1 interpolation error for 3D surface solutions. The
method proposed is independent of the discretization technique (e.g., collocation, Galerkin) and independent of the
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(a) (b)

Figure 16: F15 aircraft: (a) geometry and (b) initial uniform mesh.

Iteration Minimal Size Gain over isotropic Gain over uniform

3 9 · 10−3 3.9 378
6 4 · 10−3 4.9 2 535
9 1.3 · 10−3 3.0 47 572
12 5.6 · 10−4 3.2 377 246
15 1.8 · 10−4 3.5 6 195 211

Table 5: F15 aircraft: Expected gain in terms of DOFs of using an anisotropic approach compared to isotropic or uniform refinement.
The size of the corresponding isotropic or uniform mesh has to be multiplied by the factor given in the 3rd and 4th column respectively.

complexity of the geometry. It completely remeshes at each refinement step, altering the shape, size, and orientation
of elements according to the optimal metric based on a numerically recovered Hessian of the boundary solution. The
resulting adaptation is truly anisotropic and we have shown via a variety of numerical examples that it recovers optimal
convergence rates for domains with geometric singularities: a planar screen, a sphere with aperture, a cube with cavity,
and an F15 aircraft. We note that this optimal rate of convergence cannot be achieved when using uniform refinement
since the rapid variation of the boundary solution near geometric singularities requires special meshing treatment. We
observed that the sizes of the generated anisotropic meshes are relatively small, with a complexity increase of between
3 and 4 times, and up to millions of times being required to achieve the same level of accuracy with isotropic and
uniform refinement, respectively.

For the solver, high anisotropy tends to increase the number of iterations to solve the linear system. However,
the mesh adaptation framework naturally provides a good initial guess for the iterative solver by simply interpolating
the solution of the previous mesh onto the current mesh. This was shown to decrease the number of iterations at
very little expense. We further showed that applying a simple diagonal scaling preconditioner decreases the number
of iterations significantly for anisotropic meshes.

The first encouraging anisotropic BEM results presented in this work pave the way for further developments. The
first important future direction is to improve the treatment of curved surfaces. It has been observed numerically
that the level of anisotropy must be controlled to ensure a good approximation of the scatterer surface. For complex
geometries, a more thorough method needs to be employed where two metrics are used, one based on the recovered
Hessian and the other based on the surface curvature. Another approach is to propose an adaptation strategy for
Pk interpolation with k ≥ 2 on curved meshes. Another important improvement concerns the FMM. The version
employed in this work is not optimal with respect to computational times for non uniform meshes. It would be of
interest to employ an FMM which is tailored to the adapted meshes such as the one proposed in [32].
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Figure 17: F15 aircraft geometry : Solution on top and back for the last iteration of the adaptive process.

Figure 18: F15 aircraft geometry : Closer view of the mesh at the last iteration of the adaptive process.
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(a) (b)

Figure 19: F15 aircraft: Real part of the total field in the planes y = 0 (a) and z = 0 (b).
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