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In this paper we address the problem of state observation for sensorless control of nonlinear magnetic levitation systems, that is, the regulation of the position of a levitated object measuring only the voltage and current of the electrical supply. Instrumental for the development of the theory is the use of parameter estimation-based observers, which combined with the dynamic regressor extension and mixing parameter estimation technique, allow the reconstruction of the magnetic flux. With the knowledge of the latter it is shown that the mechanical coordinates can be estimated with suitably tailored nonlinear observers. Replacing the observed states, in a certainty equivalent manner, with a full information globally stabilising law completes the sensorless controller design. We consider one and two-degrees-of-freedom systems that, interestingly, demand totally different mathematical approaches for their solutions. Simulation results are used to illustrate the performance of the proposed schemes.

Introduction

The use of magnetically levitated (MagLev) technology eliminates mechanical contact between moving and stationary parts in the system, attenuating the cumbersome friction problem. An additional benefit is the possibility of actively changing the position of the levitated object and to change the stiffness of the levitation system. Therefore, it finds many application areas such as magnetic bearings [START_REF] Samanta | Magnetic bearing configurations: Theoretical and experimental studies[END_REF], vibration isolation [START_REF] Tsuda | Vibration transmission characteristics against vibration in magnetic levitation type HTS seismic/vibration isolation device[END_REF], bearingless motors [START_REF] Lin | Hybrid controller with recurrent neural network for magnetic levitation system[END_REF], bearingless pumps [START_REF] Raggl | Robust angle-sensorless control of a PMSM bearingless pump[END_REF], microelectromechanical systems [START_REF] Komori | Magnetically levitated micro PM motors by two types of active magnetic bearings[END_REF], and high speed rail transportation [START_REF]Development and application of MagLev transportation system[END_REF]. In addition, MagLev can also control a floating object which is performing linear or rotary motion [START_REF] Ohji | Three-dimensional motion of a small object by using a new magnetic levitation system having four I-shaped electromagnets[END_REF]. See [START_REF] Han | Magnetic Levitation: Maglev Technology and Applications[END_REF][START_REF]Magnetic Bearings: Theory, Design and Application to Rotating machinery[END_REF] for recent overview of MagLev systems.

Since MagLev systems are inherently unstable, position control of the levitated object is of paramount importance. Clearly, the knowledge of the position is necessary to accomplish this task, making MagLev systems highly expensive because of the cost (and low reliability) of existing position sensors. To overcome this limitation a lot of research has been devoted to the development of sensorless (also called self-sensing) MagLev systems. In these schemes the position sensor is replaced by some kind of estimation algorithm that reconstructs the position from the measurement of voltages and currents. These estimation algorithms may be classified in two groups: (i) technologically-based techniques that exploit the functional relationship between the systems inductance and the position of the levitated object; (ii) theoretically-based designs of state observers proceeding from the mathematical model of the system. The interested reader is referred to [START_REF] Gluck | A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification[END_REF][START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF][START_REF] Mizuno | Stability analysis of selfsensing magnetic bearing controllers[END_REF][START_REF] Van Acht | Self-sensing magnetic levitation: A feasibility study[END_REF] for a review of the existing literature on sensorless control of MagLev systems reported in the control community and to [START_REF] Ranjbar | Estimation of airgap length in magnetically levitated systems[END_REF][START_REF]Magnetic Bearings: Theory, Design and Application to Rotating machinery[END_REF] for results found in the application journals.

The present contribution belongs to the second category mentioned above. Namely, proceeding from the full nonlinear mathematical model derived from physical laws, we design a state observer for the flux, position and velocity of the MagLev system measuring only voltages and currents. We consider one and two-degrees-of-freedom (1 and 2-dof) systems that, interestingly, demand totally different mathematical approaches for their solutions. As is well-known, the dynamic behavior of these systems is highly nonlinear. Therefore, to ensure good performance in a wide operating range it is necessary to avoid the use of linearized models that, to the best of the authors' knowledge, is the prevailing approach reported in the literature [START_REF] Gluck | A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification[END_REF][START_REF] Mizuno | Stability analysis of selfsensing magnetic bearing controllers[END_REF]. See [START_REF] Maslen | Performance limitations in self-sensing magnetic bearings[END_REF][START_REF] Montie | Performance limitations and self-sensing magnetic bearings[END_REF] for a detailed analysis of the deleterious implications of linearization in sensorless Maglev models. The first step in our design is the reconstruction of the flux, which is done by combining the parameter estimation-based observers (PEBO) recently reported in [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] with the dynamic regressor extension and mixing (DREM) parameter estimation technique of [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. The combination of these two new techniques has been proven highly successful in the solution of several complex practical problems [START_REF] Aranovskiy | Improved transients in multiple frequencies estimation via dynamic regressor extension and mixing[END_REF][START_REF] Bobtsov | A robust globally convergent position observer for the permanent magnet synchronous motor[END_REF][START_REF] Pyrkin | Identification of photovoltaic arrays' maximum power extraction point via dynamic regressor extension and mixing[END_REF]-see also [START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] for the reformulation of DREM as a functional Luenberger observer. With the knowledge of the flux we propose suitably tailored nonlinear observers for the mechanical coordinates, obtaining in this way a globally convergent solution to the posed observation problem. To complete the sensorless controller design the observed state is then replaced in the globally asymptotically stabilizing interconnection and damping assignment passivity-based controller (IDA-PBC) reported in [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF], see also [START_REF] Rodriguez | A novel passivitybased controller for an active magnetic bearing benchmark experiment[END_REF].

Since there are several full-state controllers that achieve the stabilization objective, see e.g., [START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF][START_REF] Ortega | Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF][START_REF] Torres | Feedback linearization, integrator backstepping and passivity-based controller design: A comparison example[END_REF], our main contribution is the solution of the-until now openproblem of state observation that, as shown below, turns out to be significantly involved. In [START_REF] Yi | Relaxing the conditions for parameter estimation-based observers of nonlinear systems via signal injection[END_REF] injection of highfrequency sinusoidal probing signals in the voltage is used to generate a virtual output [START_REF] Combes | Adding virtual measurements by signal injection[END_REF] and be able to design a PEBO for a 1-dof MagLev system. The invasive injection of probing signals is avoided in the present contribution. On the other hand, as always for observer based controller designs for nonlinear systems, some excitation condition needs to be imposed on the signals of the system [1,?]. It should be pointed out that the proposed observer can be combined with other controllers, for instance, the well-known "complementarity control" [START_REF] Levine | A nonlinear approach to the control of magnetic bearings[END_REF][START_REF] Bonivento | Balanced robust regulation of a magnetic levitation system[END_REF] in which the two magnetic forces are never simultaneously activated yielding a more efficient energy consumption.

The remaining of the paper is organized as follows. The model of a 2-dof MagLev system is presented in Section 2-from which the more widely known 1-dof system is obtained as a particular case. Interestingly, but not surprisingly, state observation of the former system is significantly simpler than the latter one. Therefore, we present first in Section 3 the design for the 2-dof MagLev system. The design for the 1-dof case is given in Section 4. The performance of the proposed observer and sensorless controller is validated in Section 5 via simulations. The paper is wrapped-up with some conclusions and future work in Section 6. The design of the PEBO for the 1-dof system, being notationally involved, is deferred to an appendix.

Model of the MagLev Systems and Problem Formulation

The model of the 2-dof MagLev system depicted in Fig. 1a is obtained from Faraday's and Newton's laws as

λi = -RI i + u i , i = 1, ..., 4 (1) 
m Ÿ = f 1 -f 2 -mg, (2) 
m Ẍ = f 3 -f 4 , (3) 
where X, Y are the rotor positions in the horizontal and vertical directions, respectively, R are the coils resistances, m is the mass of the rotor, g is the acceleration of gravity, and λ i , I i , f i , u i , i = 1, ..., 4 denote the total magnetic flux, the current in the coil, the force and the control voltage associated with the i-th actuator, respectively. The following assumptions on the magnetic device are made: (A1) The magnetic forces of the vertical and horizontal motions are decoupled (see, e.g., [START_REF] Dixon | Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach[END_REF]). (A2) The total flux, rotor position and coil current are related as

u 1 u 3 u 4 u 2 I 1 I3 I2 I4 λ1 λ4 λ 3 λ2 Y X c g (a) 2-dof u I λ Y c g (b) 1-dof
I j = 1 k (c + (-1) j Y )λ j , j = 1, 2 I j = 1 k (c + (-1) j X)λ j , j = 3, 4 (4) 
for some positive constants c and k. (A3) The forces produced by the actuators satisfy

f i = 1 2k λ 2 i , i = 1, ..., 4. (5) 
From the equations above it is clear that, due to Assumption (A1), the dynamics of the horizontal and vertical motions are decoupled, with independent control signals. This fact will be reflected in the observer and sensorless controller design that, as will become clear below, can be carried out independently.

The model of the 1-dof system depicted in Fig. 1b is obtained as a particular case of the one above and is summarized in the following equations. 

λ = -Ri + u, m Ÿ = f -mg, f = 1 2k λ 2 , i = 1 k (c -Y )λ. ( 6 
|Y (t) -Y * (t)| ≤ ε, sup lim t→∞ |X(t) -X * (t)| ≤ ε (7) 
where | • | is the Euclidean norm, Y * and X * define a desired trajectory for the levitated ball and ε is some small constant, which equals zero when the position reference is constant. A similar control objective is posed for the 1-dof system.

Remark 1 Full-state feedback stabilizing controllers for Maglev systems, applying various nonlinear control techniques, are available in the literature, cf. [START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF][START_REF] Ortega | Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF][START_REF] Torres | Feedback linearization, integrator backstepping and passivity-based controller design: A comparison example[END_REF]. Therefore, the main task to be solved is the observation of the systems state from the measurement of the currents I. To the best of the authors' knowledge this nonlinear observation problem is totally open. It should be mentioned that in Chapter 15 of [START_REF]Magnetic Bearings: Theory, Design and Application to Rotating machinery[END_REF], it is assumed that the position of 1-dof levitated object is constant, 1 and is treated as a parameter that can be estimated with classical adaptation techniques.

Remark 2 Equations (1)-( 5) is the standard model for radial magnetic bearings. Assumptions (A1) and (A3) are practically reasonable in most applications. However, Assumption (A2), which neglects saturation effects in the coils, may be restrictive. Notice, however, that magnetic coupling between the two orthogonal subsystems, which is not necessarily more negligible than magnetic saturation is not considered. Also, in some 1-dof systems leakage inductance cannot be neglected as done here.

Remark 3 Implicit to Assumption (A2) is the fact that 1 An ad-hoc technological modification is proposed in [START_REF] Montie | Performance limitations and self-sensing magnetic bearings[END_REF] to (partially) overcome this restriction.

the state space where the system lives is restricted to

|Y | < c, |X| < c,
constraint that is also imposed to Y * and X * . However, as is often the case in control theoretical developments, these constraints are not taken into account in the analysis.

Remark 4 It is clear that the MagLev benchmark example considered in [START_REF] Rodriguez | A novel passivitybased controller for an active magnetic bearing benchmark experiment[END_REF] is a particular case of the 2-dof considered above. Therefore, the observer technique developed to solve the latter will be directly applicable to the former example.

Sensorless Control of the 2-dof Maglev System

To enhance the readability of the paper we split the presentation of the controller in five parts. As indicated in the previous section, since the dynamics of the horizontal and vertical motions are decoupled, the observer and controller designs for each one of them can be carried out independently. However, in the interest of brevity we present it all together.

Regression model for the PEBO of the flux

Proposition 5 Consider the model of the 2-dof Maglev system (1)- [START_REF] Bonivento | Balanced robust regulation of a magnetic levitation system[END_REF]. Define the dynamic extension

ψ = -RI + U, (8) 
and the measurable signals

z 1 := -I 1 ψ 2 -I 2 ψ 1 + 2c k ψ 1 ψ 2 , z 2 := -I 3 ψ 4 -I 4 ψ 3 + 2c k ψ 3 ψ 4 , ξ := I - 2c k ψ. (9) 
The following (nonlinearly parameterised) regression model holds

z = Φ 0 (θ)ξ -Φ 1 (θ) 2c k , (10) 
where

Φ 0 (θ) := θ 2 θ 1 0 0 0 0 θ 4 θ 3 , Φ 1 (θ) := θ 1 θ 2 θ 3 θ 4 , (11) 
and θ := col(θ 1 , . . . , θ 4 ) is a constant vector that satisfies

λ = ψ + θ + t ( 12 
)
with t an exponentially decaying signal stemming for the initial conditions of (8). 2

PROOF. Equation ( 12) follows via integration of ( 1) and ( 8) and defining

θ := λ(0) -ψ(0).
From ( 4) it follows that

I 1 λ 2 + I 2 λ 1 = 2c k λ 1 λ 2 , (13) 
I 4 λ 3 + I 3 λ 4 = 2c k λ 3 λ 4 . (14) 
The proof is completed replacing (12) in the equations above and grouping terms.

It is clear from [START_REF] Levine | A nonlinear approach to the control of magnetic bearings[END_REF] that the flux observer design is completed generating an estimate for the parameters θ, called θ, and defining the flux estimate as

λ = ψ + θ, (15) 
In the next subsection we generate θ using the DREM procedure. Clearly, if the parameter estimator is consistent, that is lim t→∞ θ(t) = θ, the flux estimate (15) will satisfy lim

t→∞ | λ(t) -λ(t)| = 0. ( 16 
)
Remark 6 Besides the additional difficulty of needing to estimate θ, the main drawback of PEBO is that it relies on the open-loop integration (8), which might be a problematic operation in practice. 3 In spite of that, PEBO has proven instrumental in the solution of numerous physical systems problems [START_REF] Bobtsov | A robust globally convergent position observer for the permanent magnet synchronous motor[END_REF][START_REF] Bobtsov | A robust nonlinear position observer for synchronous motors with relaxed excitation conditions[END_REF][START_REF] Choi | Robust adaptive sensorless control for permanent magnet synchronous motors[END_REF]-some of them being unsolvable with other observer design techniques.

2 Without loss of generality, all additive exponentially decaying terms are neglected in the sequel-see Remark 3 in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] where the effect of these terms is rigorously analysed. 3 For a discussion on this matter see [START_REF] Maslen | Self-sensing magnetic bearings: Development of a virtual probe[END_REF] where the openloop integration (8) is proposed-but without the essential parameter estimation step.

Flux observer

In Proposition 5 we derived the regression model [START_REF] Gluck | A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification[END_REF] for the 2-dof Maglev system (1)-( 5) that is, alas, nonlinearly parameterised. One of the motivations to use DREM to estimate the parameters from this regression is that it allows us to deal with these cases. A second motivation to use DREM is that it ensures that, element by element, the parameter errors decrease monotonicallysee Remark 8. The reader is referred to [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF][START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] for further details on DREM.

Proposition 7 Consider the model of the 2-dof Maglev system (1)-( 5) with the PEBO (8), ( 9) and [START_REF] Maslen | Performance limitations in self-sensing magnetic bearings[END_REF]. Fix four stable filters κj p+νj , j = 1, . . . , 4, with p := d dt and κ j , ν j some positive tuning gains. Define the filtered signals

(•) fj := κ j p + ν j (•) , j = 1, . . . , 4. ( 17 
)
Generate the DREM parameter estimates as

θi = γ i ∆ 1 (Y 1,i -∆ 1 θi ), i = 1, 2, ( 18 
) θi = γ i ∆ 2 (Y 2,i -∆ 2 θi ), i = 3, 4, (19) 
with adaptation gains γ i > 0, i = 1, . . . , 4, where we defined the signals

Z 1 :=     z 1 z f1 1 z f2 1     , Z 2 :=     z 2 z f3 2 z f4 2     , (20) 
Ω 1 :=     ξ 1 ξ 2 -2c k ξ f1 1 ξ f1 2 -( 2c k ) f1 ξ f2 1 ξ f2 2 -( 2c k ) f2     , Ω 2 :=     ξ 3 ξ 4 -2c k ξ f3 3 ξ f3 4 -( 2c k ) f3 ξ f4 3 ξ f4 4 -( 2c k ) f4     (21) 
Y i =     Y 1,i Y 2,i Y 3,i     := adj{Ω i }Z i , ∆ i := det{Ω i }, i = 1, 2, (22) 
where adj{Ω i } is the adjunct of Ω i . The following implication is true

∆ i (t) / ∈ L 2 , i = 1, 2 ⇒ lim t→∞ | λ(t) -λ(t)| = 0,
with L 2 the space of square integrable functions.

PROOF. Consider the first element of the regressor model [START_REF] Gluck | A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification[END_REF], that is,

z 1 = θ 1 ξ 1 + θ 2 ξ 2 -θ 1 θ 2 2c k . ( 23 
)
Operating with the filter κj p+νj , j = 1, 2, on (23) we obtain two additional regression models that we pile on a vector as

Z 1 = Ω 1     θ 1 θ 2 θ 1 θ 2     (24)
where Z 1 and Ω 1 are defined in [START_REF] Ohji | Three-dimensional motion of a small object by using a new magnetic levitation system having four I-shaped electromagnets[END_REF] and ( 21), respectively. Premultiplying [START_REF] Pyrkin | Identification of photovoltaic arrays' maximum power extraction point via dynamic regressor extension and mixing[END_REF] by the adjunct of Ω 1 and using the fact that

adj{Ω 1 }Ω 1 = ∆ 1 I 3
where I 3 is the 3 × 3 identity matrix and ∆ 1 is defined in [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF], we get the 3 scalar regressors

Y 1,i = θ i ∆ 1 , i = 1, 2, Y 1,3 = θ 1 θ 2 ∆ 1 , (25) 
where Y 1 is defined in [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF].

The estimation of the parameters θ 1 , θ 2 , can be easily carried out using the first two scalar regressions in [START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] via the gradient descent [START_REF] Mizuno | Stability analysis of selfsensing magnetic bearing controllers[END_REF]. Replacing ( 25) in [START_REF] Mizuno | Stability analysis of selfsensing magnetic bearing controllers[END_REF], and defining the parameter errors θi := θi -θ i , we get the error equations

θi = -γ i ∆ 2 1 θi , i = 1, 2. (26) 
Solving the simple scalar differential equation [START_REF] Raggl | Robust angle-sensorless control of a PMSM bearingless pump[END_REF] we conclude that

lim t→∞ θi (t) = 0, i = 1, 2 ⇐⇒ ∆ 1 (t) / ∈ L 2 .
Proceeding as done above with the second element of the regression model ( 10)

z 2 = θ 3 ξ 3 + θ 4 ξ 4 - 2c k θ 3 θ 4
we obtain the DREM parameter estimator for the parameters θ 3 and θ 4 given in the proposition. The proof is completed invoking [START_REF] Maslen | Performance limitations in self-sensing magnetic bearings[END_REF].

Remark 8 As always in observer designs for systems with inputs, some kind of excitation on the signals must be imposed to guarantee convergence. In our case it is the condition of non-square integrability of the determinants ∆ 1 and ∆ 2 of the extended regressor matrices Ω 1 and Ω 2 , respectively. A thorough discussion on the implications of this condition may be found in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF][START_REF] Ortega | On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations[END_REF] Remark 9 An important advantage of DREM is that the individual parameter errors satisfy

| θi (0)| ≥ | θi (t)|, ∀ t ≥ 0, i = 1, . . . , 4,
which is significantly stronger than the well-known property-of the norm of the parameter errors-of standard gradient and least squares methods, that is,

| θ(0)| ≥ | θ(t)|, ∀ t ≥ 0.
This property was used in [?] to tackle a classical open problem in model reference adaptive control.

Speed observer

In Proposition 7 it was shown that it is possible to reconstruct the flux-up to an additive exponentially decaying term. As indicated in Remark 6 the presence of these terms does not affect our analysis, hence in the sequel we assume that λ is known. Notice also, from [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], that λ is also known.

Proposition 10 Consider the model of the 2-dof Maglev system (1)-( 5) with known λ and λ. Define the speeds observers

χ1 = -γ Y (λ 2 1 + λ 2 2 )v Y -2k(I 1 λ1 -I 2 λ2 ) + 1 2km λ 2 1 -λ 2 2 -2kmg , χ2 = -γ X (λ 2 3 + λ 2 4 )v X -2k(I 3 λ3 -I 4 λ4 ) + 1 2km λ 2 3 -λ 2 4 vY = χ 1 -γ Y k(I 1 λ 1 -I 2 λ 2 ), vX = χ 2 -γ X k(I 3 λ 3 -I 4 λ 4 ), ( 27 
)
where γ Y , γ X > 0 are tuning gains. The following equivalences are true

col(λ 1 , λ 2 ) ∈ L 2 ⇔ lim t→∞ |v Y (t) -Ẏ (t)| = 0 col(λ 3 , λ 4 ) ∈ L 2 ⇔ lim t→∞ |v X (t) -Ẋ(t)| = 0. ( 28 
)
PROOF. We will present first the proof for the observer of Ẏ -the one for Ẋ will follow verbatim. Differentiating the j = 1 equation in ( 4) and multiplying by

λ 1 we get -k İ1 λ 1 + kI 1 λ1 = Ẏ λ 2 1
, Differentiating now the j = 2 equation in (4) and multiplying by λ 2 we get

k İ2 λ 2 -kI 2 λ2 = Ẏ λ 2 2 .
Adding these two equations we get

Ẏ (λ 2 1 + λ 2 2 ) = kI 1 λ1 -k İ1 λ 1 + k İ2 λ 2 -kI 2 λ2 . ( 29 
)
Defining the observation error ṽY := Ẏ -vY , (30)

using the system dynamics equation ( 2) and the Ẏ observer equations in ( 27) and ( 29) we get, after some lengthy but straightforward calculations, the error dy-

namics vY = -γ Y (λ 2 1 + λ 2 
2 )ṽ Y . Proceeding, verbatim, for the Ẋ observer we get vX = -γ X (λ

2 3 + λ 2 4 )ṽ X ,
where we defined ṽX := Ẋ -vX . The proof is completed integrating the two latter scalar equations.

Remark 11 To avoid cumbersome notation we have presented Proposition 10 using the actual values of λ and λ. Obviously, in the sensorless controller implementation these signals are replaced by λ and -RI + U , respectively.

Position observer

To complete the state observation task we present in this subsection the observers for the positions Y and X of the levitated object.

Proposition 12 Consider the model of the 2-dof Maglev system (1)-( 5) with known λ. Define the positions observers

Ẏ = -µ Y (λ 2 1 + λ 2 2 ) Ŷ + (kI 2 -cλ 2 )λ 2 -(kI 1 -cλ 1 )λ 1 + vY (31) Ẋ = -µ X (λ 2 3 + λ 2 4 ) X + (kI 2 -cλ 4 )λ 4 -(kI 1 -cλ 3 )λ 3 + vX , (32) 
where µ Y , µ X > 0 are tuning gains and vY , vX are generated as in Proposition 10.

The following implications are true

col(λ 1 , λ 2 ) ∈ L 2 ⇒ lim t→∞ | Ŷ (t) -Y (t)| = 0 (33) col(λ 3 , λ 4 ) ∈ L 2 ⇒ lim t→∞ | X(t) -X(t)| = 0. ( 34 
)
PROOF. We will present first the proof for the observer of Y -the one for X follows verbatim. From the first two equations of (4) we get

(λ 2 1 + λ 2 2 )Y = (kI 2 -cλ 2 )λ 2 -(kI 1 -cλ 1 )λ 1 . ( 35 
)
Replacing the latter in the first equation of ( 32) and defining the observation error e Y := Y -Ŷ we get the first error equation

ėY = -µ Y (λ 2 1 + λ 2 2 )e Y + ( Ẏ -vY ),
Proceeding in the same way with the X dynamics we get

ėX = -µ X (λ 2 3 + λ 2 4 )e X + ( Ẋ -vX ),
where e X := X -X. The proof is completed invoking the equivalence [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF] and integrating the scalar differential equations of the error dynamics.

Sensorless controller

In this subsection we implement the sensorless controller replacing the estimated fluxes, positions and velocities generated via the observers of Propositions 5-12 in the full-state feedback IDA-PBC given in [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF], see also [START_REF] Rodriguez | A novel passivitybased controller for an active magnetic bearing benchmark experiment[END_REF].

Exploiting the fact that the horizontal and vertical motions dynamics are decoupled, the corresponding controllers are designed in [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF] in an independent way. However, as indicated in the introduction, it is possible to use any other-possibly coupled-stabilizing controller, for instance the practically attractive "complementarity control" of [START_REF] Levine | A nonlinear approach to the control of magnetic bearings[END_REF].

As indicated in [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF], for a given constant desired position (Y * , X * ), the assignable equilibrium points of ( 1)-( 5) can be parameterised in terms of the total flux induced by one of the actuators. Taking, without loss of generality, λ 2 and λ 4 yields the following parameterisation of the assignable equilibrium set

E :={(λ, Y, Ẏ , X, Ẋ) ∈ R 8 | λ 1 = 2kmg + λ 2 2 * , λ 3 = λ 4 * , Ẏ = 0, Ẋ = 0}. ( 36 
)
Notice that, because of the absence of gravity forces in the horizontal dynamics, the third and fourth fluxes should be equal to fix the equilibrium.

The sensorless controller is then given by

u 1 = RI 1 - R 2kα ( λ2 1 -λ 2 1 * ) - R α + αR a Γ 1 α λ1 + Ỹ + R a mv Y -αv Y , u 2 = RI 2 + R 2kβ ( λ2 2 -λ 2 2 * ) -βR a Γ 1 α λ1 + Ỹ + R a mv Y -βv Y , u 3 = RI 3 - R 2kα ( λ2 3 -λ 2 3 * ) - R 2α + αR a D -αv X , u 4 = RI 4 + R 2kβ ( λ2 4 -λ 2 4 * ) - R 2β + βR a D -βv X , (37) 
where α, Γ, R a > 0 and β < 0 are tuning parameters, (•) := (•) -(•) * with the desired equilibrium point selected from the set E and λ, vY , vX , Ŷ , X generated via the observers of Propositions 5-12,

D = Γ 1 2α λ3 + 1 2β λ4 + X + R a mv X . (38) 
See [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF][START_REF] Rodriguez | A novel passivitybased controller for an active magnetic bearing benchmark experiment[END_REF] for further details on the IDA-PBC.

In the light of the convergence results of Propositions 7-12 it is expected that if

λ, ∆ 1 , ∆ 2 ∈ L 2 (39) 
then for all initial conditions of the overall system starting sufficiently close to equilibrium point we have that

lim t→∞ (λ(t), Y (t), Ẏ (t), X(t), Ẋ(t)) = (λ * , Y * , 0, X * , 0). ( 40 
)
The following remarks are in order (R1) Given the complexity of the overall system, establishing such a result is beyond the scope of this paper. (R2) As indicated before, the main contribution of the paper is the development of a state observer, whose global convergence under the excitation conditions (39) is rigorously established. (R3) The excitation conditions (39) will hardly be verified in regulation tasks-a fact that has been corroborated by the simulations presented in Section 5. However, good performance was achieved with simple step changes in the desired position of the levitated object. (R4) The stability claim (40) pertains to regulation to a constant equilibrium. However, it is expected that the tracking objective (7) will also be attained-at least for sufficiently slow desired trajectories. This conjecture is substantiated by the robustness property inherited from the exponential convergence results proven in the propositions.

Sensorless Control of the 1-dof MagLev System

Similarly to the 2-dof case, the sensorless control is derived in five steps, which are treated in separate sections.

Regression model for the PEBO of the flux

As will become clear below, in contrast with the 2-dof case, here the computations are pretty cumbersome. Therefore, the proof of the proposition is given in the Appendix.

Proposition 13 Consider the model of the 1-dof Maglev system [START_REF] Choi | Robust adaptive sensorless control for permanent magnet synchronous motors[END_REF]. Define the dynamic extension

ψ = -Ri + u, (41) 
The following (nonlinearly parameterised) regression model holds z = φ Φ(η), (42) where z and φ are measurable signals,

Φ(η) := col(η, η 2 , η 3 , η 4 , η 5 ) ( 43 
)
and η is a constant parameter that satisfies

λ = ψ + η + t ( 44 
)
with t an exponentially decaying signal.

Remark 14

Similarly to the regression model for the 2dof Maglev system (10), the one for the 1-dof given in (42) is also nonlinearly parameterised. Although it is possible to obtain a linear regression introducing an overparameterisation, we avoid this low performance approach here. Instead, we use DREM to estimate directly the parameter η with just one gradient search.

Parameter estimation via DREM

Proposition 15 Consider the model of the 1-dof Maglev system ( 6) with the regression model (42). Fix four stable filters κj p+νj , j = 1, . . . , 4, with p := d dt and κ j , ν j some positive tuning gains. Define the filtered signals [START_REF] Maslen | Toward a unified approach to control of magnetic actuators[END_REF] and generate the DREM parameter estimates as

η = γ∆(Y -∆η), (45) 
with gain γ > 0, where we introduced the signals

Z := col(z, z f1 , . . . , z f4 ), Ω := φ φ f1 • • • φ f4 , (46) 
Y = e 1 adj{Ω}Z, ∆ := det{Ω}, (

where e 1 := col(1, 0, 0, 0, 0). Generate the flux estimate as λ := ψ + η.

(48)

The following implication is true

∆(t) / ∈ L 2 ⇒ lim t→∞ | λ(t) -λ(t)| = 0.
PROOF. The proof follows verbatim the one of Proposition 5. That is, applying the filters to the regressor model ( 42), ( 43) and arranging terms we get Z = ΩΦ(η). Premultiplying this by the adjunct of Ω and retaining the first scalar regressor we get Y = η∆. Replacing the latter in (45) we get the error equation

η = -γ∆ 2 η.
The proof is completed solving this simple scalar differential equation and invoking (48).

Speed observer

Similarly to the 2-dof case, in the light of Proposition 15 and the first equation in ( 6), we will assume in the sequel that λ and λ are known.

Proposition 16 Consider the model of the 1-dof Maglev system (6) with known λ and λ. Define the speed observer

χ = 1 m 1 2k λ 2 -mg -γ Y λ 2 vY + 2γ Y ki λ, vY = χ -γ Y kiλ, (49) 
where γ Y > 0. The following equivalence is true

λ ∈ L 2 ⇔ lim t→∞ |v Y (t) -Ẏ (t)| = 0. ( 50 
)
PROOF. Differentiating the last equation in ( 6) and multiplying by λ we get

k di dt λ -ki λ = -Ẏ λ 2 ,
Using this and the speed observer (49) we get, after some simple manipulations, the error model

vY = γ Y λ 2 ṽY ,
where ṽY is defined in [START_REF] Samanta | Magnetic bearing configurations: Theoretical and experimental studies[END_REF]. The proof is completed integrating this scalar equation.

Position observer

The final step is to reconstruct the position Y .

Proposition 17 Consider the model of the 1-dof Maglev system (6) with known λ. Define the positions observer

Ẏ = -µ Y λ 2 Ŷ + µ Y (cλ -ki)λ + vY , ( 51 
)
where µ Y > 0 is a tuning gain and vY is generated as in Proposition 16. The following implication is true

λ ∈ L 2 ⇒ lim t→∞ | Ŷ (t) -Y (t)| = 0.
PROOF. Multiplying by λ the last equation in ( 6) we get (cλ

-ki)λ = λ 2 Y which replaced in (51) yields ėY = -µ Y λ 2 e Y + ( Ẏ -vY ),
where e Y := Y -Ŷ . The proof is completed invoking the equivalence (50) and the same arguments used in the Proof of Proposition 12.

Sensorless controller

In this subsection we implement the sensorless controller replacing the estimated fluxes, positions and velocities generated via the observers of Propositions 13-17 in the following full-state feedback feedback-linearizing controller (FLC):

u = k 2F mv F L + R(c -Y ) 2F k , v F L = Y (3) * -k 2 (( F m -g) -Ÿ * ) -k 1 ( Ẏ -Ẏ * ) -k 0 (Y -Y * ), ( 52 
)
which is given in Chapter 8, Section 5.1 of [START_REF] Ortega | Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF]-see also [START_REF] Lindlau | Feedback linearization of an active magnetic bearing with voltage control[END_REF][START_REF] Torres | Feedback linearization, integrator backstepping and passivity-based controller design: A comparison example[END_REF]. Replacing this control law in the 1-dof Maglev system (1)-( 5) yields the linear dynamics

Ỹ (3) + k 2 Ÿ + k 1 Ẏ + k 0 Ỹ = 0,
where the coefficients k i , i = 0, 1, 2, are chosen to ensure that the corresponding characteristic polynomial is stable.

Similarly to the case of 2-dof system, in the light of the convergence results of Propositions 15-17 it is expected

that if λ, ∆ ∈ L 2 , (53) 
then for all initial conditions of the overall system starting sufficiently close to equilibrium point we have that lim t→∞ (λ(t), Y (t), Ẏ (t)) = ( 2kmg, Y * , 0).

The remarks (R1)-(R4) of Subsection 3.5 apply as well to the 1-dof case.

Simulations

In this section we present simulations of the proposed sensorless controllers for the 1-and 2-dof Maglev systems.

2-dof Maglev system

The 2-dof Maglev system (1)-( 5) in closed-loop with the IDA-PBC (37) was simulated with the plant parameters taken from [START_REF] Rodriguez | Passivitybased control of magnetic levitation systems: teory and experiments[END_REF]. Namely, m = 0.0844, k = 6.4042e -5, R = 2.52, c = 0.005. The controller parameters were fixed at α = 10, β = -10, Γ = 800, R a = 1, which were tuned to reduce the overshot. For all experiments we set the desired fluxes taking λ 2 * = 2 and λ 4 * = 1.

In Figure 2 we compare the behaviour of the full-state controller and the sensorless one for the following step changes in the desired position: 

X * (t) =              0.
Y * (t) =              0, for 0 ≤ t ≤ 0.2 sec, 0.02, for 0.2 ≤ t ≤ 0.4 sec, -0.01, for 0.4 ≤ t ≤ 0.6 sec, 0.01, for t ≥ 0.6 sec, (54) 
with the following values of the controller parameters, κ i = 200, ν i = 30, γ i = 500, for i = 1, . . . , 4, and µ Y = µ X = 2000. The initial conditions are given in Table 1.

Fig. 2c shows the results, for the same parameters, but for a circle trajectory defined by

X * (t) = 0.1 sin(0.1t), Y * (t) = 0.1 cos(0.1t). (55) 
In Figs. 4, 5 we evaluated the effect of changing the adaptation gains γ i and the observer gains (µ X , µ Y , γ X , γ Y ), respectively. In Fig. 6 different initial conditions, given in Table 2, were taken.

1-dof Maglev system

The 1-dof Maglev system (1)-( 5) in closed-loop with the sensorless version of the FLC (52) was simulated with the following plant parameters: m = 0.0844, k = 1, R = 2.52, c = 0.005. The filters used in DREM were implemented with the gains ρ = 0.01, µ = 10, while the parameters of the FLC were fixed at k 0 = 1000, k 1 = 300, k 2 = 30, which corresponds to a pole location of the ideal closed-loop dynamics of s 1 = s 2 = s 3 = -10. For all experiments the default initial conditions are λ(0

) = η, ψ(0) = 0, λ(0) = 0, Y (0) = -1, Ẏ (0) = 0.5, Ŷ (0) = 0, vY (0) = 0, η(0) = 0.0001.
Two reference signals for Y were considered: filtered sum of sinusoids and filtered steps:

Y * (t) = ν 4 (p+ν) 4 Y * 0 (t) with
Y * 0 (t) = sin t + sin 2t + 0.5 sin(3.7t + π/3), (56) and

Y * 0 (t) =              0, for 0 ≤ t ≤ 1 sec, 2, for 1 ≤ t ≤ 3 sec, 0, for 3 ≤ t ≤ 5 sec, 3, for t ≥ 5 sec. ( 57 
)
where ν = 10 for the sinusoids and ν = 1 for the steps.

In Figures 3 we compare the behaviour of the position for the two desired trajectories with the difference in the initial conditions of λ and ψ such that η = 0.01: λ(0) = 0.01 and ψ(0) = 0. In Figs. 7 and8 we evaluated the effect on the observation errors of changing the adaptation gain γ. In Figs. 9 and 10 the behaviour of the observer for different values of η is showed. In last figure we observe that there is a steady state error, which increases for bigger adaptation gains. This reveals that the condition ∆ / ∈ L 2 is not satisfied, but the overall performance is still satisfactory.

Table 1 Initial conditions λ1(0) = 0.5 λ1(0) = 0.1 Y (0) = -0.001 Ŷ (0) = 0 λ2(0) = 0.6 λ2(0) = 0.5 Ẏ (0) = 0 vY (0) = 0 λ3(0) = 0.7 λ3(0) = 0.1 X(0) = 0 X(0) = 0 λ4(0) = 0.2 λ4(0) = 0.5 Ẋ(0) = 0 vX (0) = 0
6 Concluding Remarks and Future Research

We have presented in this paper a potential solution to the challenging problem of designing a sensorless controller for MagLev systems. Instrumental for the development of the theory was the use of PEBO and DREM parameter estimators-which were recently reported in the control literature-to estimate the flux and the mechanical coordinates of the system. The sensorless controller is then obtained replacing the estimated state in a full-state feedback IDA-PBC for the 2-dof system and in a FLC for the 1-dof case. It should be underscored that these controllers can be replaced with any other full-state feedback stabilizing controller. Simulation results show the excellent behaviour of the proposed observer. Consequently, the regulation performance of the sensorless controller is very similar to the one obtained with the full-state feedback scheme.

λ1(0) = 0.5 λ1(0) = 0.1 Y (0) = -0.001 Ŷ (0) = 0 λ2(0) = 0.6 λ2(0) = 0.5 Ẏ (0) = 0 vY (0) = 0 λ3(0) = 0.7 λ3(0) = 0.1 X(0) = 0 X(0) = 0 λ4(0) = 0.2 λ4 ( 
The convergence proof of the proposed observers relies on the excitation conditions (39) and ( 53), which has a clear energy interpretation. Assuming that the energy of the flux is unbounded is reasonable, since it holds true for a moving levitated object. However, the assumption on the functions ∆ i , i = 1, 2, is hard to verify a-priori and is critically dependent on the choice of the filters that generate the extended regressors -see [1,?,23] for some discussion on this important issue. Notice that if the signals ξ, defined in [START_REF] Han | Magnetic Levitation: Maglev Technology and Applications[END_REF], are persistently exciting this condition will hold true for any choice of the filters. Since ψ is generated via [START_REF] Dixon | Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach[END_REF], the level of excitation of ξ is essentially determined by the excitation of U and I. This fact suggests the addition of a high-frequency probing signal to the voltage to enforce the excitation condition, which is common practice in technique-oriented sensorless schemes. On the other hand, as indicated in [START_REF]Magnetic Bearings: Theory, Design and Application to Rotating machinery[END_REF], an important feature of most practical MagLev systems is that the amplifiers driving the coils are switching amplifiers, which induce high frequency perturbations to the coil currents and tend to produce periodically perturbed bias flux. Hence, one might expect that this switching ripple could produce the required excitation conditions.

Several open questions are currently being investigated.

• The computational complexity of the proposed observer is relatively high for this kind of applicationparticularly for the 1-dof system. Controller approximation techniques should be tried to obtain a practical design. [START_REF] Bobtsov | A robust globally convergent position observer for the permanent magnet synchronous motor[END_REF][START_REF] Bobtsov | A robust nonlinear position observer for synchronous motors with relaxed excitation conditions[END_REF][START_REF] Choi | Robust adaptive sensorless control for permanent magnet synchronous motors[END_REF]. Finding the right safety nets for the MagLev application will be needed in the experimental test. See also [START_REF] Pyrkin | A robust adaptive flux observer for a class of electromechanical systems[END_REF] where a variation of PEBO that avoids these robustness problems is presented. (c) Transients for Ẏ (t) -vY (t) Fig. 10. Errors with the sensorless-based FLC for the smooth steps position reference: 1. η = 0.01, 2. η = 0.02, 3. η = -0.02
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 1 Fig. 1. MagLev systems.

  (i) Application of PEBO to translate the problem of observation of the flux into a parameter estimation problem and derivation of the required regression model for their estimation. (ii) Application of the DREM parameter estimator to the aforementioned regressor. (iii) Derivation of a nonlinear observer for the speed. (iv) Derivation of a nonlinear observer for the position. (v) Presentation of the certainty equivalent sensorless IDA-PBC.

  Transients for X and Y and desired trajectory (55) Fig.2. Behaviour of the closed loop system for the desired trajectory (black line 1) with the full-state feedback IDA-PBC (red line 2) and its sensorless version (blue line 3).

  Filtered steps with γ = 10 3 and η = 0.01 Fig. 3. The reference signal Y * (t) (black dashed line 1) and transients for Y (t) with the sensorless version of FLC (blue line 2)

  = 0.6 λ1(0) = 0.5 Y (0) = 0.001 Ŷ (0) = -0.001 λ2(0) = 0.6 λ2(0) = -0.3 Ẏ (0) = 0.01 vY (0) = -0.01 λ3(0) = 0.8 λ3(0) = 0.2 X(0) = 0.03 X(0) = 0.02 λ4(0) = 0.1 λ4(0) = 0.1 Ẋ(0) = 0.02 vX (0) = 0.04

Fig. 4 .Fig. 5 .Fig. 6 .

 456 Fig. 4. Behaviour of the observation errors of the system with the sensorless-based IDA-PBC: 1. γi = 1000, 2. γi = 500, 3. γi = 100, i=1,...,4
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A Proof of Proposition 13

To simplify the expressions we write the model [START_REF] Choi | Robust adaptive sensorless control for permanent magnet synchronous motors[END_REF] in state-space form with the state variables x = col(x 1 , x 2 , x 3 ) := col(Y, m Ẏ , λ) and denote the measurable signal y := i. This yields, From ( 41) and (A.3) we get

x 3 (t) = η + ψ(t), (A. [START_REF] Bonivento | Balanced robust regulation of a magnetic levitation system[END_REF] where η = x 3 (0) -ψ(0). The essence of the proof is to, using (A.5), manipulate the systems equations (A.1)-(A.4) to establish an algebraic relation that depends only on the signals y and u -and filtered combinations of them-and a function of the unknown parameter η.

Instrumental to carry out this task is the Swapping Lemma, see e.g., Lemma 3.6.5 of [START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF], that is used in this proof in the following way

where a and b are some scalar functions of time and µ > 0.

First, compute ẏ ẏ = -

and consider y ẋ3 -ẏx 3 together with (A.1): 

Define the signal

where the Swapping Lemma was applied to the term W ẏψ to get the second identity and we defined the (measurable) signal

Note that q 1 may be computed based on y and u only. Replacing (A.10) in (A.9) we get

and after applying the Swapping Lemma again to the term W x 2 x 2 3 we get

x 2 3 -mg φ 1 (A.13) 4 To simplify the notation, In the sequel we omit the argument p from the operator W (p).

where we defined the signal

Define a second auxiliary signal

where we used (A.13) in the second equation, applied the Swapping Lemma to the term W x 2 φ 1 to get the third identity, used (A.2) in the fourth one and

(A.17)

Consider the following identity

where we replaced q 1 and q 2 with (A.13) and (A.15) respectively to obtain right-hand side. Signals x 2 3 , φ 1 , and φ 2 cannot be computed based on the measurable signals y and u, but can be replaced by combination of the measurable signal ψ and unknown parameter η using (A.5), (A.14), and (A.17) 

where

The proof is completed applying to the regression model (A.22) the filter ρp p+ρ to get the new regression model (42), where we defined (•) = ρp p+ρ (•) 0 . Notice that, due to the derivative action of the filter, the constant term η 6 in (A.22) has been removed in (42). This eliminates a constant term (a one) from the regressor, whose excitation conditions for parameter convergence are strictly weaker.