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Abstract. Person re-identification consists in matching images of a par-
ticular person captured in a network of cameras with non-overlapping
fields of view. The challenges in this task arise from the large variations of
human appearance. In particular, the same person could show very differ-
ent appearances from different points of view. To address this challenge,
in this paper we propose an Orientation-Specific Convolutional Neural
Network (OSCNN) framework which jointly performs body orientation
regression and extracts orientation-specific deep representations for per-
son re-identification. A robust joint embedding is obtained by combining
feature representations under different body orientations. We experimen-
tally show on two public benchmarks that taking into account body
orientations improves the person re-identification performance. More-
over, our approach outperforms most of the previous state-of-the-art re-
identification methods on these benchmarks.

Keywords: Person Re-identification, Convolutional Neural Network, Mixture
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1 Introduction

Person re-identification is the problem of identifying people across images that
have been captured by different surveillance cameras with non-overlapping views.
The task is increasingly receiving attention because of its important applications
in video surveillance such as cross-camera tracking, multi-camera behavior anal-
ysis and forensic search.

However, this problem is challenging due to the large variations of lightings,
poses, viewpoints and backgrounds. The main difficulty is that the pedestrian
appearance can be very different with different body orientations under different
viewpoints, i.e. images of the same person can look quite different and images
of different persons can look very similar (see Fig. 1). Moreover, low image
resolution and partial occlusion in images make the problem even harder.

Most existing approaches consider that pedestrian images come from a sin-
gle domain. The viewpoint-invariant feature representations are either designed
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Fig. 1. Some image examples from a person re-identification dataset. Pedestrian ap-
pearance can be very different due to different body orientations.

“manually” or learned automatically by a deep neural network. Though, re-
identification can be considered as a multi-domain problem, i.e. pedestrians
with the same body orientation have similar silhouettes and those with different
body orientations have dissimilar appearance. Some metric learning approaches,
for example, learn to transfer the feature space from one camera to another.
But this requires a model for all the combination of cameras. Some other metric
learning methods learn to transfer the different view-specific feature spaces to a
common subspace where features are discriminative. This addresses the lighting
and background variations, but it cannot be generalised to new camera views,
and pedestrian images still have variations from different body orientations even
if they come from the same camera.

To tackle this issue, we use a multi-task deep Convolutional Neural Network
(CNN) to perform body orientation regression in a gating branch, and in another
branch separate orientation-specific layers are learned as local experts. The com-
bined orientation-specific CNN feature representations are used for the person
re-identification task. Our main contributions are:

– a mixture-of-expert deep CNN to model the multi-domain pedestrian images
for person re-identification. We show that learning and combining different
feature embeddings of different orientations improves the re-identification
performance,

– a novel multi-task CNN framework with combined person orientation esti-
mation and re-identification, where the estimated body orientation is used
to steer the orientation specific mixture of experts for re-identification,

– an experimental evaluation showing that our approach outperforms most
state-of-the-art methods on the CUHK01 and Market-1501 datasets.

2 Related Work

Existing person re-identification approaches generally build a robust feature rep-
resentation or learn a distance metric. The features used for re-identification are
mainly variants of color histograms, Local Binary Patterns (LBP) or Gabor fea-
tures. Some approaches use features that are specifically designed to be robust to
common appearance variations. For example, Gray et al . [6] extract RGB, YUV
and HSV channels and LBP texture histograms in horizontal stripes as feature
vector. Liao et al . [13] propose the LOMO features. Color and SILTP histograms
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are extracted in sliding windows and only the maximal occurance is kept along
each horizontal strip. The main metric learning methods include Mahalanobis
metrics like KISSME [7], Local Fisher discriminant Analysis (LFDA) [17] and
Cross-view Quadratic Discriminant Analysis (XQDA) [13].

With the recent success of deep learning for computer vision applications,
many deep convolution neural network approaches have been proposed for per-
son re-identification. For example, Li et al . [11] adopted a filter pairing neu-
ral network (FPNN) to model the displacement of body parts for person re-
identification. Amed et al . [1] introduced an improved Siamese architecture us-
ing the difference of feature maps to measure the similarity. Cheng et al . [4]
proposed a variant of the triplet loss function and a CNN network processing
parts and the entire body. Varior et al . [22] proposed a Siamese CNN integrating
a gate layer to capture effective subtle patterns in the feature map. The deep
networks proposed in [8] and [27] learn a body part alignment and localisation
and extract body part regions in an unified framework.

Most existing methods for person re-identification focus on developing a ro-
bust representation to handle the variations of view. Some methods take into
account the view as extra information. For example, Ma et al . [15] divide the
data according to the additional camera position information and learn a specific
distance metric for each camera pair. Lisanti et al . [14] proposed to apply Ker-
nel Canonical Correlation Analysis which finds a common subspace between the
feature space from disjoint cameras. Yi et al . [25] proposed to apply a Siamese
CNN to person re-identification. Similar to [14], the weights of two subnet-
works are not shared to learn a camera view projection to a common feature
space. In these approaches, camera information is used but the body orientation
which is only partly due to different camera views is not modelled. That is, in
the same camera view, pedestrians can exhibit different orientations and thus
largely different appearances in the resulting images.

In order to solve this issue, Bak et al . [2] perform an orientation-driven fea-
ture weighting and the body orientation is calculated according to the walking
trajectory. some other approaches [23, 18] deal with the orientation variations of
pedestrian images by using Mixture of Experts. The expert neural networks map
the input to the output, while a gating network produces a probability distribu-
tion over all experts’ final predictions. Verma et al . [23] applied an orientation-
based mixture of experts to the pedestrian detection problem. Sarfraz et al . [18]
proposed to learn the orientation sensitive units in a deep neural network to
perform attribute recognition. Garcia et al . [5] used orientations estimated by a
Kalman filter and then trained two SVM classifiers for pedestrian images match-
ing with respectively similar orientations and dissimilar orientations. And the
approach of Li et al . [9] learns a mixture of experts, where samples were softly
distributed into different experts via a gating function according to the viewpoint
similarity.

Sharing the idea of mixture of experts, we propose to build a multi-domain
representation in different orientations with deep convolutional neural networks.
Intuitively, an orientation-specific model should have a better generalization abil-
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Fig. 2. Overview of the OSCNN architecture.

ity than a camera view-specific model, since we cannot incorporate all possible
surveillance camera views. Further, instead of using discrete orientations for the
gating activation function, in our method, we use a regressor to estimate an
accurate and continuous body orientation. This allows to continuously weight
different expert models for re-identification and also avoids combining contra-
dictory orientations.

3 Proposed method

The overall procedure of our re-identification approach OSCNN is shown in
Fig. 2. The network contains an orientation gating branch and a re-identification
branch consisting of 4 feature embeddings regarding the 4 main orientations:
left, right, frontal and back. The final output feature representation is a linear
combination of the four expert outputs and is steered by an orientation gate unit
which is a function of the estimated orientation.

3.1 OSCNN architecture

The proposed neural network architecture consists of two convolution layers
shared between an orientation gating branch and a re-identification feature em-
bedding branch. In the re-identification branch, there are 3 further convolution
layers followed by 4 separate, parallel fully-connected layers of 512 dimensions,
each one corresponding to a local expert. Thus, our network learns different
projections to a common feature space, as shown Fig. 3 .

In the orientation regression branch, 2 convolution layers and 2 fully con-
nected layers are connected to the common convolutional layers. The estimated
orientation output by the orientation gating branch is represented by a two-
dimensional Cartesian vector [α, β] constructed by projecting the orientation
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Fig. 3. Pedestrian images from different orientations could be considered as different
domains. Our method learns different orientation-specific projections into a common
feature space.

angle on the left-right axis (x) and on the front-back (y) axis and then nor-
malizing it to a unit vector. Based on this vector, the orientation gate selects
and weights either the left or the right component and either the front or the
back component of the re-identification branch. Thus, we use four different lo-
cal experts corresponding to left, right, front and back orientations and any
orientation can be represented by the combination of these orientations. Let
f{left,right,front,back} be the output feature vectors of the 4 different orientation
branches. The final re-identification output vector is the sum of the left-right
component and the front-back component:

fouput = max(α, 0)fleft+max(−α, 0)fright+max(β, 0)ffront+max(−β, 0)fback
(1)

Different from the classic mixture of experts approach, our orientation gate is set
before the local experts, and we perform a regression in stead of a classification.
The advantage of our orientation gate is that it avoids combining contradictory
orientations like front and back. Computationally, only two among four orien-
tations are used and combined according to the sign of α and β. This further
allows saving computation.

3.2 Training

There are two stages to train the model as shown in Fig. 4. In the first stage, the
orientation regressor and a general re-identification feature embedding are both
trained in parallel with two separate objective functions. In the second stage,
the network is specialized to different orientations. These two steps are detailed
in the following.

Multi-task network training We start training the network with pedestrian
identity labels and orientation labels respectively. Identification: for identifi-
cation learning, we temporarily add an N-dimensional fully-connected layer to
the re-identification branch, N being the number of the identities in the training
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(a)

(b)

Fig. 4. The two training steps of our method. (a) In the first step, we train the model
with identity and orientation labels . (b) Then, we fine-tune the model to train the
orientations-specific layers with hard triplets.

set. The estimated probability of the ith identity is calculated with the softmax

function: p(i) = exp(zi)∑N
j=1 exp(zj)

, where z = [z1, z2, ..., zN ] is the output of this last

fully connected layer. Then, we train the CNN by minimizing the cross-entropy
loss:

Lid = −
N∑
i=1

log(p(i))lid(i), (2)

where lid is the ground truth one-hot coded identity vector for a given example.
Orientation regression: for the body orientation, we use the Euclidean

loss to train the orientation regression of α and β. For a given training example,
we have:

Lorien =
(α− α̂)2 + (β − β̂)2

2
(3)

where α̂, β̂ are predicted orientation labels of the example. Due to the difficulty
in estimating the precise body angle, even for humans, orientation is annotated
with 8 discrete labels. For training we convert the orientation class to the vector
[α, β]. To get a more robust orientation learning, we add a uniform random noise
of 10 degrees to the orientation labels.

For datasets that have both identity and orientation labels, we train the
network with a combined loss Lmulti−task = Lid + λLorien. Then, orientation
and identification are learned jointly. Otherwise, the two branches are trained
separately.

Orientation-specific fine-tuning with triplets In the second training stage,
we fine-tune the network parameters using similarity metric learning in order
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to specialize the 4 different local experts. For the re-identification branch, we
remove the last fully-connected layer and duplicate four times the the first fully-
connected layer. Two orientation gates are integrated to select and weight dif-
ferent orientation projections. Since the different choices and weightings are per-
formed according to the orientation of the person in the input image, the four
orientation-specific layers are updated in different ways, whereas the other layers
keep their pre-trained weights.

For the similarity metric learning, we propose to use an improved triplet
loss with hard example selection. Unlike with classic triplet loss, a (n+2)-tuple
of images instead of a triplet is projected into the feature space. The tuple
includes one anchor image a, one positive image of the same person p and k
negative images of different persons nj . Training enforces that the projection
of the positive example is placed closer to the anchor than the projection of
the closest negative example among the k negative examples. This constraint is
defined as following:

min
j=1..k

(‖f(a)− f(nj)‖22)− ‖f(a)− f(p)‖22> m (4)

The negative example that is closest to the anchor is considered the hardest
example. The network is thus updated efficiently by pushing the hardest example
further away from the anchor. In classic triplet loss, a part of the triplets does
not violate the triplet constraint and thus is useless for learning. The selection
among k negative examples reduces the number of unused training data and can
make the training more efficient. To further enhance the loss function, as [4], we
add a term including the distance between the anchor example and the positive
example. The loss function for N training examples is defined as follows:

.
Etriplet = − 1

N

N∑
i=1

[max(‖f(ai)− f(pi)‖22− min
j=1..k

(‖f(aji )− f(nji )‖
2
2) +m, 0)

+γ‖f(ai)− f(pi)‖2]
(5)

3.3 Implementation details

The first convolutional layer has a kernel size of 5× 5 and the following have a
kernel size of 3× 3. All following max-pooling layers have a kernel size of 2× 2
except the last one in the re-identification branch which has a kernel size of
3× 1 without zero-padding increasing the number of channels and reducing the
number of parameters by reducing their size to a single column. Batch normal-
ization and a Leaky ReLU activation function with a slope of 0.2 are applied
after the max-pooling layers and fully connected layers. The first fully-connected
layers of the re-identification branch and the orientation gating branch output a
vector of respectively 512 and 256 dimensions. Dropout is applied to the fully-
connected layers to reduce the risk of overfitting. The optimization is performed
by Stochastic Gradient Descent with a learning rate of 0.005, a momentum of
0.9 and a batch size of 50. The constant k is set to 5 and γ is set to 0.002 as [4].
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Fig. 5. Orientation confusion matrix on Market-1203.

4 Experiments

4.1 Datasets

The Market-1501 Dataset [28] is one of the largest publicly available datasets
for human re-identification with 32668 annotated bounding boxes of 1501 sub-
jects. All images are resized to 128× 48. The dataset is split into 751 identities
for training and 750 identities for testing as in [28].

The Market-1203 Dataset [16] is a subset of Market-1501 containing 8570
images from 1203 identities under two camera views. 8 body orientations are
annotated. We use 601 identities for training and 602 identities for the test.
The test on Market-1203 is performed in the way as Market-1501, that means,
we pick one image for each identity and each camera view as query (if there’s
only one image, no image will be picked) and the rest as gallery images. The
gallery images from the same identity and the same camera view as the query
will be considered as “junk images” which have zero impact on search accuracy.
The rank 1 accuracy (R1) and the mean average precision (mAP) are used for
performance evaluation.

The CUHK01 Dataset [10] contains 971 subjects, each of which has 4
images under 2 camera views. We mannualy annotated each image with 8 body
orientations. According to the protocol in [1], the data set is divided into a
training set of 871 subjects and a test set of 100 and the extra data from the
CUHK03 dataset [11] is also used in training. The CUHK03 dataset is a large
person re-identification dataset with 13164 images of 1360 identities. We evaluate
in two ways with only CUHK01 data and with CUHK01 plus CUHK03 data in
training. The images are all resized to 160 × 60. The Cumulative Match Curve
(CMC) is employed as evaluation measure.

For all datasets, to reduce over-fitting, we perform data augmentation by
randomly flipping the images and by cropping central regions with random per-
turbation. For the tests on Market-1501 and on CUHK01 with extra data from
CUHK03, since only a part of the images has orientation annotations, the re-
identification branch and the orientation gating branch are trained separately.
For the test on Market-1203 and the one using only the CUHK01 dataset, we
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Methods R1 mAP

Basline 62.0 64.6
OSCNN 63.8 66.4

Table 1. Experimental evaluation on the Market-1203 dataset.

Methods R1 mAP

Basline 77.3 53.9
OSCNN 78.9 55.2

OSCNN+re-rank [30] 83.9 73.5

LOMO+XQDA [13] 43.8 22.2
PersonNet [24] 37.2 18.6

Gated SCNN [4] 65.9 39.6
Divide fues re-rank [26] 82.3 72.4

LSRO [29] 78.1 56.2
DeepContext [8] 80.3 57.5

K-reciprocal re-rank [30] 77.1 63.6
SVDnet [21] 82.3 62.1
JLML [12] 85.1 65.5

Table 2. Experimental evaluation on the Market-1501 dataset.

perform a joint multi-task training with the combined loss from Section.3.2 and
λ = 0.01 determined by a cross-validation.

4.2 Experimental results

Orientation regression evaluation. We first evaluate the performance of ori-
entation regression. We tested the model after the first training stage on Market-
1203 dataset. The confusion matrix is shown in Fig. 5. We calculated also the
accuracy rate proposed in [16], i.e. result is considered correct if the predicted
and true orientation classes are equal or adjacent. Since person appearances ob-
tained in adjacent orientations are very similar, the exact orientation is less im-
portant. Thus, this accuracy evaluation criterion is more suitable for the person
re-identification problem. On the Market-1203 test set, we can get an accuracy
rate of 97.7%.

Orientation gate evaluation To evaluate the effectiveness of our OSCNN,
we set up a baseline method. The baseline performs identity learning with soft-
max loss, then fine-tuning on hard triplets without the orientation gate. The
results on Market-1203, Market-1501 and CUHK01 are respectively shown in
Tables 1, 2 and 3. Compared to the baseline, integrating the orientation-based
local experts in the CNN framework could achieve a 1.8% point improvement for
rank1 on CUHK01,1.6% and 1.3% points for rank 1 and mAP on Market-1501
and 1.8% and 1.8% points for rank 1 and mAP on Market-1203 . This demon-
strates the effectiveness of the orientation gate and the specific projections into
a common feature subspace.
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Methods R1 R5 R10 R20

Basline(CUHK01) 76.6 93.8 97.0 98.8
OSCNN(CUHK01) 78.2 94.1 97.3 99.1

OSCNN(CUHK01+03) 83.5 96.4 99.0 99.5

LOMO+XQDA [13] 63.2 83.9 90.1 94.2
ImporvedDL [1] 65.0 88.7 93.1 97.2
PersonNet [24] 71.1 90.1 95 98.1

Deep Embedding [19] 69.4 - - -
Norm X-Corr [20] 81.2 - 97.3 98.6

Multi-task [3] 78.5 96.5 97.5 -

Table 3. Experimental evaluation on the CUHK01 dataset.

Comparison with state-of-the-art We compared our OSCNN to the
state-of-the-art approaches on Market-1501 and CUHK01. Following the test
protocol in [1, 24, 3], we added also the CUHK03 images to the training for the
test on the CUHK01 and we compared to the methods only using these two
datasets for training. As Table. 3 shows, our method is superior to most results
in the state-of-the-art. Even without much extra CUHK03 training data, our
method shows a competitive performance.

On the Marke-1501 dataset, our OSCNN achieves the same level results as
some state-of-the-art methods. Although the result is under the best score of
the state-of-the-art, the advantage of our approach is that the model doesn’t
need a pre-training step with a much larger pre-training dataset composed of
ImageNet as [29, 8, 30, 21] . And our model has less complexity (1.15×108 FLOPs
of our model compared to 1.45× 109 FLOPs of JLML and to 3.8× 109 FLOPs
of SVDNet). Recently some state-of-the-art approaches show the re-ranking [30,
26] which uses information from nearest neighbors in the gallery can significantly
improve the performance. As Table. 2 shows, our approach can largely benefit
from this technique and achieves a state-of-the-art result on Market-1501.

5 Conclusion

In this paper, we presented a person re-identification approach based on an orien-
tation specific CNN architecture and learning framework. Four orientation-based
local experts are trained to project pedestrian images of specific orientations into
a common feature subspace. An orientation gating branch learns to predict the
body orientation and an orientation gate unit uses the estimated orientation
to select and weight the local experts to compute the final feature embedding.
We experimentally showed that the orientation gating improves the performance
of person re-identification, and our approach outperforms most of the previous
state-of-the-art re-identification methods on two public benchmarks.



11

Acknowledgement

This work was supported by the Group Image Mining (GIM) which joins re-
searchers of LIRIS Lab. and THALES Group in Computer Vision and Data
Mining. We thank NVIDIA Corporation for their generous GPU donation to
carry out this research.

References

1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for
person re-identification. In: CVPR. pp. 3908–3916 (2015)

2. Bak, S., Zaidenberg, S., Boulay, B., Bremond, F.: Improving person re-
identification by viewpoint cues. In: IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). pp. 175–180. IEEE (2014)

3. Chen, W., Chen, X., Zhang, J., Huang, K.: A multi-task deep network for person
re-identification. In: AAAI. pp. 3988–3994 (2017)

4. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by
multi-channel parts-based cnn with improved triplet loss function. In: CVPR. pp.
1335–1344 (2016)
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