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Abstract

In video surveillance, pedestrian attributes are de�ned as semantic descriptors

like gender, clothing or accessories. In this paper, we propose a CNN-based

pedestrian attribute-assisted person re-identi�cation framework. First we per-

form the attribute learning by a part-speci�c CNN to model attribute patterns

related to di�erent body parts and fuse them with low-level robust Local Max-

imal Occurrence (LOMO) features to address the problem of the large variation

of visual appearance and location of attributes due to di�erent body poses and

camera views. Our experiments on three public benchmarks show that the pro-

posed method improves the state of the art on attribute recognition. Then we

merge the learned attribute CNN embedding with another identi�cation CNN

embedding in a triplet structure to perform the person re-identi�cation task.

Both CNNs are pre-trained in a supervised way on attributes and person iden-

tities respectively, and then continue the training with a combined architecture

for re-identi�cation. We experimentally show that this fusion of \identity and

attributes features" improves the overall re-identi�cation.

Keywords: Person re-identi�cation; soft-biometrics; pedestrian attributes;

convolutional neural network
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1. Introduction

With the increase of the number of surveillance cameras and public security

demand, the video surveillance analysis tasks including object detection, object

tracking or abnormal event detection become important research topics devel-

oping methods to e�ectively process these large amounts of data. In this paper,5

we focus on person re-identi�cation by pedestrian attributes.

Recently, visual attributes recieved a lot of attention and have been used

for object recognition [? ], action recognition [? ] , face recognition [? ] etc.

Pedestrian attributes are de�ned as semantic mid-level descriptions of persons,

such as gender, accessories, clothing and so on. The advantage of attributes10

is that they are more robust to visual changes related to the viewing angle,

body pose or lighting for instance, and that they can be used for zero-shot

identi�cation (querying by an attribute-based description instead of an image).

Since biometric features like faces are often not visible or of too low resolution

to be helpful in surveillance, pedestrian attributes could be considered as soft-15

biometrics and provide helpful information for many surveillance applications

like person detection [? ], person retrieval [? ], or abnormal event detection.

For example, a description like \a male in black shirt with a back bag" can be

e�ectively used in person retrieval applications.

The main challenges for pedestrian attribute recognition are the large visual20

variation and large spatial shifts due to the descriptions being on a high se-

mantic level. For instance, the same type of clothes (e.g. shorts) can have

very divers appearances. The large spatial shifts w.r.t the detected pedestrian

bounding boxes are caused by di�erent body poses and camera views, and a �ner

body part detection or segmentation is challenging in surveillance-type videos.25

Furthermore, in realistic settings, illumination changes and occlusion make the

problem even more challenging.

Person re-identi�cation consists in matching a query person among a large

set of people detected in multiple non overlapping camera views. The challenges

for automatic re-identi�cation approaches from images are essentially the same30
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as for pedestrian attribute recognition i.e. a large variation in viewpoint, pose,

illumination and background.

This paper is an extension of our preliminary work on attribute learning [? ].

In this paper, we present a CNN-based pedestrian attribute assisted person re-

identi�cation framework. In the �rst step, the attribute learning is performed.35

In order to deal with the large spatial shift of attributes, we propose to use a

speci�c Convolution Neural Network (CNN) architecture with 1D convolution

layers operating on several horizontal parts of the input feature maps to learn

di�erent feature representations and model the displacements of di�erent body

parts. For an even larger spatial invariance, our approach extracts LOMO fea-40

tures, which have been speci�cally designed for viewpoint-invariant pedestrian

re-identi�cation. These low-level handcrafted features are fused with the high-

level learned CNN features at a late training and processing stage to get a more

robust feature representation modelling the diverse appearances of attributes.

Our experiments show that the proposed method improves the state of the art45

on pedestrian attribute recognition on three public benchmarks.

In the second step, the learned attribute embedding is used for person re-

identi�cation. The framework fuses two neural networks. One is our attribute

recognition network pre-trained with attribute labels, the other is a CNN pre-

trained with person identity labels. Then we integrate these two neural networks50

into a triplet architecture to learn the optimal fusion parameters. To this end, an

improved triplet loss with hard example selection is used. We experimentally

show that the fusion leads to a better re-identi�cation performance, and our

approach achieves state-of-the-art results.

2. Related work55

2.1. Pedestrian Attribute Recognition

There are many approaches for attribute recognition like clothing descrip-

tion and human attributes. Particularly, pedestrian attribute recognition from

surveillance videos has attracted much attention, where attributes correspond
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to mid-level semantic descriptions(gender, hair type, closthing, accessories etc).60

In the approach proposed by Vaquero et al. [? ], the person image is parsed

into regions, and each region is associated with a classi�er based on Haar-like

features and dominant colors. The attribute information is then used to index

surveillance video streams. Layne et al. [? ] annotated 15 attributes on the

VIPeR dataset and proposed an approach to extract a 2 784-dimensional low-65

level color and texture feature vector for each image and to train an SVM for

each attribute. Zhu et al. [? ], in their work, introduced the pedestrian attrib-

ute database APiS. Their method determines the upper and lower body regions

according to the average image and extracts color and texture features (HSV,

MB-LBP, HOG) in these two regions. Then, an Adaboost classi�er is trained70

on these features to recognize attributes. The drawback of these approaches

is that all attributes are treated independently. That is, the relation between

di�erent attributes is not taken into account.

Some later works try to overcome this limitation. Zhu et al. [? ] proposed

an interaction model based on their Adaboost approach [? ] learning an attrib-75

ute interaction regressor. The �nal prediction is a weighted combination of the

independent score and the interaction score. Deng et al. [? ] constructed the

pedestrian attribute dataset Peta and their approach uses a Markov Random

Field (MRF) to model the relation between attributes. The attributes are re-

cognized by exploiting the context of neighbouring images on the MRF-based80

graph.

Some Convolution Neural Network (CNN) models have been proposed for

pedestrian recognition. For example, Li et al. [? ] �ne-tuned the Ca�eNet (sim-

ilar to AlexNet) trained on ImageNet to perform simple and multiple attribute

recognition. Similarly, Sudowe et al [? ] proposed the Attribute Convolutional85

Net (ACN) which add custom layers on Alexnet to jointly learn attributes. Zhu

et al. [? ] proposed to divide the pedestrian images into 15 overlapping parts

where each part connects to several CNN pipelines with several convolution and

pooling layers. They further pre-de�ne connections between the parts and the

attributes in the fully-connected layers to deal with the shift problem. Later90
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they proposed an improved version [? ], where a fully-connected layer connect

to all attributes in stead of using manually de�ned connections.

Recently, some deep features and hand-crafted features combination ap-

proaches have been proposed in di�erent tasks like saliency detection [? ],

face recognition [? ] and person re-identi�cation [? ]. These approaches imple-95

ment deep neural network framework embedded with low-level features. In our

work, we exploit this handcrafted and deep feature combination in the attribute

recognition context. Our method e�ectively fuses shift-invariant lower-level fea-

tures with learned higher-level features to build a combined representation that

is more robust to the large intra-class variation which is inherent in attribute100

recognition.

We implemented also a speci�c CNN architecture operating on di�erent

image regions related to the pedestrian body parts and using 1D horizontal

convolutions on these part-based feature maps. We experimentally show that

our system works well for both larger and smaller datasets thanks to a pre-105

training stage. The detected attributes are further used to assist the person

re-identi�cation task.

2.2. Person re-identi�cation

Existing person re-identi�cation approaches generally build a robust feature

representation or learn a distance metric. The features used for re-identi�cation110

are mainly variants of color histograms [? ? ], Local Binary Patterns (LBP) [ ?

? ] or Gabor features [? ]. For example, Farenzena et al. [? ] partitioned

the human body into meaningful parts exploiting asymmetry and symmetry

principles. On each part, the weighted color histogram, the maximally stable

color regions and the recurrent high-structured patches are computed. Ma et115

al. [? ] use local descriptors based on color and gradient information and

encode them using high-dimensional Fisher vectors. Mignon et al. [? ] used

a feature vector composed of a mixture of color (RGB, HSV and YCbCr) and

texture (LBP) from six horizontal stripe regions. Liao et al. [ ? ] analyse

the horizontal occurrence of local features and maximize this occurrence to120
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improve the robustness of features. The main metric learning methods include

Mahalanobis metrics like KISSME [? ], Local Fisher discriminant Analysis

(LFDA) [ ? ], Marginal Fisher Analysis(MFA) [ ? ] and Cross-view Quadratic

Discriminant Analysis (XQDA) [ ? ].Other than Mahalanobis metrics, SVM [? ]

and boosting[? ] have also been proposed for re-identi�cation metric learning.125

Recently some CNN models have been proposed for person re-identi�cation.

Yi et al. [ ? ] �rst applied a Siamese network to person re-identi�cation. The

person image is divided into three parts, each associated with a CNN. To handle

geometric problems, DeepReId [? ] implements a novel architecture where a

patch matching layer models the displacement of body parts. An improved130

CNN architecture proposed by Amed et al.[? ] computes the cross-input neigh-

borhood di�erence features. Cheng et al. [? ] introduced a variant of the triplet

loss function and a CNN network processing parts and the entire body. In [? ],

a gate layer is integrated in a Siamese CNN to capture e�ective subtle patterns

in the feature map. Shi et al. [? ] proposed a moderate positive mining method135

which improve the learning e�ciency in a Siamese-like CNN framework. liu et

al. [? ] proposed a soft attention based Siamese neural network.

Some previous works have used pedestrian attributes to assist with the re-

identi�cation task. Based on an attribute recognition SVM approach, Layne

et al. [? ] �rst proposed to use attributes as a mid-level representation for140

improving person re-identi�cation. The �nal distance between two pedestrian

images is computed as a weighted sum of low-level feature distance and attribute

distance. Li et al. [? ] embeds middle-level clothing attributes via a latent SVM

framework for more robust person re-identi�cation. The approach introduced

by Khamis et al. [? ] learns a discriminative projection to a joint appearance-145

attribute subspace in order to leverage the interaction between attributes and

appearance for matching.

Some other related methods also use attributes to perform person re-identi�cation

with CNNs, but the ways of integrating these attributes are di�erent, for ex-

ample using a weighted combination, simple concatenation, multi-task learning150

or attribute pre-training. Zhu et al. [ ? ] recognize the attributes with deep
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neural networks then calculate a pedestrian distance by weighting the attribute

distance and a low-level feature-based person appearance distance. McLaughlin

et al. [? ] propose to perform person re-identi�cation and attribute recogni-

tion in a multi-task learning. this proposed loss function is a weighted sum155

of the attribute and identi�cation classi�cation loss as well as a Siamese loss.

And they show a re-identi�cation performance improvement by multitask joint

learning. Matsukawa et al. [? ] propose to �netune the well-known Alexnet

with attribute combination labels to increase the discriminative power. Further

they concatenated the CNN embedding directly with LOMO features and used160

the metric learning method XQDA [ ? ] to learn a feature space. Su et al. [?

] proposed a three-stage procedure that pre-trains a CNN with attribute la-

bels of an independent dataset, then �ne-tunes the network with identity labels

and �nally �ne-tunes the network with the learned attribute feature embedding

on the combined dataset. The main di�erence of these approaches to ours is165

the way of making use of attributes to assist in the re-identi�cation task. In

summary, two CNN embeddings are learned based on attribute and identity

annotation. Then, an improved triplet loss is used to learn the fusion. We

will experimentally show the performance improvement brought by this fusion

achieving state-of-art results on a public person re-identi�cation benchmark.170

3. Proposed Methods

In this section, we �rst describe our attribute recognition method and further

introduce the attribute and identity-based re-identi�cation framework.

3.1. CNN based pedestrian attribute recognition

3.1.1. Overall procedure175

The architecture of the proposed attribute recognition approach is shown

in Fig. ??. The framework consists of two branches. One branch is a Con-

volutional Neural Network extracting higher-level discriminative features by

several succeeding convolution and pooling operations that become speci�c to

7



Figure 1: Overview of attribute recognition approach

di�erent body parts at a given stage (P3) in order to account for the possible180

displacements of pedestrians due to pose variations. Another branch extracts

the viewpoint-invariant Local Maximal Occurrence (LOMO) features, a robust

visual feature representation that has been speci�cally designed for viewpoint-

invariant pedestrian attribute recognition and achieving state-of-the-art res-

ults [? ] (cf. Section ??). The extracted LOMO features are then projected185

into a linear subspace using Principal Component Analysis (PCA). The aim of

this step is two-fold: �rst, to reduce the dimension of the LOMO feature vec-

tor removing potential redundancies, and second, to balance the contribution

of CNN features and LOMO features in the succeeding fusion that combines

information represented in the two feature vectors.190

To carry out this fusion, the output vectors of the two branches are concat-

enated and given to a neural network of two fully-connected layers (fc2+fc3)

e�ectively performing the �nal attribute classi�cation. We will explain these

steps in more detail in the following.
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3.1.2. Part-based CNN195

We �rst propose to extract deep feature hierarchies by a CNN model provid-

ing a higher level of abstraction and a larger discrimination power since the

features are directly learned from data. As illustrated in Fig. 2, the CNN

comprises three alternating convolution and pooling layers. The size of the �rst

convolution (C1) is 5� 5. The two following (C2, C3) are of size 3� 3. The kernel200

size of max-pooling (P1-P3) is 2� 2, and the number of channels of convolution

and pooling layers is 32 respectively. The resulting feature maps in the last

pooling layer are divided vertically into 4 equal parts roughly corresponding to

the regions of head, upper body, upper legs and lower legs. For each part, sim-

ilar to [ ? ], we use two layers (C4, C5) with 1D horizontal convolutions of size205

3� 1 without zero-padding reducing the feature maps to single column vectors.

These 1D convolutions allow to extract high-level discriminative patterns for

di�erent horizontal stripes of the input image. In the last convolution layer, the

number of channels is increased to 150, and these feature maps are given to a

fully-connected layer (fc1) to generate an output vector of dimension 500. All210

the convolution layers in our model are followed by batch normalization and

ReLU activation functions.

3.1.3. LOMO extraction

Recently, pedestrian re-identi�cation methods using LOMO features pro-

posed by [? ] have achieved state-of-the-art performance, and here we apply215

these low-level features on the related task of attribute recognition in order

to extract relevant cues from pedestrian images and to complement the CNN

features by providing a higher viewpoint invariance. In the LOMO feature ex-

traction method, the Retinex algorithm is integrated to produce a colour image

that is consistent with human perception. To construct the features, two scales220

of Scale-Invariant Local Ternary Patterns (SILTP) [ ? ] and an 8� 8� 8-bin joint

HSV histogram are extracted for an illumination-invariant texture and colour

description. The sub-window size is 10� 10, with an overlapping step of 5 pixels

describing local patches in 128� 48 images. Following the same procedure, fea-

9



tures are extracted at 3 di�erent image scales. For all sub-windows on the same225

image line, only the maximal value of the local occurrence of each pattern among

these sub-windows is retained. In that way, the resulting feature vector achieves

a large invariance to view point changes and, at the same time, captures local

region characteristics of a person. We refer to [? ] for more details. In our

approach, as illustrated in the bottom of Fig. 2, we perform a dimensionality230

reduction projecting the extracted LOMO features of size 26 960 on a linear

subspace of dimension 500, in order to facilitate the later fusion. The projec-

tion matrix is computed using PCA on the LOMO feature vectors computed on

the training dataset.

3.1.4. Training235

To train the parameters of the proposed CNN, the weights are initialised at

random and updated using stochastic gradient descent minimising the global

loss function (Eq. ??) on the given training set. Since most attributes are not

mutually exclusive, i.e pedestrians can have several properties at the same time,

the attribute recognition is a multi-label classi�cation problem. Thus, the multi-240

label version of the sigmoid cross entropy is used as the overall loss function:

E = �
1
N

NX

i =1

LX

l =1

[wl yil log(� (x il )) + (1 � yil ) log(1 � � (x il )] ; (1)

with � (x) =
1

1 + exp(� x)
;

where L is the number of labels (attributes), N is the number of training ex-

amples, and yil ; x il are respectively the l th label and classi�er output for the245

i th image. Usually, in the training set, the two classes are highly unbalanced.

That is, for most attributes, the positive label appears generally less frequently

than the negative one. To handle this issue, we added a weightw to the loss

function: w = � log2(pl ) , where pl is the positive proportion of attribute l in

the dataset.250

As we will show in our experiments, for smaller training dataset (like VI-

PeR). It is bene�cial to pre-train the CNN with a (possibly larger) pedestrian
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Figure 2: Illustration of the transfer learning from a re-identi�cation task to attribute recog-

nition. Left: the (shared) weights of the triplet CNN are pre-trained in a weakly supervised

manner for pedestrian re-identi�cation using the triplet loss function. Right: the CNN weights

are integrated in our attribute recognition framework and the whole neural network is �ne-

tuned using the weighted cross-entropy loss.

re-identi�cation dataset in a triplet architecture on the re-identi�cation task.

Since pedestrian attribute recognition and re-identi�cation are two similar tasks,

the visual features learned from re-identi�cation can be useful for recognising255

attributes. Thus, after this pre-training, we transfer the re-identi�cation know-

ledge to attribute recognition by �ne-tuning the pre-trained convolution layers

on the actual small attribute datasets. Figure ?? illustrates this transfer learn-

ing approach.

Person re-identi�cation consists in matching images of the same individuals260

across multiple camera views. In order to achieve this, we need to learn a

distance function that has large values for images from di�erent people and small

values for images from the same person. A CNN with triplet architecture [? ]

can learn such a similarity function by e�ectively learning a projection on a

(non-linear) subspace, where vectors from the same person are forced to be265

close and vectors from di�erent persons are forced to be far. To this end, the

network is presented with a triplet of pedestrian images composed of an anchor

example a, a positive image p from the same person as the reference and a

negative imagen from a di�erent person. The weights of the network for the

11



three input images are shared. Let f(.) be the output of the CNN. Then the270

loss function is de�ned as:

E triplet = �
1
N

NX

i =1

[max(kf (r i ) � f (pi )k2
2�k f (r i ) � f (ni )k2

2+ m; 0)] ; (2)

with m being a constant margin. The network gets updated when the negative

image is nearer than the positive image to the reference image. During training,

for a given triplet, the loss function pushes the negative example away from

the reference in the output feature space and pulls the positive example closer275

to it. Thus, by presenting many di�erent triplet combinations, the network

e�ectively learns a no-linear projection to a feature space that better represents

the semantic similarity of pedestrians.

From the re-identi�cation data, the network learns informative features that

distinguish individuals, and the semantic attributes that we want to recognise280

can be considered such identify features at a higher level. Therefore, this pre-

learned knowledge can be e�ectively transferred to this problem. In the next

section, we will also show that, inversely, attribute information can support the

re-identi�cation task.

3.2. Person re-identi�cation285

We propose a new CNN-based approach for pedestrian re-identi�cation, that

e�ectively combines automatically learned visual features with semantic attrib-

utes. To this end, we make use of our attribute recognition neural network

presented in Section??. Attributes are important cues for a human to identify

persons by appearance. The attribute learning consists in representing data290

instances by projecting them onto a basis set de�ned by domain-speci�c axes

which are semantically meaningful to humans. Compared to features that are

directly learned form appearance, semantic attributes are more consistent for

the same person and are more robust to the di�erent variations. Since the at-

tribute information adds additional constraints to person identity consistency,295

i.e. appearance consistency and attribute consistency, the combination with
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Figure 3: Overall architecure of our re-identi�cation method

the attribute CNN embedding which encodes these attribute constraints im-

proves the person re-identi�cation performance, as we will show experimentally

in Section ??.

The overall framework is shown in �gure ??. The framework is composed300

of two neural networks that are pre-trained. The �rst is a CNN that is trained

in a supervised way to classify identities on a separate training set. Then we

remove the output classi�cation layers of the network and keep the other parts

of the network which are related to feature selection. The second part is our

attribute recognition network that is trained as described in section ??. After305

training, we also remove the output layers and keep all the other layers up to

the �rst fully-connected layer (fc1).

The output vectors from the hidden layers of the two CNNs represent high-

level features related to attributes and pedestrian identities respectively. As

we will show experimentally, the information extracted by the two CNNs is310

complementary, thus using both leads to an overall performance improvement.

In order to combine the extracted features e�ectively, we propose to integrate

both output vectors in a new neural network that automatically learns these
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layer type �lter size padding output size

C1 Convolution 5� 5 yes 128� 48� 32

P1 Max-Pooling 2� 2 - 64� 24� 32

C2 Convolution 3� 3 yes 64� 24� 32

P2 Max-Pooling 2� 2 - 32� 12� 32

C3 Convolution 3� 3 yes 32� 12� 64

P3 Max-Pooling 2� 2 - 16� 6� 64

C4 Convolution 3� 3 yes 16� 6� 128

P5 Max-Pooling 2� 2 - 8� 3� 128

C5 Convolution 3� 1 no 8� 1� 400

fc1 Fully-connected - - 500

fc2 Fully-connected - - N

Table 1: Identi�cation network parameters.

fusion parameters on the re-identi�cation task in a triplet architecture. this

leads to a fully neural architecture that can be trained and �ne-tuned as a whole315

to maximise the re-identi�cation performance. We will explain these steps in

more detail in the following.

3.2.1. Supervised identi�cation CNN

The identi�cation network consists of 5 convolutional layers and 4 max-

pooling layers. The details are presented in Table.??. The �rst convolutional320

layer has a kernel size of 5x5 and the following 3 convolutional layers have a

kernel size of 3� 3. The last one has a kernel size of 3� 1 without zero-padding

increasing the number of channels but reducing their size to a single column. At

the end, there are two fully-connected layers. All max pooling layers all have a

kernel size of 2� 2. The output of the network is a vector of N dimensions with325

N being the number of identities in the training set. Batch normalization and

ReLU activation function are applied after the convolutional layers and fully

connected layers. As mentioned earlier, this CNN is pre-trained in a supervised

way, using images and identity labels from a separate training dataset. To

this end, we minimise the following softmax corss-entropy loss on the given330
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classi�cation task:

P(yj = 1 jx) =
eW T

j x + bj

P N
k=1 eW T

k x + bk
(3)

E identif ication = �
NX

k=1

yk log(P(yk = 1 jx)) (4)

Where N is the number of identities. y is the one-hot identity label. x is

the input of the last fully connected layer. W and b are weight and bias term

of the last fully connected layer. P(yj = 1 jx) is the probability predicted that

the input x corresponds to identity j. The intuition of this is that this learned335

feature representation can be used for learning similarities between arbitrary

pedestrian images and thus be transferred to the task of re-identi�cation.

3.2.2. Fusion by Triplet architecture

The pre-trained attribute CNN and identi�cation CNN are combined and

trained in a triplet architecture similar to the one explained in section ??. Here,340

we propose to use an improved triplet loss with hard example selection to learn

the optimal fusion of the two types of features. The fc1 layer of the attribute

network and the fc1 layer of the identi�cation network are normalized and con-

catenated, and another fully-connected layer which allows to merge attribute

and identi�cation features. Unlike with classic triplet loss, a (n+2)-tuple of im-345

ages instead of a triplet is projected into the feature space. The tuple includes

one anchor image, one positive image and n negative images. Training enforces

that the projection of the positive example is placed closer to the anchor than

the projection of the closest negative example among n negative examples. This

constraint is de�ned as following:350

min (kf (a) � f (nj )k2
2) � k f (a) � f (p)k2

2> m (5)

Similarly to the distance learning approach \Top-push" proposed by [? ] , hard

example mining in [? ? ] or moderate positive example mining in [? ], the idea

is �nding the appropriate example to update the model. The negative example
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that is closest to the anchor is considered the hardest example and having the

highest potential for improvement. The network is thus updated e�ciently by355

pushing the hardest example further away from the anchor. The intuition is that

if the positive example is ranked in front of the hardest negative example then

the positive example is ranked �rst, which is our goal. In classic triplet loss, a big

part of triplets does not violate the triplet constraint (c.f Eq ??). These triplets

are useless for learning. The selection among n negative examples reduces the360

number of unused training data and can make the training more e�cient.

To further enhance the loss function, as an extention of [? ], we add a term

including distance between the anchor example and the positive example. The

loss function is de�ned as follows:

Emin � triplet = �
1
N

NX

i =1

[max(kf (ai ) � f (pi )k2
2

� min (kf (aj
i ) � f (nj

i )k2
2) + m; 0) + � kf (ai ) � f (pi )k2] (6)

The �rst part of the loss is a comparison of two distances which de�nes a

relative relationship in the feature space. The second part corresponds to an

absolute distance in feature space. Combining these two constraints leads to

a more e�cient learning of the resulting manifold that better represents the365

semantic similarities.

Using this loss function, we train the additional fully-connected layer for

the fusion, and, at the same time we �ne-tune the other part of the network,

i.e. the weights are updated at a lower rate. Since pedestrian attributes are

di�cult to annotate, especially for large re-identi�cation dataset. Unlike other370

approaches[? ? ? ? ], the advantage of our method is that the attributes

do not need to be annotated on the re-identi�cation dataset. We can make

use of a separate attributes dataset with annotated attributes and transfer this

information to a re-identi�cation dataset by �ne-tuning.
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Figure 4: Some example images from pedestrian attribute datasets.

4. Experiments375

In this section, the proposed attribute recognition methods are evaluated

on the VIPeR [? ] dataset with the annotation from [ ? ], PETA dataset[? ]

and the APiS dataset [? ] (see Fig. 4). Finally, we test our proposed CNN

architecture for person re-identi�cation on the CUHK03 dataset [? ].

4.1. attribute recognition experiments380

4.1.1. Datasets

We evaluated our approach on three public benchmarks: PETA, APiS and

VIPeR (see Fig. ??).

The PETA dataset [? ] is a large pedestrian attribute dataset which con-

tains 19 000 images from several heterogeneous datasets. 61 binary attributes385

and 4 multi-class attributes are annotated. In our attribute recognition eval-

uation, we follow the experimental protocol of [? ? ]: dividing the dataset

randomly in three parts: 9 500 for training, 1 900 for validation and 7 600 for

testing. Since di�erent approaches[? ? ? ] have been evaluated on di�erent

subsets of attributes, in our experiment we use the union of all these subsets,390

i.e. 53 attributes.
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The APiS dataset [? ] contains 3 661 images collected from surveillance

and natural scenarios. 11 binary attributes are annotated such as male/female,

shirt, backpack, long/short hair. We followed the experimental setting of [? ].

A 5-fold cross-validation is performed, and the �nal result is the average of the395

�ve tests.

The VIPeR dataset [? ] contains 632 pedestrians in an outdoor envir-

onment, each having 2 images from 2 di�erent view points. 21 attributes are

annotated by [? ]. Each dataset is divided into two equal-size non-overlapping

parts for training and testing (images from the same person are not separated).400

We repeat the process 10 times and report the average result.

During training, we perform data augmentation by randomly ipping and

shifting the images slightly.

4.1.2. Parameters setting

All weights of the neural network are initialised from a Gaussian distribution405

with 0 mean and 0.01 standard deviation, and the biases are set to 0. The

learning rate is set to 0.01. We used dropout [? ] for the fully-connected layers

with a rate of 0.6.

For tests on APiS and VIPeR, a dimension of 500 is used for the layers fc1

and fc2 as well as for the PCA projected LOMO feature, and the batch size is410

set to 50. Since the PETA dataset has more data, for tests on PETA, the fc1

layer, fc2 layer and PCA projected LOMO features are set to 1000 dimension

and the batch size is set to 100.

The neural network is learned with random initialisation for tests on PETA

and APiS. Since for VIPeR we have only 632 training image, the network is pre-415

trained with triplet loss on CUHK03 dataset[ ? ] which contains 13164 images

of 1 360 pedestrians. Then, the CNN part is �ne-tuned on VIPeR with a lower

learning rate (0.0005).
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Accuracy Recall@FPR=0.1 AUC

LOMO 89.8 72.5 89.8

CNN without part division 90.5 77.3 92.1

CNN with part division 90.8 78.7 92.3

CNN without part division + LOMO 91.5 79.4 91.7

CNN with part division + LOMO 91.7 81.3 93.0

Table 2: Attribute recognition result comparison of di�erent variants of our approach on

PETA.

Accuracy Recall@FPR=0.2 AUC

non pretrained CNN 81.0 61.5 75.9

pretrained CNN 82.4 65.9 79.3

LOMO 83.1 68.2 81.0

pretrained CNN + LOMO 83.9 69.6 80.9

Table 3: Attribute recognition result comparison of di�erent variants of our approach on

VIPeR.

4.1.3. Evaluation measure

The test protocol of PETA [ ? ] proposes to use the attribute classi�cation420

accuracy as evaluation measure. The APiS protocol [? ] uses the average recall

at a False Positive Rate (FPR) of 0.1 and the Area Under Curve (AUC) of

the average Receiver Operating Characteristics (ROC) curve as performance

measures. As mentioned in [? ], accuracy is not su�cient to evaluate the

classi�cation performance on unbalanced attributes. In our experiments, we425

thus use all these three measures to evaluate our approach.

4.1.4. Comparison with di�erent variants

We �rst evaluated the e�ectiveness of di�erent components: body part divi-

sion, the feature fusion and person re-identi�cation pre-training. The compar-

isons among di�erent variants of the method using Peta and VIPeR datasets430

are respectively shown in Tables?? and ??. The body part division improves

more than 1% point on the recall score. The fusion of deep features and LOMO

features improves about 1% point on accuracy and 2% points on recall score.
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Comparing Table ?? and ??, we can remark that LOMO features are more

performant on the VIPeR dataset and the deep features are more performant435

on the PETA datasets, since the images in VIPeR undergo extreme viewpoint

changes, which LOMO is spedi�cally designed to deal with. The Peta dataset

actually comprises several datasets, where various clothing appearances becomes

the major aspect of variation. The rich learned feature representation of the

CNN is more robust in this case. Finally, the fusion increases the overall re-440

call and accuracy on both datasets. We can conclude that these two kinds of

features are complementary and the fusion make the framework more robust.

In Table ??, we can see that the pre-training on person re-identi�cation

data increases the accuracy by 1.4% points , the recall by 4.4% points and

the AUC score by 3.4% points. This shows that the capacity to discriminate445

people learned from person re-identi�cation can assist the attribute learning.

In Section ??, we further show that, inversely, the attributes can assist and

improve the person re-identi�cation task.

4.1.5. Comparison with the state-of-the-art methods

The comparison with the state of the art on PETA is shown in Table ??. In450

the literature, there are two evaluation settings for the PETA dataset with 35

and 45 attributes respectively. Table ?? shows the results on the 27 attributes

that they have in common in order to compare all methods. We also display

the average results for 35 and 45 attributes. Our method outperforms the state-

of-the-art approach mlcnn on the 27 attributes by 3.4%, 14.3%, 6% points for455

average accuracy, recall and AUC respectively and by 3.5%, 15%, 6.1% points

on the 45 attributes. It also outperforms the DeepMar method by 9% points

on accuracy. Moreover, our approach achieves a better score on almost all

individual attributes. This superior performance comes from, the fusion of the

viewpoint-invariant LOMO features and the rich deep feature representation, on460

the one hand, and from a better generalisation of our architecture and training

compared to the mlcnn approach, on the other hand. We performed a simple

test by removing the "dropout" mechanism from the training. Dropout is a
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form of regularisation and usually improves the generalisation capacity. On

Peta, without dropout, the recall dropped from 79.9% to around 71%, which465

still above the state of the art.
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attribute
Accuracy Rate (%) Recall@FPR=0.1 AUC

MRFr2[ ?

]

DeepMar[ ?

]

mlcnn[ ?

]

ours mlcnn[ ?

]

ours mlcnn[ ?

]

ours

personalLess30 86.8 85.8 81.1 86.0 63.8 80.8 88.5 93.8

personalLess45 83.1 81.8 79.9 84.7 59.4 74.9 84.6 91.9

personalLess60 80.1 86.3 92.8 95.4 70.2 83.0 87.7 92.8

personalLarger60 93.8 94.8 97.6 98.9 90.7 94.6 94.9 96.8

carryingBackpack 70.5 82.6 84.3 85.5 58.4 70.2 85.2 91.9

carryingOther 73.0 77.3 80.9 85.7 46.9 65.1 77.7 88.4

lowerBodyCasual 78.2 84.9 90.5 92.1 56.2 76.1 87.5 93.1

upperBodyCasual 78.1 84.4 89.3 91.2 62.1 74.2 87.2 92.5

lowerBodyFormal 79.0 85.2 90.9 93.3 72.5 82.8 87.8 92.7

upperBodyFormal 78.7 85.1 91.1 93.4 70.5 83.4 87.6 92.9

accessoryHat 90.4 91.8 96.1 97.5 86.1 89.9 92.6 95

upperBodyJacket 72.2 79.2 92.3 94.7 53.4 77.4 81.0 92.1

lowerBodyJeans 81.0 85.7 83.1 87.6 67.6 83.2 87.7 94.5

footwearLeatherShoes 87.2 87.3 85.3 90.2 72.3 87.8 89.8 95.7

hairLong 80.1 88.9 88.1 91.3 76.5 88.3 90.6 95.6

personalMale 86.5 89.9 84.3 88.9 74.8 87.0 91.7 95.8

carryingMessengerBag 78.3 82.0 79.6 84.5 58.3 70.7 82.0 89.8

accessoryMu�er 93.7 96.1 97.2 98.8 88.4 93.6 94.5 96.2

accessoryNothing 82.7 85.8 86.1 89.0 52.6 71.5 86.1 92.1

carryingNothing 76.5 83.1 80.1 84.5 55.2 71.8 83.1 91.3

carryingPlasticBags 81.3 87.0 93.5 96.6 67.3 83.6 86.0 92.2

footwearShoes 78.4 80.0 75.8 80.8 52.8 68.3 81.6 89.4

upperBodyShortSleeve 75.8 87.5 88.1 90.7 69.2 86.2 89.2 94.5

footwearSneaker 75.0 78.7 81.8 85.7 52.0 73.0 83.2 92.0

lowerBodyTrousers 82.2 84.3 76.3 83.4 56.2 75.2 84.2 92.0

upperBodyTshirt 71.4 83.0 90.6 93.3 63.5 82.7 88.7 92.8

upperBodyOther 87.3 86.1 82.0 86.2 73.2 80.8 88.5 93.5

27 attributes average 80.8 85.4 86.6 90.0 65.6 79.9 87.0 93.0

35 attr in [ ? ? ] average 75.6 82.6 91.7 78.9 92.0

45 attr in [ ? ] average 87.2 90.7 67.3 82.3 87.7 93.8

53 attributes average 91.7 81.3 93.0

Table 4: Attribute recognition results on PETA (in %).
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attribute
Accuracy Recall@FPR=0.1 AUC

ours fusion[ ?

]

interact[ ?

]

ours fusion[ ?

]

interact[ ?

]

DeepMar[ ?

]

ours

long jeans 93.5 89.9 89.2 93.8 96.1 96.2 96.5 97.4

long pants 94.2 78.7 80.6 93.3 92.5 93.9 97.1 97.1

M-S pants 93.7 76.7 85.1 90.0 92.4 92.8 95.5 96.0

shirt 88.4 68.2 74.5 65.5 83.9 83.9 88.0 87.3

skirt 95.6 58.3 61.3 80.5 90.0 91.2 91.0 90.5

T-shirt 79.6 56.2 56.5 66.3 85.4 85.5 90.6 88.7

gender 81.6 55.2 56.5 65.1 85.5 86.1 90.0 88.1

long hair 92.3 55.2 58.3 68.9 85.2 86.1 86.2 88.1

back bag 93.1 54.6 54.8 61.2 83.6 83.6 86.6 85.2

hand carrying 87.7 52.1 52.1 60.6 81.8 81.8 84.3 83.9

S-S bag 82.8 38.5 42.9 54.0 77.3 78.3 83.7 82.9

average 89.3 62.1 64.7 72.7 86.7 87.2 90.0 89.5

Table 5: Attribute recognition results on APiS (in %).

The results on the APiS dataset are shown in Table??. Our method outper-

forms the Adaboost approach with fusion features and interaction models by a

margin of 6% and 2.3% points respectively in recall at FPR=0.1 and AUC. The

Adaboost fusion and interaction methods use simple low-level features like color470

histograms, LBP features. The improvement of our approach is mainly due to

the richer feature presentation of CNN and the horizontal local maximum ex-

traction mechanism of LOMO. For the AUC, DeepMar achieves a slightly better

result (0.5% points) which could be explained by its pre-training on the large

ImageNet dataset.475

Finally, the results on the VIPeR dataset are shown in Table ??. Our ap-

proach achieves a 9.8% point improvement in accuracy and 4.1% points on recall

at FPR=0.2 compared to the CNN-based state-of-the-art approach mlcnn-p.

For most of the attributes, our method obtains a better score.

In summary, our approach outperforms the state-of-the-art (including CNN-480

based methods) on two datasets and is on par with the best method on the third

one. This demonstrates the robustness of the combined feature representation

w.r.t to the high intra-class variation and the discriminative power of the pro-
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posed part-based CNN architecture.

attribute
Accuracy Recall@FPR=0.2 AUC

svm[? ] mlcnn-p[ ? ] ours svm[? ] mlcnn-p[ ? ] ours ours

redshirt 85.5 91.9 94.4 88.4 88.9 95.9 95.2

blueshirt 73.0 69.1 91.5 60.8 70.8 75.5 83.1

lightshirt 83.7 83.0 84.4 87.8 85.3 88.2 91.7

darkshirt 84.2 82.3 83.3 87.5 85.8 86.1 90.9

greenshirt 71.4 75.9 96.2 54.3 69.4 84.6 88.7

nocoat 70.6 71.3 74.2 59.3 57.2 65.4 80.4

notlightdarkjean 70.3 90.7 96.7 57.2 78.6 80.0 86.0

darkbottoms 75.7 78.4 78.9 70.2 76.2 74.9 85.7

lightbottoms 74.7 76.4 76.5 69.5 73.3 72.3 83.6

hassatchel 47.8 57.8 70.9 22.0 31.7 39.1 64.8

barelegs 75.6 84.1 92.2 68.7 85.4 92.2 92.8

shorts 70.4 81.7 92.3 59.8 82.9 87.3 88.6

jeans 76.4 77.5 80.6 72.7 74.7 81.7 87.6

male 66.5 69.6 74.7 48.2 57.2 67.9 82.1

skirt 63.6 78.1 94.3 40.7 60.7 61.3 72.8

patterned 46.9 57.9 90 26.3 41.0 49.9 68.1

midhair 64.1 76.1 75.2 43.0 63.5 54.1 73.1

darkhair 63.9 73.1 67.5 39.6 58.4 49.7 71.9

hashandbagcarrierbag 45.3 42.0 90.9 17.4 18.5 27.5 55.1

hasbackpack 67.5 64.9 72.7 47.9 49.9 57.4 76.3

average 68.9 74.1 83.9 56.1 65.5 69.6 80.9

Table 6: Attribute recognition results on VIPeR (in %).

4.2. Re-identi�cation experiments485

4.2.1. Dataset

The CUHK03 dataset [? ] includes 13164 images of 1 360 pedestrians and

is one of the largest publicly available person re-identi�cation dataset. Each

person is taken from two di�erent views. There are two settings labelled with

human-annotated bounding boxes and the more challenging detected with auto-490

matically generated bounding boxes. In this experiment, we use the latter as

this is closer to real-world scenarios. There are 100 identities for test and the
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Figure 5: Some example images from CUHK03 datasets.

rest for training and validation, with 20 training/test splits (provided by [ ? ]).

We use one camera view as the probe set, and the other as the gallery set.

For the gallery, we randomly sample one image for each identity. For the probe495

set, we use all the images, computing the CMC curve for each of them, and

then average over them. This evaluation process is repeated for 20 times and

the mean value is reported as the �nal result.

4.2.2. Training setting

The training is performed in two stages. In the �rst step, we pre-train the500

two subnets of the framework. Since the CUHK03 dataset does not have at-

tributes annotations, the attribute network is pre-trained on the PETA dataset

as described in section??. The identi�cation network is pre-trained with the

CUHK03 dataset with 1160 identities in the training set. In the second stage,

we remove the output layers of the two subnetworks, and then add a fully-505

connected layer for the fusion. We train the new fusion layer and �ne-tune the

rest of the network with lower learning rate.

For the pre-training of the identity network, the learning rate is set to 0.005

and the batch size is set to 100. For the fusion phase, the initial learning rate

is set 0.005, and we �ne-tune the other part with initial learning rate of 0.0005.510

The learning rate is then reduced by a factor of 0.7 each 2000 iterations. The

weights are initialised from zero-mean Gaussian distribution with a standard

deviation of 0.01. We used dropout[? ] for the fully-connected layers with a

rate of 0.7. We generated 50 tuples in each iteration. In each tuple, we randomly
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select one reference image and one positive image from the same person but from515

a di�erent camera view, and 5 negatives images from di�erent persons. In the

loss function, the coe�cient for the absolute part � is set to 0.02 and the margin

is set to 1.

In both training phases, we perform data augmentation by randomly ipping

the images and by cropping the center regions with random perturbation. All520

the inputs are resized to a resolution of 128� 48.

4.2.3. Results

Method rank=1 rank =5 rank =10

FPNN [ ? ] 19.9 49.3 64.7

Convnet [ ? ] 45.0 75.3 83.4

LOMO+XQDA [ ? ] 46.3 78.9 88.6

SS-SVM [ ? ] 51.2 80.8 89.6

SI-CI [ ? ] 52.2 84.3 92.3

DNS[ ? ] 57.3 80.1 88.3

S-lSTM [ ? ] 57.3 80.1 88.3

S-CNN SQ [ ? ] 61.8 80.9 88.3

CAN[ ? ] 63.1 82.9 88.2

ours Identity only 59.7 86.1 93.3

ours fusion Id&Attr 65.0 90.3 95.1

Table 7: Re-identi�cation result on CUHK03 (\detected").

We compare our proposed re-identi�cation approach on the CUHK03(detected)

dataset with state-of-art methods Our method achieves the best results on rank

1, rank 5 and rank 10 accuracies. The hard example selection helps the training525

to converge slightly faster. Fusing the identity with the attributes can improve

the results by 5.3, 4.2 points on rank 1 and rank 5. This shows that the identity

and attribute information can be complementary for re-identi�cation task and

the robustness of the attribute features.

5. Conclusion530

In this paper, we have proposed a pedestrian attribute-assisted person re-

identi�cation framework. In our approach, the attribute learning is performed
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by merging low-level and high-level features learned by a body part-based CNN.

By fusing these two kinds of features, the resulting model is robust to spatial

variations due to pose or view point changes and incorporates rich feature repres-535

entations that are able to model the divers appearance of pedestrian attributes.

Our attribute recognition model outperforms the state of the art on three pub-

lic benchmarks. Further, to improve person re-identi�cation, our model uses an

improved triplet loss to fuse pedestrian identities and an attribute embedding.

We have shown that making use of attributes enhances the re-identi�cation per-540

formance. Our �nal re-identi�cation method achieves the state-of-the-art result

on the challenging CUHK03 benchmark.
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