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ABSTRACT

Person re-identification is an important task in video surveil-
lance systems. It consists in matching an image of a probe
person among a gallery image set of people detected from a
network of surveillance cameras with non-overlapping fields
of view. The main challenge of person re-identification is
to find image representations that are discriminating the per-
sons’ identities and that are robust to the viewpoint, body
pose, illumination changes and partial occlusions. In this pa-
per, we proposed a metric learning approach based on a deep
neural network using a novel loss function which we call the
Rank-Triplet loss. This proposed loss function is based on
the predicted and ground truth ranking of a list of instances
instead of pairs or triplets and takes into account the im-
provement of evaluation measures during training. Through
our experiments on two person re-identification datasets, we
show that the new loss outperforms other common loss func-
tions and that our approach achieves state-of-the-art results
on these two datasets.

Index Terms— Video surveillance, Person re-identification,
Deep learning, Similarity learning

1. INTRODUCTION

Person re-identification is the problem of identifying people
across images that have been captured by different surveil-
lance cameras without overlapping fields of view. The task is
receiving increasing attention because of its important appli-
cations in video surveillance such as cross-camera tracking,
multi-camera behavior analysis and forensic search. How-
ever, this problem is challenging due to the large variations of
lighting, pose, viewpoint and background. The images from
the same individual can have very different appearance, and,
different individuals may look similar in appearance.

Existing person re-identification approaches generally
build a robust feature representation or learn a distance met-
ric. The features used for re-identification are mainly variants
of color histograms, Local Binary Patterns (LBP) or Gabor
features. Some approaches use features that are specifically
designed to be robust to common appearance variations, for
example ELF [1], SADALF [2], LOMO features [3]. The

main metric learning methods include Mahalanobis metrics
like KISSME [4], LFDA [5] and XQDA [3].

With the recent success of deep learning for computer vi-
sion, many deep convolution neural network(CNN) architec-
tures have been proposed for person re-identification. These
deep learning models incorporate feature representation and
distance metric into an integrated framework. To learn the
features and the metric, different loss functions have been pro-
posed such as contrastive loss, triplet loss or quadruplet loss.
Unlike these existing losses, in this work, we propose a novel
listwise loss function based on the predicted and ground truth
ranking of a list of instances w.r.t. a query image.

Furthermore, existing deep learning methods are solely
based on the minimization of a loss defined on a certain
similarity metric between different examples. However,
the final evaluation measures are computed on the overall
ranking accuracy. Inspired by the learning-to-rank method
LambdaRank, our optimisation approach directly incorpo-
rates these evaluation measures in the loss function. During
training, each image in the training batch is used as probe
image in turn and the rest as gallery. For each query, the
mean average precision and rank 1 score are calculated. And
triplets are formed by the probe image and a pair of mis-
ranked true and false correspondence. The loss of one triplet
is weighted by the improvement of these evaluation mea-
sures by swapping the rank positions of the true and false
correspondences.

To summarize, the main contributions of this paper are the
following:

• We propose a novel listwise loss function based on list
ranking for person re-identification. This loss considers
the re-identification ranking problem in a conceptually
more natural way than previous work by directly taking
into account the ranking evaluation scores.

• We experimentally show that this loss outperforms
other common loss functions and achieves state-of-the-
art results.



2. RELATED WORK

Learning-to-rank is a class of techniques that learns a model
for optimal ordering of a list of items. It is widely ap-
plied in information retrieval and natural language process-
ing. Many learning-to-rank methods have been proposed
in the literature, like pairwise approaches RankSVM [6],
RankNet [7] and listwise approaches ListMLE [8] and Lamb-
daRank [9]. Since person re-identification could be consid-
ered as a retrieval problem based on ranking, some person
re-identification approaches applied these techniques like
Prosser et al. [10] who reformulated the person re- identifi-
cation problem as a ranking problem and learn a set of weak
RankSVMs, each computed on a small set of data then com-
bine them to build a stronger ranker using ensemble learning.
Wang et al. [11] applied the ListMLE method to the person
re-identification problem: they map a list of similarity scores
to a probability distribution, then utilize the negative log
likelihood of ground truth permutations as the loss function.

Deep metric learning based person re-identification
in which the similarity of pedestrian is well measured. Sev-
eral loss functions are proposed or applied in person re-
identification. Yi et al [12] first proposed to apply a Siamese
network to person re-identification. Ding et al. [13] applied
the triplet loss to train a CNN for person re-identification.
Chen et al. [14] applied a quadruplet loss which minimizes
the difference between a positive pair from one identity and
a negative pair from two different identities. Some methods
exploit hard examples mining to enhance the learning proce-
dure. Ahmed et al. [15], for example, used the difference of
feature maps to measure the similarity and performing hard
negative example mining. Shi et al. [16] proposed to perform
moderate positive and negative example mining to ensure
a stable training process and avoid perturbing the manifold
learning by using hard examples. On the contrary, Hermans
et al. [17] proposed to use the hardest positive and negative
examples in each training batch to perform an effective triplet
learning.

3. PROPOSED METHOD

In the following, we will first describe the learning-to-rank
method LambdaRank and the person re-identification evalua-
tion measures. Then we will explain how to perform our pro-
posed Rank-Triplet loss learning in terms of the evaluation
measures. An overview of our approach is shown in Fig. 1.

3.1. LambdaRank

LambdaRank is an improved learning-to-rank method based
on RankNet. RankNet uses a neural network with a pair-based
cross entropy cost. It is optimizing for the number of pairwise
errors, which does not consider with some other information
retrieval measures. However, the evaluation measures are not

differentiable. Thus, they cannot directly be incorporated in
the optimization. To tackle this problem, Burges et al. [9] pro-
posed LambdaRank which simply scales the gradient of the
loss function by the difference of the evaluation measure in-
curred by swapping the rank positions of two items, and they
show an improvement of the overall ranking performance. In
triplet learning for person re-identification, we face a similar
problem. The classical triplet loss is defined on the partial
order relations among identities, however, the ranking mea-
sures are calculated on the global order. That means that the
triplet loss iteratively enforces pair-wise order relationships
w.r.t. reference examples, but it is difficult to generalize this
approach for optimizing the global order. In this regard, a
listwise ranking is a better approximation of this global order
relation, and adapt it to the person re-identification problem,
as explained in Section 3.3.

3.2. Person re-identification evaluation measure

Cumulated Matching Characteristics (CMC) and mean aver-
age precision (mAP) are widely used performance measures
for person re-identification. CMC evaluates the top n nearest
images in the gallery set w.r.t. one probe image. If a correct
match of a query image is at the kth position (k6n), then this
query is considered as success of rank n. In most cases, we
look at the success of rank 1 (R1). The CMC curve shows
the probability that a query identity appears in different-sized
candidate lists. As for mAP, for each query, we calculate the
area under the Precision-Recall curve, which is known as av-
erage precision (AP):

AP =

∫ 1

0

p(r) dr (1)

where p is the precision function of recall. Then, the mean
value of APs of all queries, i.e. mAP, is calculated, which
considers both precision and recall of an algorithm, thus
providing a more suitable evaluation for a multi-shot re-
identification setting.

According to the evaluation code provided by [18], the
area under the precision-recall curve is approximated as:

AP =

N∑
k=1

p(k) + p(k − 1)

2
[r(k)− r(k − 1)], (2)

where k is the rank in the sequence of retrieved items. p and r
are respectively the precision and recall at the rank k position.
We define also p(0)=1 and r(0)=0. N is the number of images
in the gallery set.

Since in our method the AP is calculated online during
training, we propose to simplify this computation. In rank-
ing problems, recall is the fraction of the items that are rele-
vant to the query that are successfully retrieved, the variation
r(k)-r(k-1) is different from zero only when a relevant item is
retrieved through the sequence of retrieved items. We only



Fig. 1. Overview of the training procedure of the proposed Rank-Triplet approach

need to calculate at the true correspondence ranking position
and the variation of recall equals always 1

M , where M is the
number of the true correspondences of a query. thus the AP
can be calculated as:

AP =
1

2M
[1 + p(π1) +

M∑
i=2

p(πi) + p(πi−1))], (3)

where πi is the rank index of the ith true correspondence.
Precision is defined as the proportion of non-relevant items
that are retrieved, out of all non-relevant items available. Thus
the precision at ranking position πi : p(πi) = i

πi
. We can

further simplify the equation:

AP =
1

M

M∑
i=1

[
i

πi
] +

1

2πM
+

1

2M
. (4)

3.3. RankTriplet loss

The triplet loss uses triplets of examples to train the network
with an anchor image a, a positive image p from the same per-
son as a and a negative image n from a different person. The
weights of the network for the three input images are shared,
and to train the network, the following triplet loss function is
minimized:

Etriplet = − 1

N

N∑
i=1

[max(‖f(ai)− f(pi)‖22

− ‖f(ai)− f(ni)‖22+m, 0)], (5)

where N is the number of triplets, f is the projection of
the network, andm is a margin. With the triplet loss function,
the network learns a semantic distance metric by ”pushing”
the negative image pairs apart and ”pulling” the positive im-
ages closer in the feature space.

A major drawback of the triplet loss is that the trivial
triplets become inactive at a later learning stage. Hard triplet
mining is an effective way to tackle this problem, but some
too hard triplets may distort the manifold [16]. We propose to
take into account all possible triplets to stabilize the training
procedure and weight the triplet in function of their contribu-
tion to make the learning more effective.

In order to optimize directly the AP and R1 scores, we
estimate the gain for AP and R1 of the triplets from an on-
line ranking within a training batch. The training batch is
formed by M images of N identities. For each example in
the batch, we preform a ranking among the rest of images in
the batch. For the sake of a robust metric, we add a margin
m to the distance between the true correspondences and the
probe before ranking. The AP and R1 scores are computed
for each query ranking. Then w.r.t. one probe, we form all
possible mis-ranked pairs (false correspondences ranked be-
fore the true correspondence), and we re-calculate the new AP
and R1 scores by swapping positions of the pair in the rank-
ing and thus obtain the gain ∆AP and ∆R1. The loss of each
triplet is weighted by the sum of the gain on AP and R1. The
final Rank-triplet loss is calculated as follows:

Erank−triplet =
1

MN

MN∑
i=1

1

Ki

∑
j∈TCi

∑
k∈FCi

rik<r
i
j

[‖f(xi)−f(xj)‖22

− ‖f(xi)− f(xk)‖22+m] · (∆AP ijk + ∆R1ijk), (6)

where xi is the ith training example in a training batch. Ki is
the number of misranked pairs w.r.t. the ith example as query.
rij is the rank of the jth example w.r.t. the ith image as query.
TCi/FCi is the true/false correspondence set of the ith ex-
ample. ∆AP ijk is the gain of AP by swapping the jth and kth

examples w.r.t. the ith example as query and analogously for
R1.



Methods R1 mAP
Classification loss 74.3 51.0

Hardbatch triplet loss [17] 81.0 63.9
Baseline 82.1 66.5

Rank-Triplet loss 83.6 67.3
Rank-Triplet+re-rank [19] 86.2 79.8

LOMO+XQDA [3] 43.8 22.2
LSRO [20] 78.1 56.2

SVDNet [21] 82.3 62.1
K-reciprocal re-rank [19] 77.1 63.6

JLML [22] 85.1 65.5
DPFL [23] 88.6 72.6

Table 1. Re-identification result on Market-1501

This evaluation measure-based weighting makes better
use of difficult triplets which can bring a larger rank improve-
ment and are more effective for the learning, and at the same
time, keep the learning stable by using all misranked pairs,
since only using the hardest examples can in practice lead to
bad local minima early in training.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

The Market-1501 dataset [18] is one of the largest publicly
available datasets for human re-identification with 32,668 an-
notated bounding boxes of 1501 subjects. All images are re-
sized to 128 × 48. The dataset is split into 751 identities for
training and 750 identities for testing as in [18].

The DukeMTMC-Reid dataset [20] is collected with
8 cameras and used for cross-camera tracking. It contains
36,411 total bounding boxes from 1,404 identities. Half is
used for training and the rest for testing.

4.2. Implementation Details

We take Resnet-50 [24] as the model architecture and the pre-
trained weights from the ImageNet dataset are used as ini-
tialization. We replace the final layer of the Resnet-50 by a
fully-connected layer with 256 output dimensions. Each in-
put image is resized to 224 ×112 pixels. The augmentation
is performed by randomly flipping the images and cropping
central regions with random perturbation. The margin in the
triplet loss is set to m =1. Adam optimizer is used and the
initial learning rate is set to 10−4. Each 80 epochs the learn-
ing rate is decreased by a factor of 0.1. The weight decay
is set to 0.0005. The training is performed in 200 epochs.
And the batch size is set to 128 from 32 identities with 4 im-
ages each. We implement the baseline with the loss function
without evaluation gain weighting. We compared also to the
classification softmax cross-entropy loss and the hard batch
triplet loss in which the triplet loss is calculated as follows:

Methods R1 mAP
Classification loss 62.7 40.4

Hardbatch triplet loss[17] 62.8 42.7
Baseline 72.4 52.0

Rank-Triplet loss 74.3 55.6
Rank-Triplet+re-rank [19] 78.6 71.4

LOMO+XQDA [3] 30.8 17.0
LSRO [20] 67.7 47.1

SVDNet [21] 76.7 56.8
DPFL [23] 79.2 60.6

Table 2. Re-identification result on DukeMTMC-Reid

Lhard−batch =
1

MN

MN∑
i=1

max( max
j∈TCi

‖f(xi)− f(xj)‖22

− min
k∈FCi)

‖f(xi)− f(xk)‖22+m, 0). (7)

The hardbatch triplet learning on DukeMTMC-Reid had
difficulty to converge with an initial learning rate of 10−4. We
reduced the learning rate to 2× 10−5.

4.3. Experimental results

The results on Market-1501 and DukeMTMC-Reid are re-
spectively shown in Tables 1 and 2. Compared to different
losses, the Rank-Triplet loss gives a better performance. The
improvement w.r.t. the baseline showed the effectiveness of
the listwise evaluation measure-based weighting. The Hard-
batch triplet gave an inferior result and a converge problem
occurred on DukeMTMC-Reid. This could be due to some
very similar negative examples and to some very different
positive examples in the dataset. This demonstrates that hard
example mining could make the learning more effective, but
some too hard examples may severely perturb the learning
procedure. Comparison with state-of-the-art methods. The
proposed approach using Rank-Triplet loss outperforms most
state-of-art methods. By combining it with the re-ranking
techniques in [19], our approach achieves state-of-the-art re-
sults on both the Market 1501 and Duke-MTMC dataset.

5. CONCLUSION

In this paper, we presented a novel listwise loss function
based on ranking evaluation measures. An online ranking
within training batches is performed to evaluate the impor-
tance of different triplets of probe, misranked true and false
correspondences and to weight the loss with the rank im-
provement for a given query. We experimentally showed
that taking into account the evaluation measures and calcu-
late the loss in a listwise way can improve the results. Also
our proposed loss outperforms some other loss functions and
achieved a state-of-the-art result on two different benchmarks.
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