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Abstract—Diminished Reality (DR) consists in virtually remov-
ing objects from a captured scene, thus requiring a coherent
filling of the areas originally hidden behind these objects. Indoor
DR applications often exploit the planar geometry of the scene to
apply an inpainting process on a perspectively undistorted view
of the plane. In this paper we propose to integrate a novel,
physic-based criterion into classical state-of-the-art inpainting
algorithms in order to take into account the variations in image
resolution of the undistorted view. The proposed inpainting
process selects the patches and avoids the propagation of low-
resolution data, i.e. patches corresponding to parts of the plane
that are far from the camera or seen under an very skew angle.
We illustrate the improvements of DR results on synthetic and
real images.

I. INTRODUCTION

Contrary to Augmented Reality, Diminished Reality (DR)
[1] aims at virtually removing one or more objects from the
image of a scene. The image regions containing the object
must then be filled seamlessly with a texture coherent with
the surrounding regions in order to provide a diminished,
photo-realistic view. To this end, completion methods such
as inpainting [2] can be used to fill the region hidden by the
object according to the photometric data of their surrounding
regions. The results of inpainting approaches fit well for
the expectations of Diminished Reality. In order to improve
inpainting results in the context of DR, previous works [3], [4]
exploit the indoor setting: as the background consists of planes
(floor, walls, ceiling), instead of applying inpainting techniques
directly on the image, they take advantage of the planar
geometry of the scene to better guide the inpainting process.
For each plane, they compute the homography between the
camera plane and the 3D plane. Perspective rectification is
applied to the plane region to allow inpainting on distortion-
free images. In the undistorted plane, the texture structure
recovers its regularity in size and pattern, which is a great
advantage for inpainting. However, inpainting methods do not
take into account the quality variation in terms of image
resolution of these rectified images: this can lead to degraded
results, as discussed in Section III. We propose an approach
which first computes a trust criterion on the rectified image
and uses it to improves the inpainting process in the rectified
image.

The paper is organized as follows: §II reviews the state-
of-the-art inpainting techniques, §III highlights the issues
in inpainted images due to resolution variation and §IV
introduces the proposed method to guide and improve the

inpainting process. §V shows how the proposed criterion can
be integrated in two classical inpainting algorithms, and the
corresponding results are given in §VI. Finally, §VII concludes
the paper, proposes perspective and future extensions of our
approach.

II. RELATED WORKS

Inpainting finds its natural application in image restoration
to remove, e.g., scratches and cracks from the frames of
old movies or photos, or in special effects to remove entire
objects from an image. There are two main approaches for
inpainting techniques [5]. Diffusion-based methods [6] are
used in image restoration to fill or correct small regions of
the images for which a mask is provided by the user. These
methods are generally based on Partial Differential Equations
(PDEs) and a diffusion model that iteratively propagate the
information from the outside of the mask along the isophotes,
i.e. the level lines perpendicular to the gradient vectors of the
pixels on the contour. These methods perform well when filling
small and smooth regions but are not adapted if a structure
or texture needs to be propagated. Moreover, these methods,
being iterative, have a high computational cost.
Patch-based methods [7], [8] are instead used to fill larger
portions of the image by copying either single pixels (sparsity-
based [9]), entire patches or a mixture of those from other
parts of the image (exemplar-based [7]). For each pixel p of
the mask, they search the most similar patch in the image to
the one centered in p, and they copy it. The search for this
similar patch is the most important but also the most expensive
step of the algorithm. Many variants and optimizations have
been proposed over the last decade. One of the most effective
approaches is PatchMatch [10], which efficiently finds for
every patch the approximate nearest-neighbour in the image
using a randomized cooperative hill climbing strategy. In [11]
the search is restricted to the most likely offsets, reducing
both the complexity and also enhancing the propagation of
the geometric structures of the image. The other critical step
in patch-based methods is the selection of p and the order of
filling. Onion-peel order fills the missing data starting from the
pixels on the border and proceeding layer after layer towards
the region’s center. This sometimes leads to unexpected results
at the center of the region and, in general, structures are not
propagated inside the region. Data-aware methods, instead,
give priority to pixels lying on borders of objects, thus
favouring the preservation of structures. On the other hand,
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Fig. 1. Camera positions w.r.t. the plane Π according to the angle γ.

a known issue of the PatchMatch approach is that it cannot
handle well regular textures, i.e., textures embedding regular
patterns or structures. Other methods have been proposed to
handle regular textures by performing a statistical analysis
of the texture that allows to find the map of the dominant
directions (or offsets) [12], [13]: the inpainting problem is then
cast as a global minimization of an energy function written in
terms of the offset map that enforces the structure and texture
consistency. In [14], the minimization problem is solved via
graph cuts in order to reduce the computational complexity.

The latest works, however, uses information such as the
camera position and the 3D structure of the scene to improve
the final rendering. In the context of DR applications [15],
[3], [16], the objects to be removed usually appear lying on a
plane or occluding other planes in the background (eg. floor
or walls). In this case, the inpainting is not applied directly
to the image. First the perspective distortion is removed and
the original structure of the texture is recovered by computing
the rectifying homography. An inpainting algorithm is then
applied to the undistorted view, and the completed image
is re-projected into the original image through the inverse
homography. However, if the area to be filled belongs to a
plane having a skew angle w.r.t. camera optical axis (e.g.,
the floor of a room), the photometric information of the
undistorted image has usually a large variation of resolution.
Applying inpainting independently of this resolution variation
generates a blur in the reconstructed data, including in the
final rendering after reprojection as explained in the next
section. Eisenacher et al. [17] proposed a user-driven texture
synthesis algorithm: the user can describe the local geometry
supporting the texture which can be then re-synthesized it on
new surfaces. Although it is not strictly speaking an inpainting
method, this is, to the best of our knowledge, the only work
that, like ours, tries to took into account the different resolution
of the image according to the 3D scene geometry.

III. PROBLEM STATEMENT

In our indoor DR application, we apply inpainting tech-
niques to the perspectively undistorted view of a plane. The
undistorted view has a non-uniform quality of data and possi-
ble interpolation artefacts, which affects the final inpainting
result. We designed a simple experiment to illustrate such
effect. Consider a textured plane Π seen by a camera C under
an angle γ w.r.t. the plane normal n̂ (see Fig. 1): we rendered
two synthetic images, each with a different value of γ (60◦ and
85◦, respectively). Fig. 2 shows the two images of the textured

plane Π (column (a)), along with the outline of the region
to inpaint, and the undistorted views of Π (col. (b)). Once
PatchMatch is applied to the undistorted view (col. (c)) and
the result is projected back on the original image (col. (d)), we
can clearly see that low-resolution data corresponding to the
most perspectively distorted part of the image has been used
to fill the mask region: the result is visually unsatisfying with
a noticeable blur effect in the inpainted region. This simple
example shows the influence of the perspective distortion on
the result of a classic inpainting technique. In this work we
propose to introduce a novel criterion in order to better guide
the completion process and thus avoid the propagation of low-
resolution data.

IV. RADIOMETRIC CONFIDENCE CRITERION

We first seek a criterion that associates to each image pixel
a score characterizing the quality of its projection when it is
mapped by the rectifying homography. In particular, our score
relies on Bouguer’s law, which measures the light flux dF of
a light point source I over a surface dS seen under a solid
angle dΩ (see Fig. 3):

dF = I dΩ = I
cos θ

r2
dS. (1)

Thus the light flux dF over the surface unit dS is

dF

dS
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r2
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We deduce, for each point P of the image plane, a trust
score as the ratio between the point light flux dF over an
infinitesimal area around P on the image plane and the flux
around its projected point Q on the plane Π. Using (2), we
compute at the points P and Q :(
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where f is the camera focal length, and d is the distance
between C and Π. Note that rP = f

cosφ and rQ = d
cos θ .

We define our criterion as the ratio between (3) and (4)

trust(P ) =

(
dF
dS

)
(Q)(

dF
dS

)
(P )

=

(
f

d

)2(
cos θ

cosφ

)3

. (5)

whose value decreases as the distance d increases and for
increasing angles θ. Higher values of trust are pixels of good
quality, whereas lower values denote points that are likely to
represent regions of the plane far from the camera and/or seen
under a very skew angle.

We consider P as the center of the pixel p of the image and
we define the confidence map C for each pixel of the rectified
image domain U × V ⊂ N2:

C :

{
U × V −→ R
p 7−→ C(p) = trust(P )

(6)
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Fig. 2. Perspective influence on inpainting processing on two synthetic images rendered with γ = 60◦ (first row) and γ = 85◦ (second row). From right
to left: (a) input image with the outline of the zone that will be removed and completed using inpainting, (b) rectified image of the floor, (c) rectified image
completed using classical inpainting [10], (d) remapped output, (e) our proposed solution.
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Fig. 3. Left: Bouguer’s law for a light source of intensity I on a surface dS.
Right: the point Q is the projection of the point P of the image plane on the
plane Π and its surrounding surface dS

Fig. 4. Left: input image of a floor plane (green texture). Center: rectified
image of the plane. Right: confidence map C for the rectified image, the Jet
colormap (high values in red and low values in blue) shows that the value of
trust decreases for the pixels that have a lower quality, i.e. those on the top
right part of the image.

with C(p) = 0 if p is not a projection of a point of the plane Π.
Fig. 4 shows an example of the map computed for a synthetic
image. In the next section we show how we integrate our
criterion into two classic inpainting algorithms. Note that our
criterion is not restricted to these two methods, but it can be
easily integrated for filtering (as shown in §VI) or in other
inpainting approaches.

V. RESOLUTION-AWARE INPAINTING

We integrate the proposed criterion in two state-of-the-art
inpainting methods, PatchMatch and statistic-Graphcut. First,
let us define a predicate we use in both approaches to handle
the selection of a new candidate through the map C and avoid

Fig. 5. The effects of our modifications of PatchMatch. In a rectified image
I like the one in Fig. 4, we used a colormap to identify each pixel position
and we show inside the mask the final NNF map, i.e. each color inside the
mask indicate from which zone of I the pixel has been taken. On the left, the
original PatchMatch NNF contains many reddish pixels coming from zones of
I with “lower quality data”. On the right, our computed NNF uses pixels from
“higher data quality” regions of I (greenish pixels are closer to the camera).

the selection of “low resolution” data. The predicate returns
false (reject new candidate) or true (accept) and it is defined
as:

validation(p, q, C, α) = C(q) ≤ α C(p), (7)

where p is the pixel to complete, q is the candidate proposed
by the approach, and α ∈ ]0, 1] is a tolerance parameter.

A. Adapted PatchMatch approach

PatchMatch [10] efficiently finds matches between patches
of an image as detailed in Alg. 1. It defines a nearest neighbour
field (NNF) as a function of offsets map : R2 → R2 that
binds any patch a of an image A to a patch b of an image
B according to a distance D (typically, the Sum of Squared
Differences (SSD)). The NNF is initialized randomly and
updated with a multi-resolution pyramid. Two iterative updates
are performed: (a) the offsets with best scores are propagated
to adjacent pixels (1.12-15), and (b) a random search in the
neighbourhood of all offsets with best distance scores (1.16).



Algorithm 1 PatchMatch algorithm with trust criterion
Require: Rectified image I , rectified binary mask M , trust map C
Ensure: Rectified inpainted image Iinpainted

1: procedure PATCHMATCH(I,M, C)
2: Apply diffusion-inpainting in I|M . I|M is the restriction of I to M
3: Create multi-resolution pyramid for I and M with N floors
4: for i← 1 : N do
5: if i = 1 then
6: map← RAND( ) . First floor, initialisation of NNF map
7: else
8: map← RESIZE(map, 2) . gets the NNF of previous floor
9: end if

10: for j ← 1 : niter do
11: for all p ∈ Ii|M do . Ii|M is the image of ith floor restricted to M
12: NEIGHBORUPDATE(p, −1, 0) . Propagation steps
13: NEIGHBORUPDATE(p, 1, 0)
14: NEIGHBORUPDATE(p, 0, −1)
15: NEIGHBORUPDATE(p, 0, 1)
16: RANDOMUPDATE(p) . Randomization step
17: end for
18: end for
19: APPLYNNF(I|M )
20: end for
21: end procedure

22: function NEIGHBORUPDATE(p, dx, dy)
23: δ ← (dx, dy)
24: q ← map(p+ δ)
25: if SSD(p, q) ≤ SSD(p,map(p)) AND validation(p, q, C, 1) then
26: map(p)← map(p)− δ
27: end if
28: end function

29: function RANDOMUPDATE(p)
30: δ ← (RAND( ), RAND( ))
31: q ← map(p) + δ
32: if SSD(p, q) ≤ SSD(p,map(p)) AND validation(p, q, C, 1) then
33: map(p)← q
34: end if
35: end function

In PatchMatch the patches are treated identically regardless
of their quality, in particular in the low resolution levels
of the pyramid. This leads to a spread of low quality data
throughout the mask. To counter that, in the propagation step,
beside verifying that the candidate patch has a better similarity
than the current considered patch, we also use validation to
verify that the center pixel q of the candidate patch has a
larger confidence than the mask pixel p. Note we are using
α = 1 in validation for this case. Our modifications are shown
in red in Alg. 1. Fig. 5 visually illustrates the effect of our
modifications.

B. Adapted statistic and graphcut approach

As mentioned in Section II, statistic analysis followed by
graphcut is more adapted than PatchMatch for inpainting
textures with a regular pattern. Alg. 2 details the steps of
the considered algorithm [18], [19]. Statistic analysis consists
in calculating for each patch of the known zone I|MC its
associated offset (2.4). The offset of a patch centered in p
is the translation vector t such that:

I(p+ t) = arg min
u,‖u‖>τ

sim
(
I(p), I(p+ u)

)
where sim is a similarity function (based on a Sum of Squared
Differences) and τ is a threshold to avoid selecting patches
which are too close to the considered patch. Then, for each
offset, its occurrence is computed and the most expensive K

Algorithm 2 Statistic+Graphcut algorithm with trust criterion
Require: Rectified image I , rectified binary mask M , trust map C
Ensure: Rectified inpainted image Iinpainted

1: procedure STATISTIC+GRAPHCUT(I,M,C)
2: Ir ← DOWNSAMPLE(I)
3: Mr ← DOWNSAMPLE(M)
4: O ← COMPUTEOFFSETS(Ir,Mr) . Statistic step
5: labels← COMPUTELABELS(Ir,Mr, O, C)
6: labels← UPSAMPLE(labels)
7: Iinpainted ← APPLYLABELS(labels)
8: end procedure

9: function COMPUTELABELS(I,M,O,C)
10: Ie ← I|M∪∂M . ∂M is the boundary of M
11: for all p : (x, y) ∈ Ie do
12: if p ∈ ∂M then
13: labels(p)← 0 . Match adjacent pixels to null vector
14: else
15: labels(p)← RAND(1, |O|) . Random initialisation
16: end if
17: labels← GRAPHCUT(Ie, O, C, Edata, Ereg)
18: end for
19: return labels
20: end function

21: function EDATA(p, t, I,M,C)
22: if p ∈ ∂M OR

(
(p+ t) /∈M AND validation(p, p+ t, C, α)

)
then

23: return 0
24: end if
25: return +∞
26: end function

offsets are selected (they should characterize the regularity of
a structured texture). Finally, Graphcut is performed (2.5) to
create the labels map by minimizing an energy function in the
form

E = Edata(p, t) + Ereg(p, q, tp, tq),

where Edata measures the cost of associating the offset t to
pixel p, and Ereg is the regularization term used to express the
visual consistency of neighbour pixel values pointed by the
offset map. Like PatchMatch, this approach is multi-resolution
and there is no distinction between the “low” and “high”
quality data during the energy minimisation. We integrate our
criterion into Edata: for a pixel p and a offset t, Edata(p, t)
is set to 0 if p + t does not belong to the mask AND if
validation(p, p + t, C, α) = 1, otherwise it is set to +∞. It
allows to penalize the couple (p, t) if trust(p+ t) < trust(p).

In the case of regular textures, it may happen that we do not
find an offset that allows to complete a pixel because the only
offsets considered point to pixels in the mask. In this case,
we could allow a pixel p with a C(p) value to use an offset
pointing to a pixel q with a smaller C(q) value but close to
C(p). For that, we reset the tolerance parameter α in (7): at
the beginning of the Graphcut step, α is set to 1. If we lack
candidates for finding the right label for a mask pixel, we
decrease α by a fixed value in order to loosen the constraint
and use data of lower slightly quality.

We show in the next section some results based on our
adapted algorithm.

VI. EXPERIMENTAL RESULTS

We implemented the proposed method in C++, using CImg
[20] for image manipulation and its PatchMatch implementa-
tion on Android devices. For perspective removal we use the



Fig. 6. Results from PatchMatch (left) and Statistic analysis and Graphcut
(right) on an empty area coloured in red (first row) without validation
criterion (second row) and with validation criterion (third row).

interpolation implementation by [21], while for pixel labeling
in the offsets approach we use the implementation of Graphcut
[18], [19], [22]. We compute the plane homography by using
its corners which are automatically computed in synthesis
cases or with ARCore [23].

Fig. 6 shows the results for two examples of undistorted
views with synthetic textures, a stochastic and a regular
texture. The mask, in red, has been defined by the removal
of objects (see the first row of Fig. 6). We use the state of the
art PatchMatch algorithm for the first case and the Graphcut
algorithm for the second case. The second row of the Fig. 6
shows that the original result is very blurred because low
quality data has been propagated. The third row (with the
validation criterion) shows the propagation has been handled
without degrading the inpainting process.

Fig. 7 shows results of the final output of our DR pipeline
on a synthetic image (top row) and two real images (second
and third row). For the rectified images shown in the last
section, we applied a luminosity adjustment using a diffusion
based inpainting method in order to create a more photo-
realistic output. For each case, we have a propagation of the
“low” resolution data to the “high” resolution data zone in the
classic approaches, whereas our validation criterion added in
the inpainting methods handles better the propagation.

Our implementation gives improved results with stochastic
textures, even in complex situations. In the regular texture
case, we adjust the parameter α as explained in §V. However,
our method supports the propagation of the high quality data,
possibly creating a resolution discontinuity at the boundaries

of the mask. Thus, after the inpainting process, we apply a
Gaussian blur whose kernel varies for each pixel p according
to their confidence C(p). At each pixel p the kernel width σ
is chosen inversely proportional to the square root of C(p).

VII. CONCLUSION AND FUTURE WORK

We proposed a criterion to better guide the selection of
patch in inpainting methods that takes advantage of the planar
geometry of the scene to better guide the inpainting process
and avoid the propagation of low resolution data. We have
shown these improvements handle the blur effect without
degrading the quality of the final output. We have also used
the criterion a posteriori to recover a continuous quality in the
inpainted data.

As future work, we plan to extend our approach to the multi-
view setting. In such scenario the global rectified image of
the plane is generated from all the views. The trust map is
not any more continuous, as the C(p) values at the boundaries
between the projections of views are not continuous. Pixels of
the rectified plane may come from multiple original images,
thus leading to the problem of properly defining the confidence
when multiple sources are available.
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[16] D. Pavic, V. Schönefeld, and L. Kobbelt, “Interactive image

completion with perspective correction,” The Visual Computer,
vol. 22, no. 9, pp. 671–681, 2006. [Online]. Available: http:
//dx.doi.org/10.1007/s00371-006-0050-2

[17] C. Eisenacher, S. Lefebvre, and M. Stamminger, “Texture synthesis
from photographs,” Computer Graphics Forum, vol. 27, no. 2, pp. 419–
428, 2008. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.
2008.01139.x

[18] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max- flow algorithms for energy minimization in vision,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1124–1137, sep 2004. [Online]. Available:
http://doi.org/10.1109/TPAMI.2004.60

[19] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.
[Online]. Available: http://doi.org/10.1109/34.969114
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