
HAL Id: hal-01895278
https://hal.science/hal-01895278

Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated and flexible composition based on abstract
services for a better adaptation to user intentions

Emna Fki, Saïd Tazi, Khalil Drira

To cite this version:
Emna Fki, Saïd Tazi, Khalil Drira. Automated and flexible composition based on abstract services for
a better adaptation to user intentions. Future Generation Computer Systems, 2017, 68, pp.376-390.
�hal-01895278�

https://hal.science/hal-01895278
https://hal.archives-ouvertes.fr

Automated and flexible composition based on abstract
services for a better adaptation to user intentions

Emna Fki, Said Tazi, Khalil Drira

CNRS, LAAS, 7 avenue du colonel Roche F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

In recent years, the composition of loosely coupled servies with the aim of
satisfying the user intention is a widely followed research topic. The composition
of services implies the ability to select, coordinate, interact, and interoperate ex-
isting services. This is considered as a complex task. This complexity is mainly
due to the large number of available services and their heterogeneity as they are
created by different organizations. This complexity is increased when services
must be dynamically and automatically composed to meet requirements which
are not satisfied by existing services. In fact, an approach for service composi-
tion must offer the potential to achieve flexible and adaptable applications, by
selecting and combining services based of the request and the context of the
user. In this perspective, different approaches have been developed for services
composition. However, most of the existing composition approaches tend to be
static and not flexible in the sense that they do not have the ability to adapt to
user requirements.

To overcome these challenges, we propose a composition approach in which
the generation of the composition schema is performed at runtime through the
use of abstract services provided at design time. The composition process that
we propose takes as input a structure of user requirements materialized by a
graph of intentions and enriches this graph to explicit the implicit relation-
ships. The enriched graph is used to generate an initial composition schema by
building the control flow and selecting the appropriate abstract services. The
selection of these services is based on the semantic matching and the degree of
semantic affinity between abstract services. Then, the final composition schema
is generated using a refinement mechanism of abstract services using semantic
matching techniques and taking into account user context and constraints.

Keywords: service composition, selection, abstract service, user intentions

Email address: efki@laas.fr,tazi@laas.fr,drira@laas.fr (Emna Fki, Said Tazi,
Khalil Drira)

Preprint submitted to Elsevier October 8, 2018

1. Introduction

The last few decades have been marked by the rapid development of dis-
tributed information systems, and the spread of Internet access. This evolution
has led to the development of new paradigms for interaction between applica-
tions. One of these paradigms which has grown considerably in recent years5

is service-oriented architecture (SOA). The design approach of SOA is based
on standards which enable creating an integrated IT infrastructure capable of
rapidly responding to new user needs. Actually, it is not always easy to find
services that meet user requests. Therefore, the service composition satisfying
the user intention is a growing need. The composition of services implies the10

ability to select, coordinate, interact, and interoperate existing services. The
composition is considered as a complex task. This complexity is mainly due to
the large number of available services and their heterogeneity as they are cre-
ated by different organizations [1]. This complexity is increased when services
must be dynamically and automatically composed to meet requirements which15

are not satisfied by individual services. In fact, an approach for service com-
position must offer the potential to achieve flexible and adaptable applications,
by selecting and combining services based of the request and the context of the
user. In this perspective, different approaches have been developed for services
composition. However, most of the existing composition approaches tend to be20

static and not flexible in the sense that they do not have the ability to adapt to
user requirements.

To build a composition of services, two steps must be performed (separately
or combined) [2]:(1) a composition schema (or a process model) specifying the
control and data flows between activities must be created; (2) concrete services25

have to be discovered and assigned to activities of the process. As regards the
degree of dynamicity in these two steps, we have retained two strategies of com-
position. The first consists in defining the composition schema at design time
and selecting concrete services at run-time based on automatically analyzable
criteria, such as QoS parameters. The second strategy consists in combining30

the generation of composition schema with the selection of concrete services at
run-time. This implies that the composition of services may be performed com-
pletely at run-time. Generally, artificial intelligence (AI) inspired methods are
used in order to provide a fully automated composition. An example of a fully
automated composition of services based on planning algorithms is given in [3].35

To create a composite service, the service requester only needs to specify the ini-
tial and final states for the composite service. Then, the generation of the plan
can be achieved by using an expert system based on rules. Although this second
strategy seems to be more flexible and adaptable than the first one, modeling
the control and data flows of a composite service is potentially a tedious and a40

time consuming task in terms of reasoning and planning, and especially if we
consider a fully automated composition. In addition, the creation of data flow
is complex and may require user intervention.

In the work presented in this paper, we try to take advantage of the benefits
of both strategies mentioned above: in addition to the selection of concrete ser-45

2

vices at run time, the generation of the composition schema is partly performed
at run-time using abstract services provided at design time. This enables flex-
ibility and adaptability without having to build a composition of services from
scratch. We argue that many of the required tasks are repeated frequently, and
the main steps to achieve these tasks are well known, at least at an abstract50

level. Nevertheless, the realization of such tasks varies as it is adapted to in-
dividual users. As such, our proposal is to specify such tasks using a set of
abstract services being able to present alternative services and to combine and
refine them with user constraints at run-time. We propose an approach which is
composed mainly of four steps. The first step takes as input user requirements55

materialized in a graph of intentions. This graph is enriched by implicit rela-
tionships between intentions. The result of this step allows to generate an initial
composition schema by constructing the control flow inferred from the enriched
graph of intentions and selecting the adequate abstract services. The choice of
these services is based on semantic matching and the degree of affinity between60

abstract services. The third step consists in generating the final composition
schema using a refinement mechanism of abstract services based on semantic
matching. Finally, the execution plan is generated taking into account the non-
functional constraints provided by the specification of intentions. We have used
the OWL-S [4] ontology, to define our services at the abstract service level. In65

this paper we are focusing on the phase of generating the composition schema
based on abstract services. To perform this phase, we have defined mechanisms
of semantic matching at different levels as we will explain later.

The remainder of the paper is organized as follows: section 2 introduces
some motivating illustrations to show treated issues. Section 3 provides an70

overview of the proposed composition approach. We present in section 4 the
preliminaries by introducing the specification of abstract services and the model
of user intentions. In section 5, the proposed automated composition process
is described, and specifically the step of composition schema generation will be
treated in details. Section 6 resumes composition steps by applying them on a75

case study. In section 7 we evaluate our approach through experimental results.
An illustration of some existing works is shown in section 8. Finally, we provide
concluding remarks.

2. Motivating illustrations

Motivating illustration 1 - Problem of static and predefined composition schema.80

As a motivating example, consider the case of the management of energy in
smart buildings. Let us assume that the process achieving the optimizing of en-
ergy consumption must be established. This process needs to take into account
the fact that the user have to work in the most comfortable conditions. In order
to achieve this goal, a series of tasks need to be conducted such as regulating85

luminosity and regulating temperature. For each task, there may be a great
number of sub-tasks and a variety of relationships between sub-tasks. This
can be due to the difference of infrastructure and equipment of each Building,
the type of rooms,etc. For example, in the temperature regulation phase there

3

are many alternatives: we can make action on heaters, or on air-conditioners,90

or on both, depending of the availability and state of these equipment. The
adjustment of the heater for example shall take into account if the room is a
manipulation room. It should also consider the temperature degree that guar-
anties the comfort of the user.

It is not feasible to predefine every case in the composition schema due to95

the inherent complexity. This calls for dynamic generation of composite service
schemas based on some rules and context information.

As far as we know, most existing composition approaches assume that com-
position schemas are static and predefined. This mode of composition needs the
establishment, a priori, of all task relationships. It also needs meticulous trans-100

formation of relationships and rules into a particular composition schema. If
different alternatives to achieve a goal can be found, those alternatives must be
enumerated. The optimal strategy can be selected at execution time. This way,
a huge number of execution paths is predefined. Thus, adaptation and evolving
the process at runtime become more difficult. In addition, it is not easy to105

predefine composition schemas in complicated application domains where pro-
cesses might have to be adapted to specific users. Consequently, there is a need
to enable automated and dynamic generation of composition schemas adapted
to user needs.

Motivating illustration 2 - Waste of time and energy in the concrete service110

discovery and selection. As a second example, let consider a user looking for a
travel service. The user might have to invest considerable resources to visit nu-
merous sites, to determine adequate service providers, to provide his preferences,
to integrate or align the different types of results coming from the different sites.

With the increasing number of Web services available within over the In-115

ternet, locating the suitable Web service with respect to user’s requirements
is challenging. To discover and to rank services online may not be suitable,
especially from the performance point of view in the context of Internet-scale
environment. Instead, concrete services may need to be assembled and gen-
eralized within a structure featuring an abstract description of the common120

functionality offline. Therefore, services to be selected online with respect to
user’s needs should be limited within one or several abstract services, and then
the task of locating a desired service should be appropriate to be performed
online.

Motivating illustration 3 - Inappropriate composite services with respect to user125

intention. Let consider the same user (from Motivating illustration 2) who looks
for a travel service. The inputs of this service are duration and destination. The
outputs are travel packages including expense and travel schedule. For the same
request, a service composition system could construct a conference search service
because of the similarities of inputs and outputs. We need to keep in mind that130

the request doesn’t specify preconditions and effects. The result does not match
the user intention.

Figure 1 illustrates how inappropriate composite services can be generated.

4

Schedule
travel

Inputs: Duration, Location

Outputs: Expense, Schedule

Service composition
system by

chaining services based
on I/O

Get
expense

Duration

Location
ConferenceSearch

conference

Schedule

Expense

Search conference

Figure 1: Example of service composition considering only service inputs and outputs

3. Overview of our composition approach

In this section, we provide an overview of our composition approach which135

deals with the issues presented in the previous section.
The proposed service composition approach involves four consecutive steps:

intentions graph enrichment, generation of the initial composition schema, gen-
eration of final composition schema, and generation of execution plan as shown
in Figure 2.140

Enriched
Intention
graph initial

Composition
schema

final
composition

Schema

Execution
Plan

Intention
graph

Intentions
Graph

enrichment

Application
of composition
rules
+ Matching

Refinement
+

Matching

Concrete
Services
selection

Web Services

Execution

Context
ontology

Domain
ontology

Abstract
Services

Figure 2: Service composition steps

The composition process takes as input a graph representing intentions spec-
ification. We have defined a set of enrichment rules. The application of these
rules transforms intentions specification into an enriched graph of intentions.
Then, this latter is used to generate an initial composition schema by applying
composition rules and by matching intentions to appropriate abstract services.145

5

This matching is done through semantic rules exploiting a domain ontology
and uses the context ontology to find abstract services best suited to contex-
tual situations. The initial composition schema is refined by selecting other
abstract services of finer granularity until obtaining a final composition schema
constituted of atomic processes. The concrete Web services that can fulfill the150

obtained composition schema are selected according to required non-functional
constraints. Thus, the execution plan is generated. As mentioned before, the
composition schema represents a high level service process model. This model
defines only the set of activities and the control flow among them. It does not
identify the concrete services to be invoked. The execution plan is a material-155

ized composition schema in which appropriate actual services are selected and
assigned to each involving task.

In this paper, we will focus mainly on the generation of the composition
schema.

4. Preliminaries160

Before detailing the composition steps, we first explain the basic concepts
and definitions to be used later. We need specifically to introduce and specify
abstract services and to formulate user intentions.

4.1. Abstract Service

4.1.1. Presentation and motivation165

One of the important research issues that influences the way services are
composed is service description. Especially, functional descriptions of services
are needed in the composition schema planning phase, while QoS descriptions
are needed in the selection phase. In our approach, we use abstract services
which feature a generic and reusable description. An abstract service is defined170

over concrete services and presents the typical ways of composing services to
achieve particular goals. This would decrease the high cost of discovery and
selection tasks of the actual Web services. Since the same abstract service
could be offered to several circumstances, different service compositions derived
from this service can be obtained at different levels of granularity ranging from175

the functional properties of services to the execution related properties. The
main motivation behind abstract service proposition are the following issues: (1)
The need to facilitate matching between client intentions and available concrete
services, (2) The need for flexibility in composing services to satisfy particular
intentions, and (3) The importance of reusability of services.180

Abstract services are composed to construct complex processes. They con-
stitute the design-time components in our approach. They are pre-defined by
an expert of a particular domain. The expert knowledge is key for the design of
abstract services. However, these services are set to evolve dynamically through
learning methods or case based reasoning for example.185

An abstract service generalizes the commonalities of a group of concrete
services and provides a certain level of abstraction over these services. We

6

use the OWL-S language to represent and implement the proposed abstract
services. The OWL-S language provides mechanisms of abstraction to represent
processes. Furthermore, it offers semantic information that enables automated190

service discovery and combination.
Several frameworks have been developed on top of the OWL-S language to

support Web service composition. However, the majority of the Web services
specified with OWL-S are connected to concrete Web services. Consequently,
the composition reasoning process is principally focused on concrete Web ser-195

vices, thereby having to deal with huge search spaces. An abstract service may
have different implementations and multiple ways of combining services of lower
granularity. Whereas an OWL-S concrete service has only one composition pro-
cess. Furthermore, it maps to only one concrete web service at runtime.

4.1.2. Specification of abstract services200

The ontology of an abstract service is mainly composed of a Profile part
and a Process part. The abstract service is described by its profile which pro-
vides the information needed to describe the service functionality, including the
functionality of the service and the set of inputs and outputs. Our approach,
similar to [5], describes the service functionality as an action and an object. For205

instance, a service which ensures a hotel reservation has a functionality that can
be specified as {reserve, hotel}.

The process part specifies the typical composition of the Web services. It
defines either a class of services that the abstract service is abstracted from
or a generalized workflow that achieves the abstract service functionality (cf.210

Figure 3). In the process part of our Abstract OWL-S service, a service is
modeled as a process that can be either composite process or atomic process.
In the case of a composite process, the abstract service is composed of other
sub-processes which are simple processes. Their composition can be specified
by using one of the control constructs such as Sequence and If-Then-Else. This215

latter control construct offers alternatives to satisfy the functionality of the ab-
stract service. The introduction of the variability in the design of the conditional
abstract service is motivated by the need to introduce flexibility in achieving
the functionality, and adaptability in the process of composition of services. A
composite process of an abstract service is composed of simple processes. A sim-220

ple process can be seen as an abstract view of an atomic or composite process.
Simple processes cannot be invoked and are not associated with a Grounding.
If the abstract service process is atomic, the service is associated with one or
more concrete OWL-S services through the relationship implementableBy (cf.
Figure 3). The implementation of each concrete OWL-S service and the de-225

tails of how to access the actual web service are specified by the Grounding
part of the concrete OWL-S service. This set of concrete OWL-S services con-
stitutes a collection of web services having the same functionality and having
different non-functional properties (eg, different suppliers, different QoS values,
etc.). These non-functional properties are specified in the profile part of each230

concrete service. At run-time, the appropriate candidate service is selected and
invoked. For environments and frameworks that require adaptation or self-repair

7

at run-time, all candidate services can prepare services for the replacement or
substitution.

Abstract
service

Profile

Process

Atomic
Process

Composite
Process

Grounding

Control
Construct

Simple
Process

Sequence

Split-join

Any-Order
If-then-

else
Split

presents

implementableBy*

isis

describedBy
composedOf*

is

is is
is

is

structuredWith

OWL-S
Concrete
service

Profile
presents

Atomic
Process

describedBy
supports

Abstract level

Concrete level

Figure 3: Abstract service model

4.2. User intention representation235

To benefit from the user needs which guide the provision and composition
of services, we define the concept of intention. This concept is a combination of
a goal and a set of constraints expressing the way in which this goal is accom-
plished (cf. Figure 4). These constraints constitute a set of functional and non
functional constraints. As an example, for a goal such as Plan travel, there can240

be a functional constraint like travel fees <2000$. Non-functional constraints
can be related to execution constraints such as the execution time of a service.
These constraints can be also related to security. As an example, a service re-
quiring authentication could be requested by the user. The goal of an intention
is represented by the pair: action and object (of the action). For example, the245

action of Plan travel is Plan and its object is travel. We have identified two
structural relations by means of which intentions are related. We have been
based, for this, on the theory of Grosz and Sidner [6]. These authors have iden-
tified two structural relations between intentions, fundamental for the analysis
of the structure of the discourse at a basic level: the relation of dominance and250

the relation of satisfaction precedence. An intention I1 dominates an intention
I2 if the satisfaction of I2 contributes to that of I1. Intention I1 precedes (the
satisfaction of) I2 if I1 must be satisfied before I2.

Each intention specification is modeled as a directed attributed graph
GI = <I,R> where: I represents the set of intentions, and R represents255

the relations between the intentions. I=<G,C> where G: represents the

8

goal of the intention, and C represents the constraints expressed by user.
C = <FC,NFC> where: FC = {fc1,fc2,...} is the set of functional constraints,
and NFC = {nfc1,nfc2,...} is the set of non-functional constraints. R=<d,p>;
where d represents the dominance relation and p represents the precedence rela-260

tion. Each intention is associated with one or more context parameters. Figure 4
presents the semantic model of the intentions that defines the different relations
between concepts.

Intention

Constraint

NonFunctionalConstraint FunctionalConstraint

Goal

hasConstraint* hasGoal

isa
isa

ContextParameter
hasContext*

Precedes* Dominates*

ActionhasAction

Object

hasObject

Figure 4: Intention ontology model

In this work, our concern is not extraction of intentions. In the literature,
some research studies [7] focus on this issue: intention specifications are ex-265

tracted from user requests or context information. We assume that the intention
specifications are available and we can use it.

5. Composition of services

Since we are focusing, in this paper, on the generation of the composition
schema based on abstract services, we will simply use “service” to refer to ab-270

stract service in the rest of the paper.

5.1. intentions graph enrichment

The goal of this step is to make explicit the implicit precedence relationships
between leaf nodes of the graph.

The composition process starts by receiving a graph of intentions as input275

(ex: the graph G0 in Figure 5).
We assume that the graph of the original intentions is complete and includes

all necessary information for enrichment. This graph is enriched by applying
two rules which state that the precedence relation between two intentions A and
B is propagated to intentions dominated by A and B respectively. This makes280

9

I1I1

P

D

D

I0I0
I4I4

I5I5
I3I3

P

I6I6

I2I2

D

Figure 5: G0: original graph of intentions

Table 1: R1: Rule1 for the intentions graph enrichment

Intention(?x) ∧ Intention(?y) ∧ Intention(?z)
∧precedes(?x, ?y) ∧ dominates(?x, ?z)→ precedes(?z, ?y)

possible to identify the relationship between intentions that do not dominate
other intentions (leaf nodes). We have defined the following enrichment rules:

Rule R1 (cf. Table 1) identifies an intention x that precedes an intention y
and intention z dominated by x, then adds a precedence relation between z and
y.285

Table 2: R2: Rule2 for the intentions graph enrichment

Intention(?x) ∧ Intention(?y) ∧ Intention(?z)
∧precedes(?x, ?y) ∧ dominates(?y, ?z)→ precedes(?x, ?z)

Rule R2 (cf. Table 2) identifies an intention x that precedes an intention y
and an intention z dominated by y, then adds a precedence relation between x
and z.

The application of rules R1 (cf. Figure 6) and R2 (cf. Figure 7) leads to the
enrichment of the graph G0 by new precedence links:290

• links (I2-I3), (I0-I3) and (I1-I4) by identifying the link (I1-I3)

• link (I4-I5) by identifying the link (I3-I5)

• link (I2-I4) by identifying the new precedence link (I2-I3)

• link (I0-I4) by identifying the new precedence link (I0-I3)

10

XX

P

D

ZZ

YY XX

P

D

ZZ

YY

P

Figure 6: Modification of intentions graph by R1

XX

P

D

ZZ

YY

P

XX

P

D

ZZ

YY

Figure 7: Modification of intentions graph by R2

11

I1I1

P

D D

I2I2 I4I4

I5I5

I3I3

P

P
P

P

P

I0I0

D

P

P

Figure 8: Enriched intentions graph (G1)

We get finally an enriched graph G1 (cf. Figure 8) making explicit the295

implicit precedence links of G0.
Figure 8 shows an example of an enriched intention graph. Dashed links are

those which are deducted from the enrichment operation.

5.2. Generation of initial composition schema

In this step, the adequate abstract services that usable in the composed re-300

sult are identified and selected. The specific order in which they are composed
is inferred automatically from dependencies expressed in the intentions speci-
fication. Therefore, we have here two steps: building the control flow and the
selection of abstract services as shown in Figure 9.

Semantic matching Between

intentions and abstarct services

Selection based on affinity

degree between services

Selection of abstract services

Building control flow

Abstract

services

Domain

ontology

Enriched

intention

graph

Figure 9: Steps of initial composition schema generation

12

5.2.1. Building control flow305

The control flow refers to the order in which the services must be ranged
through a composition. To identify the control flow, we have defined the four
rules that act on the intentions graph as follows:

• The precedence relationship which can be deduced by transitivity are
deleted.310

• Only intentions which do not dominate other intentions are mapped to
appropriate abstract services. This eliminates redundancy.

• The precedence relation is translated into a sequence relationship between
corresponding abstract services: the execution of the service corresponding
to the preceded intention requires performing of the service that precedes315

it.

• The independence between intentions is translated into a parallel relation-
ship between the corresponding services.

5.2.2. Selection of abstract services

The phase of abstract services selection that constitutes the initial compo-320

sition schema is composed of two steps depicted in Figure 9.
For the selection of abstract services that match the intentions, we rely on a

semantic approach in order to find the most appropriate services. Our matching
algorithm compares semantically user intentions with abstract services.

Step1: semantic matching between intention and abstract service. In order to325

find a set of appropriate candidate abstract services that meet an intention,
we calculate the semantic matching degree between the intention goal of the
service functionality name. This matching is based on the use of ontologies
and the degree of semantic similarity. In our work, we calculate a score of
matching between the intention and the abstract service using the following330

formula: score(matching) = score(matching action)+score(matching object)
As we mentioned before, the goal of an intention consists of an action and

an object. Thus, to determine the matching score between an intention and
an abstract service, we calculate: (1) matching score between the action of the
intention (actionI) and the action of the abstract service (actionS), and (2)335

matching score between the object of the intention (objectI) and the object of
the abstract service (objectS).

This matching is based on the use of an action ontology (for action matching)
and a domain specific ontology (for object matching). The action ontology de-
fines action concepts which can be provided through a domain-specific ontology340

of actions or through general-purpose ontology that includes all the possible
action (such as Wordnet). Levels of matching between actions are based on
four relation types: Exact, Synonym, Hyponym, and Hypernym. Each level
of matching is associated to a score, as defined in [8]: Exact:1, Synonym:0.9,
Hyponym:0.7, Hypernym:0.6.345

13

A domain-specific ontology represents possible objects in a specific domain.
It is used to perform the matching between objects by using the subsumption
hierarchy between concepts. Paolucci et al. in [9] have identified four levels of
matching between two ontology concepts: Exact, Plug-in, Subsume, Fail.

The score of matching between objectI and objectS is determined using the350

function d(Ci, Cj) which measures the semantic distance between two concepts,
Ci and Cj . The work of Rada et al. [10] describes the semantic similarity
between two concepts of an ontology as follows:

S(Ci, Cj) = 1
d(Ci,Cj)+1

We are not interested in subsumes matches as we consider that this degree355

of match cannot guarantee that the intention will be satisfied by the service: we
opt to select only the services whose functionality is equivalent or more generic
than the intent of the user, in order to avoid the case where the service does not
perform the required functionality. Therefore, the matching between objects is
based on two types of semantic matching: exact and plug-in. In this case, if360

objectI ≡ objectS (exact matching), then d = 0; if objectI ⊆ objectS (plug-in
matching), then d = 1.

Services having a total matching score that exceeds a threshold (specified by
the designer) are added to the set S of candidate services.

Step2: Selection based on affinity degree between services. After finding candi-365

date service sets, all different alternatives for the initial composition schema are
extracted.

For example, for the intention I2, two services s2 and s′2 could be selected.
For the intention I4, two services s4 and s′4 could be selected. Each of intentions
I5 and I6 matches only one service: s5 and s6. For this case, we obtain four370

alternatives for the initial composition schema as shown in Figure 10.

S0

S2

S4 S5

S6

S0

S2’
S4 S5

S6

S0

S2

S4’ S5

S6

S0

S2’
S4’ S5

S6

Figure 10: Different alternatives of the initial composition schema

The selection of the adequate alternative is based on the semantic connection
quality between services (relation between input and output parameters). These

14

Table 3: Semantic matching functions described by Sim

Match type Exact Plug-in Subsume Fail
Sim(out, in) 1 2

3
1
3 0

Semantic meaning out ≡ in out ⊂ in out ⊃ in Otherwise

parameters are concepts of an ontology. Thus, it is a question of calculating the
degree of semantic similarity between output parameters sx.Out of service sx375

and input parameters sy.In of service sy, with sx and sy being two services
composed sequentially.

Thereby, sx and sy are semantically linked according to a matching function
Sim(out, in), with out ∈ sx.Out and in ∈ sy.In.

The four types of semantic matching functions proposed by [9] are considered380

to check semantic similarity between a concept out and a concept in. The
semantic similarity is valued by the function Sim (cf. Table 3) to determine the
semantic degree of link between parameters of services.

The Plug-in match means that an output parameter of a service sx is sub-
sumed by an input parameter of the succeeding service sy whereas the Subsume385

match means that an output parameter of service sx subsumes an input param-
eter of the succeeding service sy.

In our approach, the valuation of the semantic similarity in this step is not
used to chain services; otherwise, we do not need to find which services depend
on other services. Indeed, the sequence relationship is already established, that390

is that there is at least one pair from input parameters of sy and from output
parameters of sx having a semantic dependency relation. In other words:
∃outj ∈ sx.Out,∃ini ∈ sy.In, such that Sim(outj , ini) > 0
Our goal here is to find the best composition schema according to an opti-

mization criteria. This criteria is the quality of semantic connection between395

services. Thus, we consider the matching degree between input and output pa-
rameters of services to preserve those offering the maximum values of semantic
similarity.

Let sx.Out = {out1, out2, ..., outn} be the output set of sx, and sy.In =
{in1, in2, ..., inm} the inputs set of sy.400

In order to determine semantic similarity between sx and sy, it is necessary
to evaluate the connection between sx.Out and sy.In. We measure the matching
value between each input parameter ini of sy and each output parameter outj
of sx in order to finally retain the maximum value. The pair (outj , ini) that has
the maximum similarity value represents the couple for which the value of outj405

is consumed by ini. Then the sum of these maximum values is calculated and
divided by the number of inputs of sy. The semantic affinity which represents

15

the dependency degree between sx and sy is given by the function semAff :

semAff(sx.Out, sy.In) =
1

m

m∑
i=1

n
max
j=1

Sim(outj , ini) (1)

with (0 ≤ semAff(sx.Out, sy.In) ≤ 1)
It is worth reminding that semAff function (1) is used to calculate the410

degree of semantic affinity between only two sequential services. In practice, it
is possible that a service sy is preceded by more than one service; we should
therefore take into account all of the outputs of services preceding sy. Let
consider the set of parallel services S that precedes sy. We need to find for each
input parameter of sy a output parameter from the set of output parameters415

of services contained in S, with which the similarity is maximum. Figure 11
shows an example of correspondence between outputs of services in S and input
parameters of sy. The input in3 of sy, for example, has the maximum similarity
with the output out2 of S.

s
y

S

out
1

out
2

out
3

out
4

out
5

out
6

out
7

in
1

in
2

in
3

in
4

in
5

Sim(out
2 , in

3)

Figure 11: Correspondence between S outputs and sy inputs

Indeed, it is unknown a priori which service of S that provides the output420

parameter that aliments an input parameter of sy. The algorithm 1 finds out
pairs (output parameter, input parameter) corresponding to the maximum sim-
ilarity value, and therefore identifies for every service of S, the set of output
parameters that will be consumed by the input parameters of sy. This finally
allows to calculate the semantic affinity between each service of S and the service425

sy.
Let consider sy.In the set of input parameters of sy and S.Out the set of

output parameters of all services included in S.

16

Input: sy,S
Output:
foreach input ini ∈ sy.In do

Simmax ← 0
foreach output outj ∈ S.Out do

if Sim(outj , ini) > Simmax then
Simmax ← Sim(outj , ini)
outmax ← outj

end

end
foreach service sk ∈ S do

if outmax ∈ sk.Out then
summaxSim[sk] ← summaxSim[sk] + Simmax

nbInputk ← nbInputk + 1
//number of inputs of sy to match with outputs of sk
{Inputsk} ← {Inputsk} ∪ ini

end

end

end
foreach service sk ∈ S do

semAff(sk, sy)← summaxSim[sk]/nbInputk
end

Algorithm 1: Algorithm of semantic affinity calculation between sequential
services

17

The step of semantic matching between an intention and a service can give
two candidate services sk and sk′, which have same possibilities of matching for430

a set of input parameters of sy: {Inputsk}. So the semantic affinity between
sk′ and sy is calculated as:

semAff(sk′, sy) =
1

nbInputk

nbInputk∑
i=1

p
max
j=1

Sim(outj , ini)

with {out1, ..., outp}: the set of outputs of sk′ to match with the set
{Inputsk} of inputs of sy.

The next step is to identify the best matches in order to find out the best435

initial composition schema. The best composition schema is obtained by max-
imizing the sum of semantic affinity values of pairs of sequential services as
follows:

maximize
∑

semAff(si, sj)

with si et sj two sequential services.
Figure 12 presents an example that shows different possible alternatives440

to obtain composition schema. Considering this example, the value of the
semantic affinity between s01 and s41 (case (1)) has the highest value com-
pared to other alternatives ((2), (3) and (4)). However, alternative (1) is dis-
carded, and alternative(2) is retained as the sum of the semantic affinity values
semAff(s01, s42) + semAff(s42, s5) + semAff(s2, s42) = 0.8 + 0.7 + 0.6 = 2.1445

is the maximum value.
Thus, services s01 and s42 are the selected services.
What remains now is to establish the data flow between selected services, ie

to link compatible inputs/outputs.

5.3. Generation of final composition schema450

In this step, the initial composition schema will be further refined: more
abstract services of finer granularity will be selected iteratively until obtaining
a final composition schema formed by atomic abstract services.

During this refinement, the process part (cf. Figure 3) of each service com-
posing the initial composition schema is analyzed. We distinguish two cases:455

(i) In case of atomic process, no further refinement is required. The set of
candidate concrete OWL-S services that implement this process will be analyzed
during the phase of the generation of the execution plan.

(ii) In case of composite process, each of its sub-processes (which are all
simple processes) is analyzed: for each simple process, a search is performed to460

find corresponding abstract services.
A simple process is substituted by the process part of the corresponding ser-

vice. The corresponding service is that which matches simple process according
to a degree of similarity. If the process part of this service is an atomic process,
the procedure described in (i) is applied. If the process part is composite, this465

18

S01
S02

S2

S41
S5

S01

S2

S41 S5

S02

S2

S5

S02

S2

S41 S5

S01

S2

S42 S5

0.9

0.5
0.4

0.8

0.6
0.7

0.5

0.5

0.8

0.7

0.5

0.7

semAff(S01 , S41)

(1)

(2)

(3)

(4)

S6

S42

S42

Figure 12: Example of possible alternatives of initial composition schema

simple process is extended to a composite one. And hence, we will be situated
in case (ii).

The substitution requires that the substituting service has a functionality
equivalent to the functionality provided by the original simple process. The
control flow of the composition schema is updated by the refinement process.470

In fact, the structure of the composite processes that feed iteratively the com-
position schema is expressed by the control construct defined in the abstract
service (cf. Figure 3). Some of these control structures impose a specific order
of the activities of the process such as Any-Order and Sequence. Other control
structures are used for the choice of one activity from a set of activities such475

as If-then-else and Choice. In fact, some abstract services propose alternatives
to achieve the functionality of the service. Each alternative is influenced by a
specific functional constraint or contextual data. During the refinement, appro-
priate sub-process is selected. The information provided by the specification of
intentions and context are used to guide the selection of adequate activities.480

We rely on the concept of similarity that we used in subsection 5.2. We eval-
uate the degree of similarity between the simple process and the corresponding
service. To determine the degree of similarity between the sub-process SPr and
the service s, we calculate the semantic distance between:

(i) the sub-process name and the service name.485

(ii) Input and output parameters of the sub-process and the service.
The condition (C) allowing a service s to be considered as possible match for

a sub-process SPr is the existence of input and output parameters of s whose
semantic distance with input and output parameters of SPr is not null on one

19

hand. On the other hand, the semantic distance between names of the service s490

and of the sub-process SPr must be non null. This condition can be expressed
as follows:

C ≡



∀inSPr
k ∈ SPr.In, ∃ins

p ∈ s.In
such that d(ins

k, in
SPr
p) > 0;

∀outSPr
k ∈ SPr.Out, ∃outsp ∈ s.Out

such that d(outsk, out
SPr
p) > 0;

d(s.Object, SPr.Object) > 0;
d(s.Action, SPr.Action) > 0;

with SPr.In and s.In: sets of input parameters, SPr.Out and s.Out sets of
output parameters, s.Action and s.Object constitute the name of the service,
and SPr.Action and SPr.Object constitute the name of the sub-process.495

Let S be the set of services si that satisfy the condition C for a sub-process
SPr. We look over S by calculating the semantic distance D between si and
SPr using the following formula:

D(SPr, si) =
∑|SPr.In|

j=1 d(inSPr
j , ins

j) +
∑|SPr.Out|

j=1 d(outSPr
j , outsj) +

d(s.Object, SPr.Object) + d(s.Action, SPr.Action)500

The set S is updated, it contains henceforth services Sk that have the mini-
mum distance.

The selection of services is also conditioned by elements of the context at-
tached to the description of the intentions. Conditional services offer the possi-
bility to evaluate a condition in order to choose the adequate alternative (sub-505

process). The condition is usually associated with a context item, such as the
existence of presence sensors in a building. In addition, we take into account the
functional constraints, especially in the last level of refinement which provides
a composition schema composed of processes of atomic services. For example,
a functional constraint is about the measurement unit of a device which gives510

the temperature.

5.4. Generation of execution plan

Once the final composition schema is generated, the next step of composi-
tion process consists in identifying concrete services which will constitute the
execution plan. This step is based on non-functional constraints provided by515

the specification of intentions in order to select the appropriate services. Recall
that an atomic abstract service is associated with a set of OWL-S concrete ser-
vices. The implementation of each concrete OWL-S service and details of how
to access the service and invoke it are specified in the Grounding part. This
set of concrete services represents a collection of web services having a common520

functionality having different non-functional properties (ex, different providers,
different QoS values, etc.). These non-functional properties are specified in the
profile part of each concrete service. As we mentioned, a set of concrete services
candidates is associated with each abstract service. This association is done at
design time and can be updated by service providers. This particular issue is525

not addressed in this work.

20

S01

S21

S42 S51

S612

S611
S622

S02

S52

I1I1

P

D D

I2I2 I4I4

I5I5

I3I3

P

P

P
I0I0

D

P

P

I6I6

ws

ws

ws

ws

ws
ws

Figure 13: Non-functional constraints propagation

It is necessary to select the concrete service that allows to implement the
abstract service taking into account the non-functional constraints defined in
the intentions graph, as shown in Figure 13.

We would again point out that the abstract service that is mapped to an530

intention I during the phase of the generation of the initial composition schema
could be refined during the phase of the final composition schema generation.
This would give birth to a combination of a set of services SI representing a
fragment of process performing the intention I. Therefore, it is not a matter of
locally considering the best concrete service (taking into account the QoS crite-535

ria) which can realize each abstract service of SI. In other words, all the concrete
services that will be selected for the abstract services of SI must satisfy non-
functional constraint(s) expressed in I to obtain the best fragment of process
corresponding to I. It is therefore necessary to propagate the non-functional
constraint of the intention I to all concrete services which carry it out because540

the refinement process could give a fragment of process that performs a single
intention.

If we consider for instance the execution time criteria, we should calculate
the total execution time of the fragment of process corresponding to a given
intention by the aggregation of execution time values of services composing545

this fragment. More generally, the aggregation function depends on the QoS
attribute and on the control flow of the composition. We present in Table 4
aggregation functions for attributes: execution time, cost and availability. qT ,
qP , qD denote the values of QoS attributes: execution time, cost and availability.
The set of services si represents the concrete services corresponding to the n550

abstract services which constitute the composition (whose structure is either
sequential or parallel).

Let us take the case of the intention I6 which has the non-functional con-
straint: execution time < x secondes. The intention I6 is achieved by a process

21

Table 4: Aggregation functions of QoS attributes

Control structure of the composition
QoS attribute Sequence Parallel
Execution time

∑n
i=1 qT (si) maxn

i=1{qT (si)}
Cost

∑n
i=1 qP (si)

∑n
i=1 qP (si)

Availability
∏n

i=1 qD(si)
∏n

i=1 qD(si)

fragment containing three services (cf. Figure 13): s611, s612 and s622. The555

execution time of this fragment should not exceed x seconds, thus we must
have:

max(Execution time (s611), Execution time (s612))+ Execution time (s622)
< x secondes.

5.5. Implementation560

To validate our proposed approach, we have implemented the composition
process. The prototype was implemented in Java using the environment Eclipse
with free tools and open sources. We used the Pellet1 reasoner to infer implicit
relationships of the intentions graph, and to calculate similarity measure. We
used Protégé editor (version 3.2.1) to manipulate ontologies. To create and565

edit abstract services described with OWL-S language, we used specifically the
OWL-S Editor tool implemented as an open source plugin under Protégé editor.
Several Java APIs were used to handle ontlogies and OWL-S services like OWL
API and OWL-S API2.

Our prototype includes the following main modules:570

• Module of intentions processing: the input of the module is an OWL file
describing the specification of intentions of a user. This module applies
enrichment rules over the graph of intentions.

• Module for building control flow: it builds the composition schema without
taking into account abstract services that will constitute it. In other terms,575

it generates its overall control structure. It takes as input all non-dominant
intentions and their relationships. This module applies the defined compo-
sition rules to generate the control flow of the initial composition schema.

• Module of semantic matching : This module performs the semantic match-
ing between two concepts of an ontology according to matching levels (ex-580

act, subsumes, plugin, fail) and an ontology of the treated domain. It uses
the Pellet reasoner to infer relationships between concepts. This module
is used for the matching between intentions and abstract services and to
calculate the semantic affinity between abstract services.

1Pellet: http://www.mindswap.org/2003/pellet/
2http://on.cs.unibas.ch/owls-api/

22

• Module of abstract services selection: this module ensures the selection585

of abstract services which will constitute the initial composition schema.
To do this, it implements the step of matching between intentions and
abstract services, and the step of selection based on affinity degree between
abstract services. This module calls for the module of semantic matching.

• Module of initial composition schema refinement: it performs the refine-590

ment phase by selecting iteratively other abstract services of finer granular-
ity. It calls for the semantic matching module to performing the matching.
Furthermore, this module updates the data flow since of the composition
schema.

• Module of concrete services selection : This module generates the exe-595

cution plan by browsing the OWL file representing the final composition
schema. It explores the web services registry.

6. Case study

We propose a case study concerning smart buildings in order to apply and
partially validate the proposed approach. It especially deals with the optimiza-600

tion of the energy consumption in the building’s rooms. Generally, each room
is equipped with a set of lamps, a heater, air-conditioner and a window with
blinds which are working automatically.

To apply our approach, we consider that the administrator of the building
expresses his need to optimize the energy consumption in the building. A set605

of intentions is extracted (as shown in Table 5) and the correspondent graph of
intentions G0 (cf. Figure 14) is provided.

The intention I1 dominates intentions I3 (regulate luminosity) and I5 (reg-
ulate temperature). To be able to regulate luminosity, the intention I2 (cal-
culate luminosity) precedes intention I3. To be able to regulate temperature,610

the intention I4 (calculate temperature) precedes I5. I5 dominates intention I6
(Regulate Air-conditioning) and I7 (Regulate heating system). This graph is
provided with the information given in Table 5.

The first step of our approach consists on enriching the graph G0 with the
implicit relations between intentions using our enrichment module. This allows615

to add a precedence link between I4 and I6 and between I4 and I7 as shown
in Figure 15. The second step begins by the construction of the control flow
of the initial composition schema. The selection of abstract services is done
using the semantic matching between intention goals and abstract service func-
tionalities. For each intention, the semantic matching gives a set of abstract620

services. The selection is based on matching scores. It is based on a threshold.
The selected set of abstract services corresponds to the services that have a
matching score higher than the threshold. For the intention I4, it is necessary
to match the goal of the intention calculate temperature. The set of abstract
services candidate are: s41 calculate temperature, s42 determine temperature,625

and s43 calculate heat degree. The matching scores are 2, 1.7, 1.5. The services

23

I1I1

I5I5

I3I3

I7I7
I6I6

I4I4

I2I2

d

P

P

d d

d

Figure 14: Original intentions graph

I1I1

I5I5

I3I3

I7I7
I6I6

I4I4

I2I2

d

P

P

d d

d

P

P

Figure 15: The case study intentions graph

s41 and s42 are selected because the threshold is 1.6. The operation of selecting
abstract services is executed for each intention. At this stage, we have for each
intention a set of services. For example we have the set {s41, s42} precedes the
set {s61, s62} corresponding to I6, and the set {s71, s72} corresponding to I7.630

24

Table 5: The cas study intentions list

ID Goal Functional Non Functional Context
Constraints Constraints parameters

I1 Optimize
Consumption

I2 Calculate Precision=0.5 Response
luminosity unit=lumen Time<10

I3 Regulate LuminosityMax Window
luminosity =1800 blinds

LuminosityMin
=1200

I4 Calculate Precision=0.5
temperature Unit=celsius

I5 Regulate TempMax=25
temperature TempMin=15

I6 Regulate Heater
Air-Conditioning Air-Conditioner

I7 Regulate Heater
Heating System Air-Conditioner

For each combination generated with this example, we calculate the semantic
affinity between outputs and inputs of connected services. Here, we explore 8
combinations, and the alternative selected presents the best affinity degree as we
presented in section 5.2. In the end of this step we obtain the initial composition
schema presented in Figure 16.635

The next step is the generation of the final composition schema.
Our refinement module takes as input the initial composition schema (Fig-

ure 16). For example, the abstract service Determine luminosity (s13) is atomic.
It will not be refined. The service Regulate Luminosity (s22) is a composite ser-
vice with a process part Pr22 composed of three sub-processes: Check Presence640

(SPr221), TurnOff Lamp (SPr222) and Adjust luminosity (SPr223) organized
as shown in Figure 17.

Our refinement module calls the semantic matching module for searching
abstract services corresponding to SPr221, SPr222, and SPr223. Several alter-
natives are found, and through the matching score and suitability to the context645

which consists of the existence of lamps (c.f. section 5.3), the best abstract ser-
vices are selected. Services Check Presence (s221) and TurnOff Lamp (s222) are
atomic, and the service Adjust luminosity (s223) is a composite service that will
be refined in turn. The process part of the service s223 consists of two sub-
processes: Reduce LampIntensity (SPr2231) and Increase luminosity (SPr2232)650

organized as shown in Figure 17.
The refinement module calls semantic matching module for processing

SPr2231 and SPr2232. The corresponding services found are s2231 which is

25

Start/In

Regulate_AirConditioningRegulate_HeatingSystem

/Any-Order

From

TemperatureValue

To

temperatureValue

From

TemperatureValue

To

temperatureValue
Any-Order

Calculate_Temperature

Regulate_Luminosity

Determine_Luminosity

From

LuminosityValue

To

luminosityValue

/Any-Order

Any-Order

Finish/Out

Figure 16: Initial composition schema

Pr22

sequence

SPr222 SPr223

SPr222

SPr221
If-then-else

SPr221

Adjust_luminositySPr223

Increase_luminositySPr2232

Open_StoresSPr22322

Verify_StoresStateSPr22321

Increase_LampIntensitySPr22323

Reduce_LampIntensitySPr2231

TurnOff_LampSPr222

Check_PresenceSPr221

Pr223

SPr2231 SPr2232

If-then-else

Pr2232

sequence

SPr22321 If-then-else

SPr22322 SPr22323

Pr22

sequence

SPr222

SPr221
If-then-else

SPr2231

If-then-else

sequence

SPr22321 If-then-else

SPr22322 SPr22323

SPr2231

SPr22321

SPr22322

SPr22323

Figure 17: Refinement of the service Regulate Luminosity (s22)

atomic, and s2232 which is composite. The process part of the service s2232 is
composed of three sub-processes: Verify StoresState (SPr22321), Open Stores655

(SPr22322), and Increase LampIntensity (SPr22323) which are organized as

26

shown in Figure 17. The correspondence between processes and abstract service
provides three atomic abstract services.

This completes the refinement of the abstract service Regulate Luminosity
(s22). In fact, the service begins by verifying the state of the presence in the660

room, this determines if there is a need to run off the lamp or not. The ad-
justment of luminosity is made with respect to the constraint expressed by the
intention I3 which sets the maximum of luminosity degree. This service results
in a reduction in the lamp intensity, or an increase of luminosity in the room (if
the luminosity<LuminosityMin then increase, if > LuminosityMax then reduc-665

ing). This action depends on the context parameter BlindsState, if the state is
closed, then blinds will be opened, otherwise the lamp luminosity is increased.

The abstract service Calculate Temperature (s42) is atomic while services
Regulate heatingSystem (s61) and Regulate AirConditioning (s72) are compos-
ite. The refinement module and the semantic matching module are used to670

refine these services until obtaining atomic services. In fact, the service s61
(resp. s72) begins by verifying if the room is a lab, if it is the case, the heating
is adjusted (resp. the cooling). This action depends on the existence of a heater
(resp. air-conditioner) as we can see in I6 (resp. I7). The final composition
schema is given in Figure 18.675

7. Experimental results

We have defined an architecture that implements the features presented in
previous sections. The different modules included in the architecture have been
implemented using Java language and specific API’s such as OWL API3 and
OWL-S API4.680

We use the Smart Building case study to generate sets of intentions graphs
from 7 nodes graph sets to 20 nodes graph sets. We consider that an intentions
graph of 20 nodes is sufficient for a Smart Building. We execute our approach
on each set and we obtain results showed in Figure 19. For smaller graphs
(under 11 nodes), we remark that execution time does not exceed 4 seconds.685

Graphs with a size between 12 and 16 have an average execution time around
5 seconds. Graphs with a size between 17 and 20 have an average execution
time around 9 seconds. The duration of enrichment and the duration of final
composition schema generation are more important than the duration of the
initial composition schema generation. For the enrichment, this is due to the690

exploration of the graph. For the final composition schema generation, the
fact that this task requires consecutive substitutions of abstract services sub-
processes based on semantic matching increase the time of execution. In the
initial composition schema generation, only two operations of semantic matching
are required that reflect on the execution time.695

3http://owlapi.sourceforge.net/
4http://www.mindswap.org/2004/owl-s/api/

27

Figure 18: The final composition schema

In order to assess the quality of results, we studied the metrics precision and
recall [11] to see the quality of the generation of the initial composition schema.

28

0

2

4

6

8

10

12

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Se
co

nd
s

Intentions Graph Size

Final SC Generation
Intial SC Generation
Enrichement

Figure 19: Execution time of composition process

These two metrics are defined by two sets: the set of found composition schemas
and the set of relevant composition schemas. The metric precision indicates the
ability of the composition process to find only relevant composition schemas700

without considering the false positives. The metric recall measures the ability
of the composition process to find all relevant composition schemas.

Figure 20: Measuring the metric precision

The metric precision is defined as follows:

{Relevant composition schemas} ∩ {Found composition schemas}
{Found composition schemas}

29

The metric recall is defined as follows:

{Relevant composition schemas} ∩ {Found composition schemas}
{Relevant composition schemas}

To assess these metrics, we have defined for each intention of case study the
graph 15 abstract services as a maximum. So we have 7 intentions I1..I7 with
15 abstract services as a maximum for each intention.705

Figure 21: Measuring the metric recall

We conducted experiments with a matching threshold equal to 1.5.
In the scenario of the case study, the building administrator wants to reduce

energy consumption by using only the adequate devices. The results shown in
Figure 20 indicate that our approach for the generation of the initial composition
schema shows a level of precision with an average value of 91%. This result710

indicates that our approach of the initial composition schema has a great chance
to obtain the most appropriate composition schema for the user. This is due
to the choice of the matching threshold that is fairly high. The good result for
the precision is confirmed by the result on the recall that its average is close to
89% , as shown in Figure 21.715

Combined analysis of metrics precision and recall shows that the composition
mechanism has managed to generate a significant number of compositions that
meet user needs with a low rate of false positives. We believe that the proposed
composition mechanism allows to generate the compositions corresponding to
to the needs of the user, and this through the use of semantic matching between720

intention and abstract service and through the use of semantic affinity between
services.

30

8. Related Work

Automatic composition of services is a popular research topic that receives
a lot of attention and that has been studied for several years. Most of current725

service composition approaches require predefined process schemas to construct
composite Web services. Authors in [12] propose an approach for service com-
position based on the selection the best execution plan. This selection is QoS
aware. The problem of QoS-aware service composition is modeled as a constraint
satisfaction framework. However, the only aspect considered is QoS, and the730

method requires a predefined workflow. Another aspect is further considered
in [13] for dynamic service composition, which is transaction aspect. In this
work, authors formulate the problem of transactional and QoS-aware dynamic
service composition as a constrained directed acyclic graph. Although the ob-
tained results are interesting, the approach is based on a predefined composition735

schema.
A quality of service (QoS)-aware execution plan selection approach for a

service composition process
This subject involves in and profits from many techniques and topics of com-

puter science such as Artificial Intelligence, semantic web and ontology [14]. The740

major categories of approaches for automatic service composition are: artificial
intelligence (AI) planning techniques, chaining based techniques and knowledge
based approaches in general.

Several research studies have exploited the AI planning techniques to solve
the problem of the composition of services like [15], [16] and [17]. An AI-problem745

planning is defined by an initial state, a target state representing the goal of
the plan and a set of actions. The objective is to find a path from the ini-
tial state to the target state. This path is the action plan which represents
a sequence of actions. A composite Web service, in general, is similar to a
state-transition system. It presents different states and actions in certain states750

and represents transitions from an initial state to a final state to providing re-
quired outputs. Thus, many studies on automated service composition have
focused on solving the problem of the composition by converting it into a prob-
lem of finding appropriate transition systems. Hence, different AI techniques
have been proposed such as contingency planning, HTN planning (Hyper Task755

Network), proof of linear logic theorem , and constraint based programming
[16, 18, 19, 20, 21, 22, 23]. [16], [21], [24] and [17] propose an approach for Web
service composition which takes into account the semantic description of service
functionality based on HTN planning. HTN is a planning method which pre-
defines the decomposition of every service. It is not always possible to identify760

the functionality of every service and the decomposition relationships between
all services to be able to construct a HTN. The general service composition is
supposed to provide a new functionality by composing different services from a
new user’s request. Therefore, the above mentioned approach is not suitable for
the general service composition. Our approach has similarity with HTN method765

in that the composition or the decomposition of each composite abstract ser-
vice is predefined. In the other hand, in our approach, we have the following

31

advantages: (1) each abstract service presents a fragment of process (of a cer-
tain granularity level) which can be used by many composite services, (2) A
user request corresponds to many abstract services which must be combined770

at processing time. Indeed, in our approach, the composition schema genera-
tion is achieved partly at run-time while having abstract services as design-time
components. This offers a certain flexibility and adaptability in composition
without having to deal with composition from scratch at run-time. Rao et al.
[18] convert service specifications into axioms and user needs into linear logic775

theorems and try to find an adequate composite service using theorem proving.
Akkiraju et al. [20] tries to improve the semantic precision of the resulting
composite services using semantic matching in the planning process. Song et
al. [25] present a workflow framework for service composition. This framework
is composed of a planning module and CSP (Constraint Satisfaction Problems)780

solving module. However the planning is performed at design time without con-
sidering contextual information. In [22], constraint logic programming is used
in order to find appropriate services and construct composite services. The
establishment of a composite service is based on checking whether required out-
puts are reachable from the inputs in hand using services. Then they build an785

appropriate composite service based on the reachability. The major limitation
of the above approaches is the assumption that each service has pre-conditions
and effects. If available services cannot have pre-conditions and effects, only in-
put and output parameters matching are used for composition. The generated
composition may not be satisfying to the user intention since there is services790

having same input and output parameters while having different functionality.
In our work, we explicitly define functional semantics of our abstract services to
allow selecting those services that meet user intentions. Moreover, a user does
not actually express his intentions in terms of I/O. Thus, in our opinion, more
emphasis should be put on the importance of the functional aspect of services for795

composition. Another limitation of using AI planning in automatic service com-
position is that AI planning, in general, generates a sequence of atomic actions
and does not consider contextual information. Moreover, plans may require
complex structures of control like choice, non-determinism and loops. In our
approach, we tackle this problem by encapsulating complex control structures800

in abstract services (at design-time) and chaining services at run-time.
Many research studies have applied techniques based on chaining in service

composition [26], [27], [28], [29]. They try to find dependencies between differ-
ent services in order to build a composition plan. [26] proposes the search of a
composition plan applying the shortest path algorithm on a graph of services.805

The exploration of the graph is based on a forward-chaining algorithm. In [29],
backward chaining is used to explore all possible compositions and available
services are determined during the search process. However, the response time
is too long since a great number of independent services are available. In ad-
dition, these approaches can not guarantee that generated composite services810

provide correctly the requested functionality, since they consider the matching
and dependencies between input and output parameters regardless of functional
semantics of each service.

32

9. Conclusion

In this paper, we have proposed a solution for automated and adaptable815

service composition. The composition mechanism relies on abstract services
that feature semantic, generic and reusable descriptions. This allows, on one
hand, the specification of generic processes for different situations, and on the
other hand, selecting adequate services that meet user intentions. We claim
that automated composition mechanisms have to be provided to adapt to user820

requirements and situations. Our composition process is guided by a specifica-
tion of user intentions and ignores the problems related to extraction of these
intentions from requests or contexts. We focus in this paper on the steps to
perform the generation of the composition schema. This generation is based
mainly on semantic matching mechanisms.825

Future research work will focus furthermore on the study of an efficient se-
lection policy for the concrete Web services that takes into account the volatility
aspect of concrete Web services. Indeed, this selection policy should minimize
the impact of adding and removing of Web services, by service providers, on the
definition of abstract services.830

References

[1] A. Bucchiarone, S. Gnesi, A Survey on Services Composition Languages
and Models, in: Proceedings of International Workshop on Web Services
Modeling and Testing 2006 (WS-MaTe 2006), 2006.

[2] I. J. G. dos Santos, M. Flügge, N. P. Tizzo, E. R. M. Madeira, Challenges835

and techniques on the road to dynamically compose web services, in: Pro-
ceedings of the 6th International Conference on Web Engineering, ICWE
2006, Palo Alto, California, USA, ACM, 2006, pp. 40–47.

[3] S. R. Ponnekanti, A. Fox, Sword: A developer toolkit for web service
composition, in: Proceedings of the 11th International WWW Conference840

(WWW2002), Honolulu, HI, USA, 2002.

[4] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al., OWL-S: Semantic
Markup for Web Services.

[5] L. Ye, B. Z. 0001, Discovering web services based on functional semantics.,845

in: APSCC, IEEE, 2006, pp. 348–355.

[6] B. Grosz, C. Sidner, Attention, intentions, and the structure of discourse,
Computational Linguistics 12 (3).

[7] H. Kanso, C. Soul-Dupuy, S. Tazi, Reconnaissance des intentions de com-
munication dans des corpus de documents scientifiques, in: I. Saleh,850

K. Ghedira, B. Badreddine, N. Bouhai (Eds.), Collaborer, Echanger, Inven-
ter (H2PTM), Hammamet (Tunisie), 29/10/07-31/10/07, Herms Science
Publications, http://www.editions-hermes.fr/, 2007, pp. 387–398.

33

[8] K. M. Sim, P. T. Wong, Web-based information retrieval using agent and
ontology., in: N. Zhong, Y. Yao, J. Liu, S. Ohsuga (Eds.), Web Intelligence,855

Vol. 2198 of Lecture Notes in Computer Science, Springer, 2001, pp. 384–
388.

[9] M. Paolucci, T. Kawamura, T. R. Payne, K. P. Sycara, Semantic matching
of web services capabilities, in: International Semantic Web Conference,
2002, pp. 333–347.860

[10] R. Rada, H. Mili, E. Bicknell, M. Blettner, Development and application
of a metric on semantic nets, in: IEEE Transactions on Systems, Man and
Cybernetics, 1989, pp. 17–30.

[11] F. Salfner, M. Lenk, M. Malek, A survey of online failure prediction meth-
ods, ACM Comput. Surv. 42 (3) (2010) 10:1–10:42.865

[12] M. Liu, M. Wang, W. Shen, N. Luo, J. Yan, A quality of service qos-aware
execution plan selection approach for a service composition process, Future
Gener. Comput. Syst. 28 (7) (2012) 1080–1089.

[13] Q. Wu, Q. Zhu, Transactional and qos-aware dynamic service composition
based on ant colony optimization, Future Gener. Comput. Syst. 29 (5)870

(2013) 1112–1119.

[14] D. Zhovtobryukh, A petri net-based approach for automated goal-driven
web service composition, Simulation 83 (1) (2007) 33–63. doi:10.1177/

0037549707079226.
URL http://dx.doi.org/10.1177/0037549707079226875

[15] J. Peer, A pddl based tool for automatic web service composition, in: In
Proceedings of the Second Intl Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR, Springer Verlag, 2004, pp. 149–163.

[16] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, Htn planning for web service
composition using shop2, Web Semantics: Science, Services and Agents on880

the World Wide Web 1 (4) (2004) 377–396. doi:10.1016/j.websem.2004.
06.005.
URL http://dx.doi.org/10.1016/j.websem.2004.06.005

[17] X. Tang, F. Tang, L. Bing, D. Chen, Dynamic web service composition
based on service integration and htn planning, in: 2013 Seventh Interna-885

tional Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, 2013, pp. 307–312. doi:10.1109/IMIS.2013.58.

[18] J. Rao, P. Kngas, Logic-based web services composition: From service de-
scription to process model, in: In Intl. Conference on Web Services (ICWS,
IEEE, 2004, pp. 446–453.890

34

http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1177/0037549707079226
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1109/IMIS.2013.58

[19] L. A. G. Da Costa, P. F. Pires, M. Mattoso, Automatic composition of web
services with contingency plans., in: ICWS, IEEE Computer Society, 2004,
pp. 454–461.

[20] R. Akkiraju, A. Ivan, R. Goodwin, B. Srivastava, T. F. Syeda-Mahmood,
Semantic matching to achieve web service discovery and composition., in:895

CEC/EEE, IEEE Computer Society, 2006, p. 70.

[21] R. Thiagarajan, M. Stumptner, Service composition with consistency-based
matchmaking: A csp-based approach, in: Web Services, 2007. ECOWS ’07.
Fifth European Conference on, 2007, pp. 23 –32. doi:10.1109/ECOWS.

2007.26.900

[22] S. Kona, A. Bansal, G. Gupta, Automatic composition of semantic web ser-
vices, in: Web Services, 2007. ICWS 2007. IEEE International Conference
on, 2007, pp. 150–158. doi:10.1109/ICWS.2007.52.

[23] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
B. Srivastava, A service creation environment based on end to end compo-905

sition of web services, in: Proceedings of the 14th International Conference
on World Wide Web, WWW ’05, ACM, New York, NY, USA, 2005, pp.
128–137. doi:10.1145/1060745.1060768.
URL http://doi.acm.org/10.1145/1060745.1060768

[24] Y. Xiao, X. Zhou, X. Huang, Automated semantic web service composition910

based on enhanced htn, in: 2010 Fifth IEEE International Symposium
on Service Oriented System Engineering, 2010, pp. 59–63. doi:10.1109/

SOSE.2010.48.

[25] X. Song, W. Dou, J. Chen, A workflow framework for intelligent service
composition, Future Generation Computer Systems 27 (5) (2011) 627 –915

636. doi:https://doi.org/10.1016/j.future.2010.06.008.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X10001214

[26] I. B. Arpinar, R. Zhang, B. Aleman-Meza, A. Maduko, Ontology-driven
web services composition platform, Inf. Syst. E-Business Management920

3 (2) (2005) 175–199.
URL http://dblp.uni-trier.de/db/journals/isem/isem3.html#

ArpinarZAM05

[27] L. Aversano, G. Canfora, A. Ciampi, An algorithm for web service discovery
through their composition, 2013 IEEE 20th International Conference on925

Web Services 0 (2004) 332. doi:http://doi.ieeecomputersociety.org/
10.1109/ICWS.2004.1314755.

[28] S. V. Hashemian, F. Mavaddat, A graph-based framework for composition
of stateless web services, in: Proceedings of the European Conference on
Web Services, ECOWS ’06, IEEE Computer Society, Washington, DC,930

35

http://dx.doi.org/10.1109/ECOWS.2007.26
http://dx.doi.org/10.1109/ECOWS.2007.26
http://dx.doi.org/10.1109/ECOWS.2007.26
http://dx.doi.org/10.1109/ICWS.2007.52
http://doi.acm.org/10.1145/1060745.1060768
http://doi.acm.org/10.1145/1060745.1060768
http://doi.acm.org/10.1145/1060745.1060768
http://dx.doi.org/10.1145/1060745.1060768
http://doi.acm.org/10.1145/1060745.1060768
http://dx.doi.org/10.1109/SOSE.2010.48
http://dx.doi.org/10.1109/SOSE.2010.48
http://dx.doi.org/10.1109/SOSE.2010.48
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://dx.doi.org/https://doi.org/10.1016/j.future.2010.06.008
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://www.sciencedirect.com/science/article/pii/S0167739X10001214
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dblp.uni-trier.de/db/journals/isem/isem3.html#ArpinarZAM05
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.1314755
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.1314755
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.1314755
https://doi.org/10.1109/ECOWS.2006.2
https://doi.org/10.1109/ECOWS.2006.2
https://doi.org/10.1109/ECOWS.2006.2

USA, 2006, pp. 75–86. doi:10.1109/ECOWS.2006.2.
URL https://doi.org/10.1109/ECOWS.2006.2

[29] F. Mohr, A. Jungmann, H. K. Bning, Automated online service composi-
tion, in: 2015 IEEE International Conference on Services Computing, 2015,
pp. 57–64. doi:10.1109/SCC.2015.18.935

36

http://dx.doi.org/10.1109/ECOWS.2006.2
https://doi.org/10.1109/ECOWS.2006.2
http://dx.doi.org/10.1109/SCC.2015.18

	Introduction
	Motivating illustrations
	Overview of our composition approach
	Preliminaries
	Abstract Service
	Presentation and motivation
	Specification of abstract services

	User intention representation

	Composition of services
	intentions graph enrichment
	Generation of initial composition schema
	Building control flow
	Selection of abstract services

	Generation of final composition schema
	Generation of execution plan
	Implementation

	Case study
	Experimental results
	Related Work
	Conclusion

