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Prediction of Human Whole-Body Movements with AE-ProMPs

Oriane Dermy1, Maxime Chaveroche1,2, Francis Colas1, François Charpillet1, Serena Ivaldi1

Abstract— The ability to predict the future intended move-
ment is crucial for collaborative robots to anticipate the human
actions and for assistive technologies to alert if a particular
movement is non-ergonomic and potentially dangerous for
the human health. In this paper, we address the problem of
predicting the future human whole-body movements given early
observations. We propose to predict the continuation of the
high-dimensional trajectories mapped into a reduced latent
space, using autoencoders (AE). The prediction is based on a
probabilistic description of the movement primitives (ProMPs)
in the latent space, which notably reduces the computational
time for the prediction to occur, and hence enables to use
the method in real-time applications. We evaluate our method,
named AE-ProMPs, for predicting future movements belonging
to a dataset of 7 different actions performed by a human,
recorded by a wearable motion tracking suit.

I. INTRODUCTION

An important skill that allows humans to collaborate
efficiently is their ability to predict the future movement of
their partners [1]. This ability not only entails the “prediction
of intention”, often formalized as predicting the goal of an
action, but the “prediction of the future intended movement”,
that we recently formalized as predicting the future trajectory
given early observations of it [2].

The ability to predict the future intended movement is
also crucial for collaborative robots to anticipate the human
actions and for assistive technologies to alert if a particular
movement is non-ergonomic and potentially dangerous for
the human health [3]. To consequently act, this prediction
must be very fast from the few available observations, despite
the variability and high-dimensionality of the movements.

In our previous work, we used Probabilistic Movement
Primitives (ProMPs) to learn trajectory distributions of robotic
actions and to predict the future intended movement during
human-robot interaction. We showed that a robot can use an
initial portion of a trajectory, that we call “partial trajectory”,
to infer its continuation up to the goal [2]. The trajectories
were demonstrated to the robot using physical interaction,
visual cues or both [4]. These experiments concerned only
the robot’s arm movements, though combining kinematics
and dynamics signals.

In this paper, we are interested in predicting the future
outcome of human whole-body movements, given early
observations or partial trajectories, and fast enough for a
robot to plan a suitable assistive action if needed. Since

*This work was supported by the European Unions Horizon 2020 Research
and Innovation Programme under Grant Agreement No. 731540 (project
AnDy).

1 Inria, CNRS, University of Lorraine, Loria, UMR 7503
name.surname@inria.fr

2 Heudiasyc, UTC

What will
he do? How?

AE-
ProMPs

Prediction

=

Observations 

Fig. 1: Concept of our work: the goal is to predict at time t
the future human whole-body movement (t+1, . . . , tf ) given
t partial observations of this movement. AE-ProMPs is used
to make this prediction.

we want to predict the future trajectories for all the human
segments performing the action, our prediction is performed
in a high dimensional space and our previous method [2] is
computationally inefficient (as we will show in Section V-A),
hence not suitable for our real-time application. To solve this
issue, we propose here to reduce the dimensionality of the
data space. The high-dimensional trajectories are mapped
into a low-dimensional latent space (LS). Then, the ProMPs
are learned directly in this LS, in which we also compute
the predicted future trajectories. The compression is done
using autoencoders (AE), which enable encoding the original
trajectories into the LS and decoding the predicted trajectories
from the LS to the original high-dimensional space. We call
this method AE-ProMPs.

We evaluate AE-ProMPs for predicting the future move-
ments of a human performing 7 different whole-body move-
ments, included in the dataset of [5], [6]. This scenario is
represented in Figure 1. The movements were recorded by
a wearable motion tracking suit (XSens MVN) [7], which
provides a kinematic reconstruction of the human posture.

AE-ProMPs is computationally efficient and suitable for
our application. We compare it with similar methods proposed
to encode whole-body movements in a latent space, namely
VAE-DMP [8] and VTSFE [5]. The first exploits variational
autoencoders (VAE) to compress the movement in a reduced
latent space, then forces the continuity of the latent space



trajectories using Dynamic Motion Primitives (DMPs). The
second is an improvement of VAE-DMP, notably by removing
the dependence of the attractor in the DMP and by providing
a lower bound for the variational inference. While both these
methods are very interesting for their capacity to produce
a coherent latent space that preserves the continuity of the
trajectories, they are computationally expensive. Moreover, the
complexity induced by the dynamic forcing function can be
skipped in our case since we do not consider individual latent
space trajectories, as in [8], but learn probability distributions
over the latent space trajectories.

The paper is organized as follows. In Section II we report
on previous works using motion primitives and dimensionality
reduction techniques. Section III describes the elements of
our proposed method, ProMPs and AE, as well as VTSFE
that is combined with ProMP and compared to AE-ProMPs
in the experiments of Section IV. In Section V are discussed
the experimental results, where we show that AE-ProMP
is computationally more efficient than VTSFE-ProMP and
has a better reconstruction of the inferred trajectories from
the latent space to the original space. Section VI draws the
conclusions and outlines the future works towards the use of
AE-ProMP in an assistive robotics scenario.

II. RELATED WORKS

The key elements in our framework are probabilistic
movement primitives, which capture the information about
the current trajectory and predict its future, and autoencoders,
which reduce the dimensionality of our whole-body trajec-
tories into a latent space. In the following, we outline the
related works in these two domains.

A. Learning Movement Primitives

Complex trajectories and activities can be modeled and
recognized with different approaches, such as recurrent neural
networks [9] or Hidden Markov Models (HMM) [10]. Here,
we are more interested in parametric techniques that represent
trajectories as movement primitives. A classic method, called
Dynamic Movement Primitives (DMPs) [11][12], models
trajectories using an attractor point at the end (i.e., the goal
in a reaching primitive), and a forcing function to capture
the shape of the trajectory, i.e., its evolution in time. An
improvement of DMPs, called Probabilistic Dynamic Move-
ment Primitives [13] allows learning movement distributions
rather than individual trajectories. This is a desirable feature
to encapsulate the human movements variability and improve
the inference of the future trajectories. A limitation of these
methods, for our application, is their dependency on the
attractor point. While it can be available for goal-directed
movements, it is not necessarily the case for generic human
movements such as walking or carrying an object.

In [14], Paraschos et al. proposed the Probabilistic Move-
ment Primitives method (ProMPs - detailed in Section III-A),
which captures the probability distribution of demonstrated
trajectories over time, with several features such as co-
activation, coupling and temporal scaling. In [15], Maeda
et al. showed that ProMPs are more efficient than DMPs

for prediction, while [16][17] showed that ProMPs are better
for generalizing trajectories into primitives. In our previous
work [2], [4], we used ProMPs to infer the future intended
trajectories during human-robot interaction, using haptic
signals and gaze cues: we were able to predict the future
trajectories despite variations in the demonstrated trajectories
and their duration, and considerable noise. However, we
addressed simple movements with a small dimension (e.g.,
6), whereas here we need to infer the future of whole-
body movements with a bigger dimension (e.g., 69 and
more)1. For such bigger dimensions, classical ProMPs are
computationally inefficient (c.f. Section V-A). Scaling up to
higher dimension while being computationally efficient is
possible with ProMPs by optimizing the matrix computation
and setting a fixed number of observations for prediction,
which permit to pre-compute the gain matrix that does not
depend on the observations. However, in our application the
number of observations shall remain variable, and whatever
optimization we do, the computation time will still increase
with the input dimension. For this reason, dimensionality
reduction techniques are an appealing alternative.

B. Dimensionality reduction in a latent space

Dimensionality reduction is a critical process in machine
learning and data processing, as it requires extracting from the
data a reduced set of principal features that describe a process.
The most common method for dimensionality reduction is
the Principal Component Analysis [18]. Autoencoders (AEs)
are another classical method for reducing the dimensionality
of data. They are neural networks that learn to encode data
in a latent space of a lower dimension than the original
input space, through the minimization of a loss function that
measures the distance between the original data and the data
reconstructed from this latent space. A recent variant of AEs is
Variational autoencoders (VAEs) [19], which is a combination
of an autoencoder with variational inference [20]. Variational
inference is an approach that approximates a probability
density function through parameter optimization of a known
probability density function (e.g., Gaussian distribution). Both
methods are excellent functional approximators and have been
used for dimensionality reduction of complex functions in
unsupervised way [21], [22].

In [23], Colomé et al. presented a method that reduces
the dimensionality of the ProMPs, called DR-ProMP, to find
low-dimensional walking policies for the Nao robot. They
used probabilistic dimensionality reduction techniques on
a set of trajectory demonstrations to extract the unknown
synergies between the dimensions, producing a new ProMP
expression in which a coordination matrix maps the lower-
dimensional latent virtual joint space into the real-dimensional
robot joint space. The latent space dimension was manually
tuned (usually 4-5); the maximum size of the original space
was 15, which makes the compression ratio not interesting
for our application.

1In this paper our data size is 69, since we only consider the kinematics
of the human skeleton model, but the size could grow considerably if we
were considering also joint torques and wrenches.
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Fig. 2: Concept of our proposed method to predict future trajectories. We encode high-dimensional postures (with AEs) or
postural trajectories (with VTSFE) into a low-dimensional latent space (in the figure, 2-dimensional with z0 and z1). From
several low-dimensional encoded trajectories the ProMPs learn a trajectory distribution for each action. This prior information
is used to predict the future trajectory (in red) given some initial observations (in black).

While AEs and VAEs can be used to learn the whole-body
human posture, they cannot be used to represent whole-body
trajectories over time in a smooth and coherent manner (i.e.,
without jolts) since there is no postural time-dependence. This
issue was well explained by Chen et al. in [8], which proposed
to force the temporal dependency by learning DMPs in the
latent space. Their method, called VAE-DMP, uses Deep Vari-
ational Bayes Filters (DVBF) [24], where Bayesian filtering
is applied on latent variables with temporal dependencies,
with a recurrent deep neural network composed of chained
VAEs An improvement of VAE-DMP, called Variational
Time Series Feature Extractor (VTSFE), was proposed by
Chaveroche et al. in [5] to encode features of the time
series for both classification and prediction purposes. These
methods are interesting for mapping trajectories from high to
low dimensional spaces, however they are computationally
expensive.

In this paper, we propose two methods that combine the
prediction capabilities of ProMPs with the dimensionality
reduction of AEs and VTSFE: we call them respectively AE-
ProMPs and VTSFE-ProMPs. These two methods follow two
different ideas: in AE-ProMPs the AE compresses postures
while in VTSFE-ProMPs the VTSFE compresses the whole
trajectory directly; in both cases ProMPs infer the future
trajectory in the latent space. We will show that to predict
the future trajectories given early observations AE-ProMPs
is faster and more performing. The next section details the
methods.

III. METHODS

In the following, we present in detail AE-ProMPs and
VTSFE-ProMPs. We first present ProMPs and how they are

used to do inference, then introduce AEs and VTSFE. For the
sake of clarity, we sketch in Figure 3 the differences between
the two methods applied to our problem of encoding human
postures/trajectories in a latent space.

A. Probabilistic Movement Primitives (ProMPs)

A ProMP is a Bayesian parametric model:

ξ(t) = Φtω + εξ (1)

where:

• ξ(t) ∈ RN is the vector containing all the variables to
be learned at time t.

• the matrix Φt corresponds to the M Radial Basis
Functions (RBFs) evaluated at time t, with Φt =
[ψ1(t), ψ2(t), . . . ., ψM (t)];

• ω ∈ RM is a time-independent parameter vector that
weighs the Φ matrix;

• εξ ∼ N (0, β) is the trajectory noise variable.

During the learning phase, the weights ω are learned from a
set of trajectory demonstrations {Ξ1, . . . ,Ξn1

}, where the i-
th trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}. The weights encode
the probability distribution over the trajectories.

Given a set of different demonstrations for NA different
actions, NA ProMPs are learned. They are used as prior
knowledge to estimate from partial observations Ξo =
[Ξ1 . . .Ξno ]> what is the current action k̂ ∈ [1 : NA] (i.e.,
the most likely ProMP from the ones learned) and to predict
its future trajectory, as done in [2][4].

Once the current k̂-th ProMP is identified, the recognized
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Fig. 3: Relation between AEs and VTSFE for encoding
trajectories in a low-dimensional latent-space.

distribution (called “prior”) can be updated by:
µ̂ωk̂

= µωk̂
+K(Ξo − Φ[1:no]µωk̂

)

Σ̂ωk̂
= Σωk̂

−K(Φ[1:no]Σωk̂
)

K = Σωk̂
Φ>[1:no]

(Σξo + Φ[1:no]Σωk̂
Φ>[1:no]

)−1

(2)
Finally, the inferred trajectory is given by:

∀t ∈ [1 : tf ], ξ̂(t) = Φt µ̂ωk̂

with the duration of the trajectory tf , which corresponds
to the number of frames used to represent the trajectories.
The movement continuation can be predicted by identifying
the most-likely “future” trajectory X̂ = [X̂no+1 . . . X̂tf ]>, as
explained in [2], [14].

B. Dimension compression using an autoencoder

In their simplest form, AEs are multilayer perceptrons in
which the output layer, of the same dimension as the input
layer, is trained to reconstruct the input [25]. Their structure is
often symmetrical and split between the encoder and decoder
parts. On the one hand, the encoder transforms the input
xt of dimension N , in our case the whole-body kinematic
information, into a value zt in the latent space of dimension
R. On the other hand, the decoder transforms the latent space
back into the reconstructed kinematic space. Each of the
encoder and decoder usually includes a number of hidden
layers and non-linear activation functions in order to build a
non-linear compressed latent space.

C. Dimension compression using Variational Time Series
Feature extractors (VTSFE)

As introduced in Section II, VTSFE [5] is an improvement
of VAE-DMP [8]. Both methods construct a function to simply
project the input vector x in the latent space independently
from time, like AEs or VAEs do. However, they differ in the
way that function is learned and therefore construct different
latent spaces.

First, VTSFE has a more accurate model to represent
the noise of the trajectory inference (e.g. the distribution
representing inference errors), since inference errors are the
difference between what the transition model predicts (through

all its variables) and the real trajectory. It has a simpler
transition model, representing better the trajectories since their
acceleration is only constrained in latent space, i.e. the space
of z, and not in the space of its arbitrarily defined derivative
ż. It also does not require to know the final trajectory
position/goal, which is better since the constraint does not
rely on a changing and arbitrarily defined position in latent
space. Moreover, the inferred trajectories are further improved
through the design of a loss term on the “inferred dynamics
f”, which makes the final optimization closer to the actual
theoretical optimization pointed by Variational Inference. The
“Inferred dynamics f” is the sequence of forcing terms ft
in the latent space (i.e. a force applied at time t in latent
space that influences the encoded trajectories). These forcing
terms are inferred from multiple trajectory demonstrations for
each movement type and only used during the latent space
learning process. Thus, they force the encoded trajectories to
follow the same dynamics than the demonstrations.

More details about this method can be found in [5]. The
most visible difference between VTSFE and VAE-DMP is the
noise inference: with VTSFE, the encoder tries to optimize
its parameters φ to infer εt not only with xt+1 and zt, but
also with all other variables used in the transition model.
Therefore, it sets the known distribution as a Gaussian one
for the inference of εt as follows: qφ(εt|ft, xt+1, zt, zt−1) =
N (µε,t, σ

2
ε,tI).

The other difference is that the transition model of VTSFE
does not use the classical DMP model but a simple discretized
acceleration model with an extra forcing term ft + εt instead:

zt+1 = (ft + εt)dt
2 + 2zt − zt−1 = g(zt, zt−1, ft, εt)

This transition model does not need zT nor żt nor the DMP
parameters α and β that needs to be optimized, for exemple
with grid search.

D. Inference on a compressed representation of trajectories
using AE-ProMPs or VTSFE-ProMPs

We propose to use ProMPs to represent the movement
primitives encoded in a low-dimensional latent space, encoded
by either AE or VTSFE: the two methods are then called
AE-ProMPs and VTSFE-ProMPs. The concept is shown in
Figure 2 and 4. For both cases, there is a preliminary learning
phase, offline, before the online prediction phase.

First, we train the AE or the VTSFE to compress the
original data into the latent space. For the AE, we encode
the individual postures (dimension N ) into a R-dimensional
latent space, with R � N . For the VTSFE, we encode
the entire posture trajectories (dimension N , for each frame
t = 1, . . . , tf ) into a cascade of tf VAE, with R � N
and tf the number of frames used to represent a movement.
The decoded trajectories are xrec(t) = dec(enc(x(t)) =
x(t) + εv(t),∀t ∈ [1 : tf ], with εv(t) the reconstruction error.
Then, we learn the NA ProMPs associated to the NA actions,
using the sets of demonstrated trajectories compressed in the
latent space: ξ(t) = [z1(t), . . . , zR(t)]> = Φtω + εξ

Once the ProMPs are learned, we can use them to predict
the future trajectories given partial observations. This phase
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Fig. 5: The 7 actions of the dataset of [6], with the kinematic
estimation of the human posture by Xsens MVN Studio.

can be performed online. During the “recognition step”,
observations of a movement initiated by the user are retrieved
(first image of the “recognition part”). In the prediction
phase, we record early observations of the human movement,
and encode them in the pre-trained latent space: ξo =
[zo1(t), . . . , zoR(t)]>,∀t ∈ [1 : no]. Then, using the ProMPs
inference [2], we compute the continuation of this compressed-
partial trajectory: Ξ̂ = [ξ̂no+1 . . . ξ̂tf ]>. Finally, the AE or
VTSFE decoding is performed to obtain the prediction of the
future whole-body movement: dec(Ξ̂) = [x̂no+1 . . . x̂tf ]>.

IV. EXPERIMENTS

The goal of the experiments is to compare three different
methods (ProMPs, AE-ProMPs and VTSFE-ProMPs) when
applied to predict the future human movement given early
observations. We use the actions dataset from [6], consisting
of ten movement demonstrations for seven different actions
(see Figure 5): bending forward, bending strongly forward,
lifting a box, kicking, opening a window, walking and
standing. The trajectories were recorded with the XSens MVN
suit, which tracks the human motion with a 23DOF skeleton
model. From these recordings, using XSens MVN Studio, we
retrieve the 3D Cartesian positions of the human segments.
Thus, the posture of the human operator is represented by
3 × 23 = 69 Cartesian position variables. Each trajectory
demonstration has been re-sampled to last seventy frames
(tf = 70), to enable the comparison with VTSFE that needs
a fixed duration trajectory, as explained in [5].

A. ProMPs-only

We compute the ProMPs of the 7 different actions without
dimensionality reduction. The objective of this experiment is
to show the accuracy of the prediction when using ProMPs,
but also the main limitation of the computation time when
the input dimension grows.

In this experiment, the vector ξ(t) ∈ R69 of Eq.1 contains
all the segment positions that represent the whole-body
movement of the human: ξ(t) = [a1,1(t), ..., a23,3(t)]>, with
ai,j the ith segment position with coordinate j ∈ {x, y, z}.
The ProMP model contains 10 basis functions to represent
trajectories. We compute the full covariance matrix, coupling
all the joints to record redundancy of information between
the joints.

B. AE-ProMPs

We use AEs to compress the 69-dimensional original
posture data into a low-dimensional latent space, where
we learn the ProMPs to make our predictions. In this
experiment, ProMPs are learned from the encoded postures
(i.e., from the latent space of the AEs), with for example
ξ(t) = [z1(t), z2(t)]> when R = 2.

To compress the original data in the latent space, we use
a simple AE composed of different layers. An input layer
with N units x = {x1, . . . , x69} for the entire posture values
(i.e., 69 units). A compressed-layer (latent space) with a
variable number R (e.g, 10 units) of units z = {z1, . . . , zR}.
An output layer with the decoded posture that has the same
dimension N of the input layer (i.e., 69 units). We call these
units xrec = {x1,rec, . . . , x69,rec}. Finally, two hidden layers,
one between the input and the compressed layers and the
other between the compressed and the output layers (e.g.,
500 units). We call these layers hj with j ∈ [1, . . . , R] and
its i − th unit: hjxi

. The weights of this neural networks
are initialized using the Xavier initialization [26], where
weights are scaled by a uniform distribution. For the activation
function of all units, we choose the “leaky ReLU” [27]: it is
similar to “ReLU” (rectified linear unit), but the function is
not zero for negative values, it has a small negative slope (i.e.,
f(x) = 1x<0αx+ 1x>=0x, with α = 0.5 in our case). We
choose this function after having compared its performance
with the sigmoid and ReLu activation functions. Finally, the
neural networks are learned by using the least mean square
error between x and xrec as loss function, and ADAM as
gradient descent optimizer [28].

After having modeled this neural network, the AE was
trained using 2

3 of all postures of the 70 trajectory demon-
strations, that is 30916 postures. Then, the AE was tested
using the last 1

3 postures.
Then, the ProMPs are learned, from 69 encoded trajectory

demonstrations. The learning steps are done 35 times since
we tested 5 samples from each of the 7 actions using the
leave-one-out cross-validation.

C. VTSFE-ProMPs

We use VTSFE to encode the entire postural trajectory
(69-dimensions × 70 frames = 4830) in a dynamically
consistent latent space, where we learn the ProMPs to make
our predictions. In this experiment, different latent space
dimensions R are tested, for example ξ(t) = [z1(t), z2(t)]>

when R = 2. The objective of this experiment is to verify
whether encoding the entire trajectory instead of instant
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Fig. 6: ProMPs-only - (a) some frames representing the real
trajectories (black) and their inference (red) after observing
5% of the whole trajectory (3 frames). Bottom: Computation
time according to the latent space dimension used to represent
trajectory. The trajectories are represented by 70 frames.

postures improves not only the latent space (we already know
this from [8] and [5]) but the inference.

V. RESULTS AND DISCUSSION

We are interested into evaluating the performance of the
three methods from the point of views of computation time,
complexity, inference and prediction capabilities. All results
and their representations with boxplots are done using the
leave-one-out cross-validation and the 70-frames trajectories
in off-line trials. To test the performance of the proposed
methods, we use three different distance metrics:
1) ErrAE or autoencoding error, evaluates the autoencoding
performance. It is the average distance between the recon-
structed trajectory xrec (i.e., the autoencoded trajectory) and
the real one x: ErrAE = 1

tfN

∑tf
i=1

∑N
j=1 |xj,rec(i)−xj(i)|

2) ErrI or Inference error, evaluates the inference perfor-
mance. It is the average distance between the reconstructed
trajectory xrec and the reconstruction of the infered one x̂:
ErrI = 1

tfN

∑tf
i=1

∑N
j=1 |xj,rec(i)− x̂j(i)|

3) ErrAE+I or global error, evaluates the overall method,
so the global performance in encoding and inference. It is
the average distance between the real trajectory x and the
infered one x̂: ErrAE+I = 1

tfN

∑tf
i=1

∑N
j=1 |x̂j(i)− xj(i)|

A. Future movement prediction using ProMPs only

Figure 6a represents the inference of the ProMPs in the
original data space (N = 69) after observing 5% of a
trajectory (3 frames). The frames were taken from the video
attachment at a representative moment of the movements.
Even if this method is performing in representing trajectories
[17], [15], its computation time for prediction increases
quadratically with the number of data represented by the

ProMPs [23]. In this case, prediction is done on a 69-
dimensional vector: Figure 6b represents the average time to
compute movement distributions on all the demonstrations,
and Figure 6c the average time to infer the movement
continuation. The computation time is simply too long for
our targeted application, where we need to predict the future
human trajectory in few ms. This issue motivates our approach
to reduce the dimensionality of the problem.

B. Future movement prediction using AE-ProMPs

Figure 7a shows the prediction of human trajectories
encoded in a 5-dimensional latent space. Again, the frames
were taken at representative moments of the movement, from
the video attachment. Figure 7b shows an extract from the
latent space trajectories for z1: the few irregularities in the
trajectories do not negatively affect the ProMPs, therefore
not causing problems in the prediction phase.

Figure 8 shows the accuracy of AE-ProMPs with respect
to the latent space dimension and the percentage of partial
observations used for the inference. In the top row, the
boxplots compare the distance errors from the entire original
trajectory after reconstruction (label “AE only”) and the
infered trajectory after reconstruction, when the prediction
is done on 60% of partial observations. In Figure 8a, the
distance error decreases with the latent space dimension,
and the plots suggest that a latent space dimension of 5
is a good compromise to get a good inference without a
long computation time. In Figure 8b, the distance error is
computed within the latent space, between the compressed
real trajectory and the inferred one. In contrast to the previous
graph, the distance error increases with the latent space
dimension. Indeed, the smaller the latent space dimension
is, the less the compressed-trajectory contains information
and thus, the smaller the error is. But when the latent
space is smaller, the compressed-trajectory contains less
information about the real trajectory: so when the trajectory is
decompressed, the inference gives poorer results (Figure 8a).
The bottom row shows the accuracy of the method for this
latent space dimension (R = 5). The error induced by the
encoding ErrAE is relatively small, the global error at the
end is affected by the inference error ErrI , which decreases,
as expected, with the more observations available for the
inference. One can remark that after 60% of observations,
the method can infer the future whole-body trajectory with a
distance error around 1cm, which is a very good performance
for our targeted application.

C. Future movement prediction using VTSFE-ProMPs

Figure 9a shows the prediction of human trajectories
encoded in a 5-dimensional latent space. The bottom of
Figure 9 shows the accuracy of VTSFE-ProMPs according
to the number of observations, for different latent spaces
dimensions. Figure 9c shows that the reconstruction is not
performing: whatever the latent space dimension, ErrAE is
almost constant, the global error ErrAE+I as well, which
suggests that the inference error ErrI is significantly smaller
than the encoding error ErrAE and does not influence the
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Fig. 7: AE-ProMPs: experiment with a 5-D latent space.

overall performance of the method. Figure 9b compares
the inference error ErrI for two latent space dimensions
(2 and 5): overall ErrI decreases with the more available
observations in both dimensions, as expected. However,
this error is 1 to 2 orders of magnitude smaller than the
encoding error, so its contribution does not impact the overall
performance of the method.

In [5], Chaveroche et al. explain that VTSFE gives better
encoding than VAE-DMP but a poorer decoding due to the
variational inference during its learning, which forces the
decoded data not to vary much. This is consistent with our
observations (see the video attachment) where VTSFE has
problems in encoding movements with big variations of the
segments positions (or the joints), such as the knees and feet
in kicking and walking. The encoded trajectories are more
conservative around the average posture. In AE-ProMPs we
do not have this problem, because the AE learns to encode
instantaneous postures without forcing a continuity over the
postural trajectories: therefore, it is capable of encoding also
more extreme postures, and reconstruct trajectories with high
variations in the segments and joints positions.

D. Accuracy vs computation time

Table I provides a comparison between the three methods
in terms of accuracy and computation time necessary for the
prediction of the future whole-body movement.

Inference from Accuracy Computation
20% observation prediction [m] time [s]
ProMPs mean 0.0145 2.5378

(69 dimensions) var 1.0038e-04 0.0357
VTSFE-ProMPs mean 0.04219 0.0565

(L.S.= 5) var 0.002 0.0024
AE-ProMPs mean 0.02793 0.0516

(L.S.= 5) var 0.003 0.0028
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Fig. 8: AE-ProMPs - Accuracy according to the latent space
dimension (top) and the percentage of observations (bottom).

TABLE I: Mean and variance of the distance error between
the ground truth trajectories and the inferred ones, and of
the inference computation times for both ProMP et VTSFE-
ProMPs methods.

Even if this prediction is done only from 20% of partial
observations of the whole trajectory, we can see that the
computation time of ProMPs is a lot longer than the two other
methods. VTSFE-ProMPs is the less accurate, for the reasons
we already explained. Thus, for our targeted application, the
best method is AE-ProMPs, which outperforms ProMPs for
the computation time and VTSFE-ProMPs for the inference
and reconstruction ability.

E. VIDEO

The video attachment shows the predicted future move-
ments after 30− 60% of observations, for the three methods
(ProMPs-only, AE-ProMPs, VTSFE-ProMPs).

VI. CONCLUSION

In this paper we propose a new method for high-
dimensional movement prediction, called AE-ProMP. This
method combines the dimensionality reduction of an AEs with
the prediction capabilities of the ProMP method. The AEs is
used to compress the postures into a low-dimensional latent
space. The ProMP method is used to infer the continuation
of movement given some early postures, by learning the
trajectory distributions in the latent space. Our results show
that AE-ProMPs allows to predict accurately whole-body
movements encoded in a low-dimensional (e.g., 5D) latent
space, with a reduced computation time. However, we can
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assume that the larger the input dimension, the less accurate
the prediction is. Thus, to go further in our study, we should
quantify the decrease in prediction accuracy, according to
the input dimension for a same latent space dimension. We
compared our proposed method with a simple prediction using
ProMPs alone and with a combination of VTSFE and ProMPs,
where the encoding is about the whole trajectory rather than
the single posture. In the first case, ProMPs alone are too
computationally slow for our targeted real-time applications.
In the second case, despite the better dynamically consistent
latent space, VTSFE requires more training resources to
perform. In the future, we plan to improve AE-ProMPs by
predicting trajectories of different durations, as we did in
[2], and improving the accuracy of the encoding-decoding by
automatically setting the latent space dimension and testing
different variants of AEs.

ACKNOWLEDGMENTS

The authors wish to thank Adrien Malaisé for his support
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